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We consider the SL(2, C)-covariant Lagrangian formulation of gravitational theories with the
presence of spinor matter fields. The invariance properties of such theories give rise to the conserva-
tion laws (the contracted Bianchi identities) having in the presence of matter fields a more compli-
cated form than those known in the literature previously. A general SL(2, C) gauge theory of gravity
is cast into an SL(2, C)-covariant Hamiltonian formulation. Breaking the SL(2, C) symmetry of the
system to the SU(2) symmetry, by introducing a spacelike slicing of spacetime, we get an SU(2)-
covariant Hamiltonian picture. The qualitative analysis of SL(2, C) gauge theories of gravity in the
SU(2)-covariant formulation enables us to define the dynamical symplectic variables and the gauge
variables of the theory under consideration as well as to divide the set of field equations into the
dynamical equations and the constraints. In the SU(2)-covariant Hamiltonian formulation the pri-
mary constraints, which are generic for first-order matter Lagrangians (Dirac, Weyl, Fierz-Pauli),
can be reduced. The effective matter symplectic variables are given by SU(2)-spinor-valued half-
forms on three-dimensional slices of spacetime. The coupled Einstein-Cartan-Dirac (Weyl, Fierz-
Pauli) system is analyzed from the (34 1) point of view. This analysis is complete; the field equa-
tions of the Einstein-Cartan-Dirac theory split into 18 gravitational dynamical equations, 8 dynami-
cal Dirac equations, and 7 first-class constraints. The system has 4+ 8=12 independent degrees of
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freedom in the phase space.

I. INTRODUCTION

The rapid development of gauge theories of elementary
particles in the last fifteen years stimulated a growing in-
terest in unified theories of fundamental interactions.
There is a strong belief among physicists that such a uni-
fied theory should also describe gravitational phenomena.'
This is why several attempts were made to incorporate the
classical Einstein theory into the gauge scheme. Some of
these approaches revive the old Kaluza-Klein ideas,? and
some others going beyond classical geometry are based on
supersymmetric methods.3 In the present paper, however,
we deal with much more standard constructions.
Remaining within the framework of four-dimensional
spacetimes, we equip them with metric and affine struc-
tures. That is to say, we fix a global tetrad one-form

e”=e'® dx* on spacetime M as well as an so(3,1)-
valued connection one-form @) g =T pdx". The

global tetrad field e® determines a spinor structure of
spacetime and we employ the spin representation of tetrad
and connection one-forms. In such a representation the
tetrad one-form e??=e“? dx* takes its values in the
space H(2) of complex, Hermitian 22 matrices and
values of the connection one-form FAB=I‘AB#dx" lie in
the Lie algebra sl(2,C), i.e, in the space of complex,
traceless 2 X2 matrices. The quantities e? and "5 are
the gravitational potentials. Matter coupled to gravity is
described by its potentials being differential k-forms >
on spacetime with values in the space of an appropriate
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spinor representatlon of SL(2,C). Such a description of
matter is widely accepted today. 4 It enables us to discuss
not only tensor and Dirac fields but also the electromag-
netic field as well as the Rarita-Schwinger field playing an
important role in supergravity. The field potentials
e48 I'4p,6> are subject to the natural action of the local
SL(2,C) group. Field Lagrangians are SL(2, C) invariant,
real four-forms on spacetime; gravitational Lagrangians K
depend on the tetrad field, curvature, and torsion of the
connection; matter Lagrangians L are functions of the
tetrad field, matter potentials, and their covariant exterior
derivatives. The dynamics of the system is given by the
Euler-Lagrange (EL) equations:

8(K +L)/8e*®=0,
8(K+L)/8T4p=0,
8(K +L)/8¢%=0.

(1.1

It is clear that the set of solutions of field equations (1.1)
is invariant with respect to the action of the local SL(2, C)
group. In the literature, such theories are usually called
SL(2, C) gauge theories of gravity. Of course, such a defi-
nition essentially generalizes the standard notion of
Yang-Mills gauge fields. Therefore, several authors tried
to reformulate the tetrad-connection gauge approach and
to replace it with the purely internal Yang-Mills scheme
in an appropriately chosen principal bundle. The inhomo-
geneous SO(3,1) group (the Poincaré group), the inhomo-
geneous GL(4,R) group or de Sitter group were mostly
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taken as the structure groups of those bundles. A pro-
found discussion of the problem and the relevant bibliog-
raphy can be found in Refs. 5, 6, and 7.

Any Lagrangian SL(2, C) gauge theory of gravity based
on variational potentials e, 'y, ¢*, and field equations
(1.1) can be cast into a Hamiltonian form. The most
natural is the SL(2, C)-covariant Hamiltonian formulation
presented in Sec. V. The set & of all conceivable
geometric configurations of the system under considera-
tion carries a natural symplectic structure given by a
closed two-form Q on &. The invariance of the theory
with respect to the diffeomorphism group of spacetime
leads to a natural definition of the energy-momentum
function & on ¥. Infinitesimal developments of sym-
plectic variables are generated by the Hamilton equation

d&(V)=-2Q(Y,V) . (1.2)

Here Y is the vector of evolution and ¥V is an arbitrary
(sample) vector tangent to ¥ .

Infinitesimal variations of symplectic variables induced
by the vector Y coincide with the corresponding covariant
Lie derivatives of these variables. In such an approach
the full gravitational gauge group G of the theory has a
rather complicated structure. It is given by the bundle
product of the local SL(2,C) group and the diffeomor-
phism group of spacetime (see Appendix C).

The field equations formulated in the SL(2,C)-
covariant Hamiltonian picture are strictly equivalent to
the EL equations and they do not help us to give a deeper
analysis of the system. We are able, however, to elucidate
the structure of field equations more profoundly if we
break the original SL(2,C) symmetry by means of a
spacelike slicing of spacetime.® Then we naturally obtain
an SU(2)-covariant Hamiltonian formulation. Such a for-
mulation enables us to separate the dynamical symplectic
variables and gauge variables and helps to analyze the
dynamical structure of field equations. Even for general
Lagrangians we are able to give a partial analysis of the
dynamics. In particular, we clarify the structure of ten
Hamiltonian constraints and prove their maintenance in
the process of evolution. A general scheme of how to
analyze the SU(2)-covariant Hamiltonian equations is dis-
cussed in Sec. VII. The complete dynamical analysis of
field equations, however, is possible only if the Lagrang-
ian is specified. As an example, we investigate the cou-
pled Einstein-Cartan-Dirac (ECD) system and give a com-
plete analysis of its dynamics. Our approach to the ECD
equations eliminates all matter constraints by means of an
appropriate redefinition of the matter symplectic vari-
ables. The genuine dynamical matter variables for the
Dirac field are given by half-forms on the initial surface
o. For the ECD theory, the gravitational field equations
can be essentially reduced and, eventually, we are left with
18 gravitational dynamical equations and 7 gravitational
initial-value constraints. Moreover, it follows from our
symplectic analysis that in the ECD theory we have 12 in-
dependent degrees of freedom in the phase space and 10
(gravitational) gauge variables.

The symplectic analysis of the Hamiltonian field equa-
tions can be undoubtedly applied to more complicated
gravitational Lagrangians than the Einstein-Hilbert La-

grangian. The most interesting case presents the class of
gravitational Lagrangians quadratic in curvature and tor-
sion. The linearlized version of theories with such La-
grangians was investigated in Ref. 9 although mainly
from the quantum point of view. In subsequent papers we
intend to investigate the dynamics of gravitational
theories with quadratic Lagrangians, to pose the initial-
value problem, and to determine independent degrees of
freedom.

In the present paper we discuss two possible Hamiltoni-
an structures of field theories. The first, the general
SL(2, C)-covariant Hamiltonian formulation is closely re-
lated to the Kijowski-Tulczyjew theory of symplectic
spaces, Lagrangian submanifolds, and their generating
functions. The main ideas of this theory were presented
in Ref. 10 and applied to gravity in Ref. 11. The second
approach, that is, the SU(2)-covariant Hamiltonian pic-
ture is fairly close to the Hamiltonian analysis of field
theories presented in papers by Fischer, Marsden, Mon-
crief, and Arms'?>~!* (FMMA) with applications to gen-
eral relativity and to Yang-Mills fields. These authors
proved that in field theories symmetric solutions of field
equations played a singled-out role. Namely, they are
singular points in the “manifold” of all solutions. In one
of our subsequent papers we will show that methods of
the Hamiltonian analysis enable us to extend the results of
FMMA to SL(2, C) gauge theories of gravity.

In our Hamiltonian analysis we do not use the Dirac
classification of constraints.'>!® However, the main re-
sults of the present paper can also be formulated in that
language.

We would like to point out some important features of
our analysis that are different from the results which were
presented in literature previously.

(a) If matter potentials are spinor-valued k-forms and
k >1, then the formula for the energy-momentum three-
form TA 3 depends on the matter current, thereby essen-

tially differing from the case k =0.

(b) If k >1 then the right-hand sides of the contracted
Bianchi identities contain o-transversal derivatives of
left-hand sides of matter field equations. Such terms may
lead to additional initial-value constraints.

(c) In the Hamiltonian formulation the energy-
momentum three-form EZ on the initial surface is deter-
mingd not only by the left-hand sides of gravitational
equations but it also contains the left-hand sides of some
matter equations.

In the present paper, SL(2, C)-covariant formulation of
the theory is given in the Cartan-Trautman language of
differential forms and their covariant exterior derivatives.
If, however, we pass to the (3 + 1) picture, we need a
(3 4+ 1) decomposition of differential forms and their co-
variant exterior derivatives as well as the definition of an
SU(2)-covariant “time” derivative. This technique is
developed in Sec. VI and Appendix E.

Our notation is as follows. Small greek (spacetime) in-
dices a,B,y, etc., run from O to 3; small latin (spatial) in-
dices p,7,s, etc., run from 1 to 3. Capital latin (spinor) in-
dices A,B,A,B, etc., take the values 1 and 2. Capital
greek indices A,A,= denote collections of spinor indices
(multi-indices). The small latin letters d,¢,h,a placed at
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the upper left-hand side of a matrix denote its diagonal,
traceless, Hermitian and anti-Hermitian parts, respective-
ly. The symbols 1 and || denote the o-transversal and o-
tangential parts of a corresponding differential form or
vector field on spacetime. The operation of complex con-
jugation (denoted by an asterisk) converts the undotted
spinor indices into dotted ones and conversely.

II. GEOMETRY OF SPACETIME
AND GEOMETRY OF MATTER

Spacetime M is a smooth, connected, time- and space-
oriented, noncompact, four-dimensional Lorentzian mani-
fold.!” We denote by LF(M) the principal SO, (3,1) bun-
dle of time- and space-oriented coframes (of covectors)
over M. A spinor structure of M is a principal SL(2,C)
bundle SF(M) [the bundle of spin-(co)frames] and a
double-covering projection f:SF(M)—LF(M) such that
for every s ESF(M) and S€SL(2,C)

S(s8)=f(s)A(S) ,

where A is a fixed double-covering homomorphism of
SL(2,C) onto SO, (3,1).

It is well known (cf. Ref. 18) that a spinor structure on
spacetime M exists if and only if one of the topological
invariants of M, its second Stiefel-Whitney class, van-
ishes. For four-dimensional noncompact Lorentzian man-
ifolds, however, this topological condition can be replaced
by a simpler one. Noncompact spacetimes carry spinor
structures if and only if they are parallelizable,'® that is,
their bundles of (co)frames admit global sections. In such
a case LF(M) as well as SF(M) are trivial and the spinor
structure (SF(M), f) is determined by a global section e of
LF(M) over M. The bundle space of SF(M) is the Carte-
sian product M X SL(2,C) and the projection f is given by

M xSL(2,C)3(x,S)—f(x,S)

(2.1

=(x,e(x)A(S))ELF(M). (2.2)

Remark. In the present paper we consider spacetimes
diffeomorphic to the product R X o, where o is a three-
dimensional orientable manifold. If, moreover, o is a
compact manifold then by virtue of the Stiefel theorem?°
it is parallelizable. Thus, M is also parallelizable and car-
ries a spinor structure.

Different global sections e and ‘e of LF(M) may lead
to nonequivalent spinor structures. As a matter of fact,
even though e and ‘e are always related by an (x depen-
dent) SO, (3,1) rotation it cannot, in general, be lifted to
SL(2,C). The obstructions for such a lift are nontrivial
elements of the cohomology group H'(M,Z,), which cor-
respond to nonequivalent spinor structures on M. In par-
ticular, we have a unique spinor structure on simple-
connected spacetime.'® The mathematical properties of
spin-spacetimes imply that for physical applications we
should start with a noncompact, four-dimensional, con-
nected and orientable manifold M and a global field of
coframes e on it. A coframe e is an R*-valued one-form
on M; in local coordinates e =(e(°”)=(e(")ﬂdx“). At
fixed x €M, the natural pairing between vectors and
covectors defines the linear map T, (M)3v—(v,e) ER*
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and we assume that (for every x) it is an isomorphism.
Moreover, we assume that the orientation of M is con-
sistent with e, that is, det[e'®,]>0. The diagonal Min-
kowski metric n={(7,)g) (we use the mgnature +2)
determines the metric tensor on M :g =174 ﬁ)e . In
the SO, (3,1)-gauge formulation*—621,22 the natural ac-
tion of the local Lorentz group in the set of coframes

(a) 1, (a) L—l(a) B)e(ﬁ)
b

e'® e (2.3)

where L GSO+(3 1), preserves the metric structure of M.
If, however, H'(M,Z,)=~0, this action can change the spi-
nor structure of M. Therefore, we have to pass to an ap-
propriate SL(2, C)-covariant picture. Let H(2) be the
space of complex Hermitian 2X2 matrices. If
v,w € H (2) then their scalar product is given by

(v,w):—vAl}waeAceéb , (2.4)

where

0 1 ..
[eAB]:[fAB]= [___1 0 =[6AB]:[€1;“§] .

The Infeld-van der Waerden matrices

1 0} [oh]= -1 (2.5)

1
Lotfl= 5 V2%
(05 are Pauli matrices) give an isomorphism o between
the spaces (R*,17) and (H (2),€). We have

o.(e(a)):eA (a)o.(Aalg . (2.6)

The H (2)-valued one-form e“? is the spin representation
of the coframe one-form e. In local coordinates on M we
write

eABzeABde“ .

Remarks. (i) The first index of a matrix denotes the
row, and the second denotes the column. (ii) The complex
conjugation changes undotted indices into dotted ones and
conversely, e.g., (S5 )* =S4

We have the natural action of the local SL(2,C) group
in the space of coframes

eAB‘—)'eABZS_IACS—IE cD 2.7)

e
and this action preserves the metric (2.4).

We recall that the Infeld-van der Waerden matrices
realize the covering homomorphism A:SL(2,C)
—S0,(3,1) by means of the formula (Appendix B)

= —S54:88 5B (2.8)

(a)
L% D~ AB

The kernel of A consists of two elements I and —I. The
actions of SO (3,1) and SL(2, C) in the space of coframes
are A consistent, that is, the diagram commutes

H?2) =2 H®)

o o,

A(S)
—

R* R*
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where the horizontal arrows correspond to the transfor-
mations (2.3) and (2.7), and the isomorphism o is given by
(2.6).

In the modern approach, gravity is related to the metric
and affine structure of spacetime. The affine structure of
M is defined by a connection one-form  on the bundle of
Lorentz (co)frames LF(M) with values in the Lie algebra
so(3,1) (see Ref. 23). For spacetime admitting a spinor
structure, the basic geometric object is the corresponding
SL(2,C) bundle of spin (co)frames SF(M). Connection
one-forms on SF(M) take their values in the Lie algebra
sl(2,C). [sl(2,C) is the algebra of all complex traceless
2 X 2 matrices.]

It follows from the nature of the covering
f:SF(M)—LF(M) that (for a chosen spinor structure)
there exists a one-to-one correspondence between connec-
tion one-forms on SF(M) and LF(M). If
M Dx—s(x)ESF(M) is a global section of a spin bundle
and o is a connection one-form on SF(M) then '=s*w is
an sl(2, C)-valued one-form on spacetime. We have

C=As*(f*@))=A(fos)*®)=Ae*®)=MT)

where @ is a connection one-form on LF(M) correspond-
ing to @ and A is a Lie algebra isomorphism generated by
A:SL(2,C)—S0,(3,1) [cf. (2.8)]. We write
[p=—5T (a)(ﬁ)Udz(fU(l;@ ’
_ . ] . 2.9
F(a)(ﬁ)= ——I‘ABO'(;(E,O'(B;;—I‘ABO'(;;U% .
For the bundle of Lorentz coframes we have an additional
intrinsically defined object—the soldering R *-valued form
6 on the bundle space.”* The projection f and the isomor-
phism o induce the H(2)-valued one-form o(f*@) on
SF(M). Its pullback by s onto M coincides with the one-
form e“® defining the spinor structure and the metric on
M

_eABgeCD,

= € €.. .
4 AC%pp

We see that the differential-geometric structure of space-

time is completely determined by I'‘; and e4® and we
take these quantities as the gravitational potentials. In

theories of gravity, however, the essential role play matter

fields coupled to the gravitational field and for present ap-
plications it is natural to take spinor-valued differential
forms on spacetime as matter field potentials.* Let p be a
representation of SL(2,C) in the complex vector space
C¥. We define the right action of SL(2,C) in the bundle
A*T*(M)® CN of CM-valued k covectors on M

¢S=p(S~ e, (2.10)
where ¢ € A¥T*(M)@ CY and SESL(2,C). The natural
right action of SL(2, C) in SF(M) and the action (2.10) de-
fine the equivalence relation in the Whitney sum
SE(M)& , (AFT*(M)e CY). The quotient bundle
A*T*(M)®p is called the bundle of k-covectors of type p
on M and sections of this bundle are k-forms of type p on
M. In the matrix representation the action (2.10) can be
written as
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$F=pZ\(S~Hg",
where 2,A=1,2, ..., N, and the generators of p are given
by

(2.10

B(p>A(S) =p> 4854 +p*>, Pos A, . 2.11)

5 and pZAAB are traceless, i.e.,

The quantities p=, 4

S 4 s 4
P A4 =U=p Ad "
are raised and lowered by means of the metric tensor e,
e.g.,

¢p'=e"Pp , dp4=0%p4 ,
The covariant- exterior derivative of a k-form ¢=(¢>) of

type p on M with respect to a connection 'y is the fol-
lowing (k +1)-form of type p on M (cf. Ref. 4):

In spinor spaces the spinor indices

pA=eiBp ., etc. (2.12)

Dg*=d¢>+p*x4"T 15 NA+p%, BT4 Aph . (2.13)
If coframes transform according to (2.7) and the com-
ponents of ¢ and D¢ transform according to (2.10), then
the connection one-form I'‘3 has to obey the transforma-
tion rule

TAp=8—14.I,8P +8~11:dS; . (2.14)

The covariant exterior derivative of the coframe one-form
e“8 is called torsion

eAB=D6A3=deA1§+FACAeC§+FébAeAb (215)
and the covariant exterior derivative of the connection
one-form is called curvature

Q4 =Dy =dT 4, + T4 ATy (2.16)

(the last formula follows from the transformation proper-
ties of I'p). The covariant exterior derivative of the
matter form ¢ is called the field strength FZ=D¢>.
Direct calculations give rise to the Ricci formula

DFE=DD¢*=p*, 2075 NP +p>, Pad A 2.17)

and to the first and second Bianchi identities
DGAB=QAC /\€CB+QB[) AeAb ’ D‘Q'AB =0, (2.17)
respectively.

III. VARIATIONAL FIELD EQUATIONS
AND THE CONTRACTED BIANCHI IDENTITIES

In the present paper the differential geometric structure
of spacetime is determined by a Lorentz coframe e in the
spin representation and by an sl(2, C)-valued connection
one-form T' on spacetime. The distribution of matter is
represented by a k-form ¢ of type p on M. ¢ is described
by its components ¢ with respect to a global section s of
the bundle SF(M). The interaction between gravity and
matter and the dynamics of the coupled system are
described by means of gravitational and matter Lagrang-
ians K and L and the corresponding variational equations.
The Lagrangians are R-valued four-forms on M; K de-

pends on the gravitational potentials e“?,I'“;, and their
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exterior derivatives de8,dT"¥;. The matter Lagrangian
L should, in principle, depend on fields of spin coframes
s, on the components ¢> of spinor field, on their exterior
derivatives d¢>, and on I'‘y. In all conceivable situa-
tions, however, matter Lagrangians depend on bilinear
combinations of ¢* and d¢> and therefore the transfor-
mation s— —s=s(—1I), $*— —¢> does not affect the
value of L. Hence, we may assume that L depends on the
Lorentz coframe e“® corresponding to s instead of s it-
self.

The natural invariance properties of the Lagrangians
with respect to the action of the local SL(2, C) group and
the diffeomorphism group of spacetime imply that K and
L depend on the components I‘f" p of a connection I only
through the field strengths ©48, Q45 and FZ. In a gen-
eral situation we may write® 21,2427

K=K(e8,048 04,) L =L (e g2 F3) . (3.1

Variations of the gravitational and matter Lagrangians
read

K=8c"PAV 480" \NU . +(8Q% AP +ec),
‘ (3.2)
L=8e"B N TAé+(3¢EAJ2+5FZA Ws+c.c.) .

Remark. The symbol c.c. denotes the complex conju-
gate expression.
Simultaneously, formulas (3.2) define the quantities

Vi U P,B Js, W3 and T sV, is an HQ2)-
valued three-form on M-—the canonical energy-

momentum three-form of the gravitational field, UA i is
an H(2)-valued two-form on M, and P,? is a '‘C(2)-
valued two-form on M [‘C(2) is the space of complex
traceless 2 X 2 matrices]. UAB and P 4% represent the mo-
menta canonically conjugate to the gravitational potentials

J
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4B and ', respectively.

TA i is an H (2)-valued three-form on M—the canoni-

cal energy-momentum three-form of matter, J s is a
(4— k) form of type p on M and Wiy is a (3— k)-form of
type p on M—they are called the matter current and the
momentum of matter, respectively (5 is the contragredient
representation of p).

The variational principle 8 f (K +L)=0 for the varia-

tional potentials e, ['4,, and #* gives rise to the Euler-
Lagrange equations

8(K +L)/8e’“§:(EI)Aé:(GEl)ABjLTAB:O, (3.32)
8(K +L)/8Tp=(E2) 5 =(GE2) 2 +5,8=0, (3.3b)
8(K +L)/8¢>=(EM)s=Js —(—1)*DW5 =0 . (3.3¢)

The ‘C(2)-valued three-form s ,?
three-form, is defined by

s4P=Ws A php*

on M, called the spin

A4 +W /\¢PAA

and corresponds to the formal expression s —BL VG s
The gravitational parts of (E 1) 5 and (E 2) 45 read

(GE1 )Ai; = VAB —{—DUA}é )

(3.4)

(3.5a)

(GE2) % _Z(U /\eBC UBC/\e &)+DP,® (3.5b)

Remark. The reader should be aware that in the varia-
tional principle variations should be taken with respect to
R-independent quantities eAB,I"AB,I‘AB,qSE,qbz.—_((ﬁz)*
The Lagrangians, however, are real-valued forms; there-
fore the field equations (3.3) carry the full information.

The invariance of the gravitational and matter La-
grangians with respect to the action of the diffeomor-
phism group of spacetime and the local SL(2,C) group
give rise to the conservation laws

D(GE1) ,=*(GE1)_jNe . A%OP+x(GE2)cPNe , N*Q D+*(GE2)C.bAeABA*QCb, (3.6a)
D(GE2)AB=%[eAC/\(GEI)BC—eBC/\(GEl)A.C.] , (3.6b)
and
DTAB=*TCb/\*er/\e 4+ [%5cPA%QC, + %A %D (EM)s—(— l)k*F"/\*(EM)E—i—c.c.]/\eAé, (3.7a)
Ds P=1(e ATP—ePNT ) —¢> NEM)sp s, P~ 8> NEM) ps B . (3.7b)
Moreover, from the invariance of K and L with respect to the action of Diff M we have
cp D c D C
Vi=*KA(xe )—U_ Ax(e  ANxOP)—PPNx(e  A*xQD)—P.PAx(e  A%xQ)), (3.8a)
T ;=+LA(xe )—WsAx(e, ./\*FE)—Wi/\*( /\*FE)——JX/\* /\wz Ji/\*(eAB/\*qbz). (3.8b)

In the above formulas the asterisk denotes the Hodge dual operatlon (cf. Appendix A).

If ¢ is a zero-form on spacetime then the term e,

s N *¢> represents the trivial five-form on M. Also for the

Maxwell theory (in curved spacetime) the terms with the matter current in (3.8) vanish for J5=0. In these situations
formula (3.8b) coincides with the classical expression for the canonical energy-momentum tensor of matter. For more
complicated theories, for instance, for the Proca or Rarita-Schwinger field the correct formula for the canonical energy-

momentum three-form contains nontrivial current terms.



31 SPINOR MATTER FIELDS IN SL (2C) GAUGE THEORIES . . .

3109

The conservation laws for matter fields (3.7) were derived in Riemann spacetime by Belinfante, Rosenfeld, and Pauli,?®
for the Riemann-Cartan spacetime the corresponding formulas were obtained by Sciama, Kibble, Trautman, and Hehl
et al.*?>30 The gravitational conservation laws (3.6) have been given in Refs. 25, 26, and in Ref. 4 for the special case

of the Einstein-Cartan theory.

The conservation laws (3.6) and (3.7) give rise to the contracted Bianchi identities:

D(E1) ;=*(E1) ;5 A *GCb/\eAE+[*(E2)CD/\ % QCp + %D (EM)s A\ %¢>—(—1)*%(EM)s A *F2+c.c.]/\eAB , (3.92)

D(E2)P=%[e NEDP—eBCA(ED) .1~ ¢> N EM)Ap*s4"— 6> NEM) pPs P .

If k=0 then D(EM)s is the trivial five-form on space-
time and the contracted Bianchi identities (3.9) reduce to
those obtained earlier in Refs. 4, 25, and 26. However, for
k >0 the term %D (EM)s A x¢$> gives a nontrivial contri-
bution to the right-hand side of (3.9a).

It is known in classical general relativity that the con-
tracted Bianchi identities V,G",=0 assure the mainte-
nance of the Hamiltonian constraints in the process of
evolution.’ An analogous result for SO_(3,1) gauge
theories of gravity with SO, (3,1)-tensor-valued zero-
forms as matter potentials has been presented in Ref. 22.
It follows from (3.9) that for theories with matter poten-
tials being k-forms (k > 0) the time maintenance of con-
straints requires the additional condition D (EM)s=0.
For some theories, e.g., for the Einstein-Maxwell theory
this condition is satisfied automatically, for others it leads
to new constraints (e.g., the Rarita-Schwinger field??).
This problem is discussed more profoundly in Sec. VII.

Let us make the following comment. The canonical
energy-momentum three-form T ,; induces the following

tensor density .7 ,,=—7" B AB# on spacetime (cf. Ap-
pendix D). Surprisingly, for the Proca-Maxwell fields this
canonical energy-momentum tensor is symmetric (see Sec.
VII). It could seem strange for, in the standard approach
to field theories, the canonical energy-momentum tensor
is nonsymmetric in general.’> However, a detailed
analysis of the classical and our formulas show that they
coincide only if the matter potentials are zero-forms on
spacetime.

We note that the symmetry condition for the energy-
momentum tensor .7 ,, corresponding to three-form T,;

uv
is given by
AB _
e NAxT =0 (3.10a)
or
BD__ ,BD
e NTP=e""NAT .. (3.10b)
In fact, the latter equality can be reduced to
BC__ ,BC
eAC./\T =e ATAC' (3.10c)

IV. THE ROTATIONAL AND TRANSLATIONAL
GENERATORS IN THE SPACE OF FIELD POTENTIALS

The Lagrangian formulation of SL(2, C) gauge theories
of gravity is invariant with respect to the action of the lo-

(3.9b)

-
cal SL(2,C) group and the diffeomorphism group of
spacetime. For the SL(2, C) rotations their generators are
the following operators from the space of field potentials
to the space of infinitesimal variations of the field poten-
tials (that is, to the tangent space of the space of poten-
tials)

Syett=—MAceB_MP o0, (4.1a)
5y F1p =DMy , (4.1b)
Sud*=—(p*pr "M 5" +P2AABMAE¢A) ) (4.1c)

where M=M"5(-) is a field of traceless matrices on
spacetime, i.e., an element of the Lie algebra of the local
SL(2, C) group.

In the traditional spacetime-covariant approach to
theories of gravity, the generators of the action of DiffM
in the space of physical quantities are the corresponding
Lie derivatives. The standard Lie derivatives, however,
are not SL(2, C)-covariant operators and it is much more
convenient to take the covariant Lie derivatives as genera-
tors of infinitesimal translations.

Let {45 be a fixed connection one-form on M. For dif-
ferential forms of type p the covariant Lie derivative with
respect to the connection £#5 taken in the direction of a
vector field Z on M is given by the formula

¢ L 720 =Z 1 D>+ D(Z 1¢%). (4.2a)

Here, (D denotes the covariant exterior derivative with
respect to the auxiliary connection {45 and _i is the con-
traction operation between vectors and forms on M. The
definition (4.2a) generalizes the known formula for the
standard Lie derivative—we replace the exterior derivative
d by the covariant exterior derivative (D. A particular
case of (4.2a) reads

(L zeP=7 104 D(Z JetP), (4.2b)

where ;G’“é is the torsion of £45. For the connection
one-form £4p we have
L 28 =2Z 1,07, (4.2¢)

where ;Q4} is the curvature of £5.
For an arbitrary connection one-form I'“j the com-
bination of (4.2a) and (4.2¢) gives rise to the formula

L 7T =Z 1.0% +Z 1 D(Ip—£p)

+eD[Z (T —£7p)] . (4.2d)
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At fixed background connection {45, we define the opera-
tor of infinitesimal covariant translations 8, =%, act-
ing from the space of field potentials to its tangent space.
We have the following commutation relations for the
operators 8, and §:

[821’822]=8[Z],22]+8M3 , (4.3a)
(831,588, 1=81a1,,01,1 » (4.3b)
[SMr82]=8M4 ’ (4.3c)

where
My =—(Z\NZ,) 1,07,
M{p=—Z _1,DM"g,

[Z,,Z,] is the commutator of the vector fields Z, and
Z,, and the commutator of two matrices is given by
]
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[MI,Mz]AB iMzAch CB —Ml AcMZCB (the rlght multi-
plication).

The commutation relations (4.3) satisfy the Jacobi iden-
tity and therefore they constitute an infinite-dimensional
Lie algebra g. In g the operators of infinitesimal rotations
form an ideal but infinitesimal covariant translations even
do not form a subalgebra. The Lie algebra g generates a
group G of transformations in the space of field poten-
tials. It is clear that the transformations corresponding to
the operators 8,, are simply the local SL(2, C) rotations.
The geometric description of transformations induced by
8z is much more complicated and they are discused in
Appendix C. G is a fibered space over the diffeomor-
phism group of spacetime and its fibers are isomorphic to
the local SL(2, C) group.

In the SL(2, C)-covariant formulation, the Lagrangians
of the theory under considerations must be invariant with
respect to the action of G, that is, we have [cf. (3.2)]

Sx(K +L)=8xe BNV . +830BNU . +(850"5 AP, P+c.c)+8xeB N T ;5 +(0xd> NIz +8xFEAWs+c.c.), (4.4)

where 8y are operators from g. We rewrite infinitesimal variations of the total Lagrangian in the Noether form: for in-

finitesimal rotations we have

dly+(E1) . /\8Me’“§+[(EZ)AB/\SMI“AB+(EM)2/\8M¢2+C.C]:O

and for infinitesimal covariant translations

dE; +(E1) , N8ze*B 4 [(E2)BA8,T"5+(EM)sAbz¢>+c.c.]=0 .

(4.5a)

(4.5b)

I and E7 are scalar three-forms on spacetime, called the spin and energy-momentum three-form, respectively.

We have the relations

IM:UAB /\SMEAB—F(PAB/\SMFAB"}-WE /\8M¢2—+—C.C-) N

Ez=U  Noze"B 4 (PP N8, T3+ W5 A8z¢%+c.c.)—Z J(K +L).

(4.6a)

(4.6b)

Making use of (3.3), (4.1), and (4.2) we obtain the Komar-type formulas**

Iy=(E2) M4y —d (P, PM4p) +c.c. ,

(4.7a)

Ey;=—(Z _le"B)E D ;—[(Z JY*5)E2) P +(Z 1¢®) N(EM)s+c.c.]+d[(Z _Je’”j)UAé]

+d[(Z JY*3)P,B4(Z 1) AWs+c.c].

Here, Y43 =T"3—¢"; is a spinor-valued one-form on
spacetime determining the difference between the physical
(geometric) connection I'*; and the auxiliary, background
connection £4p.

In the following section, using the three-forms I, and
E; we construct the Hamiltonian generators of rotations
and covariant translations in the space of geometric (vari-
ational) potentials and cast the theory into an SL(2,C)-
covariant Hamiltonian form.

Now we would like to point out the following problems.

(i) Formulas (4.6) and (4.7) generalize the results ob-
tained in Refs. 22 and 25 for SO (3,1) gauge theories of
gravity. In the approach presented in those papers, how-
ever, the translational generators E, are not manifestly
gauge invariant. The reason is that there we have taken
the standard Lie derivatives as the generators of transla-
tions. The method of the present paper restores the gauge

(4.7b)

lirTvariance of the translational generators but we have to
fix an auxiliary connection {45 on spacetime. Of course,
a particular choice of ¢4 does not affect the final form
of the Hamilton equations as presented in Sec. V.

(ii) It follows from (4.7) that if we neglect the diver-
gence terms, then the generators of the action of G are
given by the left-hand sides of the field equations. It is re-
markable that if matter is described by a k-form ¢ with
k >0, then also the left-hand sides of the matter field
equations essentially contribute to E, [for k =0 the term
with (EM)y disappears].

(iii) Formulas (4.7b) have the simplest form when
I'“p=¢"p. Therefore one might be tempted to redefine
the infinitesimal covariant translations taking always
§p=T"5. If '8, are operators given by (4.2) with
£45 =Ty then we have instead of (4.3b) [84,’62]1=0 and
the operators 8,,,'5; do not form a Lie algebra. Even in
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such a case we can give a formal Hamiltonian formula-
tion but the flows of Hamiltonian vector fields in the
space of the symplectic variables will not form one-
parameter groups of transformations.

(iv) A purely geometric approach to the Noether formu-
las of type (4.5) has been presented in Ref. 35. A natural
modification of those results gives rise to the correspond-
ing SL(2, C)- [or SO (3,1)-] covariant formulas.

V. AN SL(2, C)-COVARIANT HAMILTONIAN
FORMULATION OF THEORIES OF GRAVITY

In relativistic field theories, the evolution picture can be
defined only with respect to a fixed slicing of spacetime
into a family of three-dimensional surfaces. Let {0,},cr
be a one-parameter family of nonintersecting and dif-
feomorphic three-dimensional surfaces covering M and let
{f:}:er be a one-parameter subgroup of diffeomorphisms
of spacetime preserving {o,},eg, i.e., filos)=0,,5. We
also assume that the orbits of {f,},cz are o transversal,
that is, the vector field Z

d
Z(x)= % ,
(x)=2filx)| , xeM, (5.1)

t=0

is transversal to the surfaces o,,t ER.

For any SL(2,C) gauge theory of gravity the space &
of all conceivable geometric configurations of the field po-
tentials e,I’,¢ on spacetime is an infinite dimensional
manifold. Similarly, for an arbitrary surface o belonging
to the slicing we define the space .# ¥ (o) of initial values
of the field potentials and their o-transversal derivatives
on o. Each element (e,I',$,07¢,0,T,02¢) of .~ & (o)

uniquely determines the values of e“%, g, 4%, de®,
dT4g,d¢> on 0.

The space . & (o) carries a natural geometric structure,
and according to standard rules, a vector X tangent to
# % (o) at a fixed point is given by the values of varia-
tions of field potentials and the values of variations of
their Z derivatives on o

X =(8e8,8T1;,5¢%,60,,¢ 18,60, T1,,80,4%) . (5.2)

Remarks. () From (52) we can compute
8de?8,8dT*;,8d¢*. (ii) The quantities 8e“?,8T74,,5¢%
are SL(2, C)-tensors but 8de *2,6dT"*;,8d¢* are not.

For Lagrangian SL(2, C) gauge theories of gravity, the
space # & (o) carries a natural symplectic structure given

by the symplectic two-form Q(o)
‘ |

Q(U)(Xl,Xz)
=[180,, ASre B 1 (8P, BA8T A5 +8,Ws AByd>

+c.c.)], (5.3)

where X,X, are vectors tangent to .# ¥ (o); the varia-
tions 8UAB,8e"B, etc., are to be computed by means of

(5.2) and the definition of the symplectic momenta (3.2).
In (5.3) the symbol “A” denotes not only the exterior
product of differential forms but also the antisymmetriza-
tion with respect to the subscripts 1 and 2. It is clear that
Q(o) is a closed two-form, i.e., dQ(o)=0.

In order to assure the convergence of the integral in
(5.3) we have to impose appropriate boundary conditions
for components of the vector fields X;, or to assume that
o is a compact manifold. In the present paper we consid-
er mainly the case of compact o’s, nevertheless several of
our results do not depend on this assumption.

We would like to emphasize that formula (5.3) yields a
component representation of the general geometric defini-
tion of the symplectic two-form in Lagrangian field
theories. Such a general construction was given in Refs.
36 and 37.

The second basic ingredient in the Hamiltonian formu-
lation is the Hamilton function of translations, that is, the
energy-momentum function & (o). We define

.gz(()')z foEZ ’

where E; is the energy-momentum three-form given by
(4.6b). It follows from (4.7b) that & (o) is a well-defined
function on .# % (o) (of course we have to assume that o
is compact manifold, or to impose appropriate boundary
conditions).

The energy-momentum three-form E; is the Noether
current of covariant translations and we expect that the
Hamiltonian vector field Yy of the energy-momentum
function generates just covariant translations in the space
of symplectic variables. That is to say, the symplectic
components of the vector Yz coincide with the covariant
Lie derivatives of the corresponding symplectic variables
in the direction of Z. (We recall that the background con-
nection {5 remains fixed.) This statement in the func-
tional form reads

(5.4)

Yp=¢L 7653 /8e B 4(L 77433 /3Ty + oL 7620 /3¢ +c.c.)+ .7 7 U,;0/0U

+(;ZL 2P P3/3P B+ L ;W33 /W5 +c.c.)+ * -

and

V=8e483 /3¢ B - - -

d&z(0)V=—-2Uc )Y, V), (5.5)

where
. (5.6)
(5.7)

is an arbitrary vector tangent to the space # % (o). We have the following fundamental result.
Theorem 1. The functional Hamiltonian equation (5.5) and the evolution postulate (5.6) give rise to the system of

equations equivalent to the variational EL equation (3.3).

Proof. At first, we compute the variation of the energy-momentum three-form E,. Making use of (3.3), (3.5), (3.8),
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and (4.7b) we obtain
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8E;=[—(L2U N8B —(o. L 2P B NOT 5+ L s W3 N8> +c.c)+8U ;A pF ze®

+(8PAB/\§;.72FAB+8WE /\gfz(ﬁE—FC.C.”

+(—Z 1 [SeAB/\(El)AI.}]—— {Z J[8T5 AN(E2),B1+Z J[84% N(EM)s]+c.c})

—d[(Z 1e*P)8U  +8e B N(Z JU )] —d[8T 5 N(Z IP,P)+(Z 1Y*5)8P, +c.c.]

—d[(— 1) +18¢EAN(Z IWs)+(Z 1¢3) NEWs+c.c.]

+d8[(Z e P YU | 1+d(8(Z 1Y )P, P1+8((Z J¢>) AWs]+ec) .

(5.8)

We see that the first bracket of (5.8) exactly corresponds to the integrand in (5.3). Hence, neglecting the three-divergence
terms we get from (5.5) and (5.8) that for arbitrary variations e 42,87 5,8¢4> the formula holds

0=fa(z .J[SeAB/\(El)Aé]—}—{Z 1[8T4 A(E2) B1+Z J[86%N(EM)s]+c.c.}) .

If we assume that the vector field Z is transversal to o
then (5.9) gives rise to the field equations

(E1) ,=0, (E2),8=0, (EM)5=0.

In the above considerations we neglect three-divergences
in the integral formulas. Of course, this procedure is jus-
tified if o is a compact manifold without boundary. The
field equations (3.3), however, can be derived from the
Hamilton equation (5.5) also in the case of arbitrary o’s.
We only have to restrict the space of the sample vectors V'
to those whose components have compact supports on c.
Such an assumption assures the convergence of the in-
tegrals in (5.5) and allows us to neglect three-divergences.
There exists, however, another more subtle approach to
the problem. Instead of the coarse condition of compact
supports we may assume that the components of V
asymptotically vanish at the infinity on o. In such a case
the boundary integrals contribute essentially to the genera-
tor of translations. We will discuss this problem briefly in
Sec. VIL

]

(5.9

I
For compact o’s the generator of the covariant transla-

tions is given by the left-hand sides of both the gravita-
tional and matter equations. This result generalizes those
presented earlier in the classical papers by Arnowitt,
Deser, and Misner’! (ADM) and several other authors [see
Ref. 16 for general relativity and Ref. 22 for a general
SO, (3,1) gauge theory of gravity]. In the latter paper
matter was described by tensor-valued zero-forms on
spacetime and therefore the left-hand sides of the matter
field equations did not appear in the formulas for transla-
tional generators. The Noether current E, generates co-
variant translations in the space of symplectic variables;
similarly, the Noether current I, generates local rotations
of the symplectic variables. We define the spin function
on the space .# % (0):

Y, =839 /8¢ 45 1 (8) 753 /3T +8,,¢>3 /34> +c.c.)+8y U ,3/3U

(83 P23 /3P (B4-8p Wsd/dW s +CoC)+ - - -

.fM(cr):quM ) (5.10)
We have the Hamilton equation for .#
d Iy (0)V=20(Y,,V), (5.11)
where
(5.12)

[8, is the operator of infinitesimal rotation given by (4.1)] and V is an arbitrary (sample) vector tangent to .# & (o). The
Hamilton equation (5.11) is the direct consequence of the formula

8Ipy =8y U ; N8eB—8U | NByre B+ (8y PP N8I 5 +8y Wy NS¢>— 8PP N8y T 5 —8W3s NSyd>+c.c.) .

The generators &, and ¥, fix the dynamics of the sys-
tem and, as it has been shown in Ref. 22, their Hamiltoni-
an vectors determine the gauge distribution of the sym-
plectic form . An interesting role of the spin function
<y in relations between the SO(3) covariant and the clas-
sical ADM Hamiltonian formulations of the Einstein-
Cartan theory has been recently discussed in Ref. 38.

Our SL(2, C)-covariant Hamiltonian formulation treats
all slicings of spacetime as equivalent (we do not assume

(5.13)

r
that the slices are spacelike surfaces). Therefore, there are
close relations between our approach and Kijowski-
Tulczyjew’s theory of symplectic spaces, their Lagrangian
submanifolds and generating functions.!® In our scheme,
if o is a compact surface then the dynamics preserves the
symplectic form Q and the motion is determined by the
action of the full gauge group G =locSL(2,C)X ,DiffM
(see Appendix C). In the Kijowski-Tulczyjew theory, the
integral (5.3) defining the symplectic two-form Qgr is
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taken over a closed compact surface o,. The dynamics in
their approach is determined by maximal isotropic sub-
spaces of Qg1 and their integral submanifolds (Lagrang-
ian submanifolds of Q). It is clear that the Lagrangian
subspaces of Qgr consist of these vectors that, in our
view, correspond to the dynamical Hamiltonian vectors of
&z and ;. In the present section, we have proved
directly that the functions & and .# ), constructed by
means of the Noether currents E; and I, are the dynam-
ical generators of the theory. Another purely geometric
proof of this statement was given in Ref. 35 but the com-
plete analogy with the present results requires an
SL(2, C)-covariant reformulation of the method used
therein.

The pair of generators (&,.#) corresponding to the ac-
tion of the gauge group G constitutes an object called the
momentum mapping in the mathematical literature.” It
follows from the above results that at fixed (Z,M)Eg the
dynamics preserves the zero-sets of the momentum map-
ping. Mathematical properties of the momentum map-
pings and their zero-sets for general relativity and the
theory of Yang-Mills fields were profoundly investigated
by Arms, Marsden, and Moncrief.*’

The results of this section can be extended for Yang-
Mills fields interacting with gravity and with matter
fields. Let H be a semisimple Lie group, 4 be an A-
valued connection one-form on spacetime. The action of
H in the space of field potentials 4 and field strengths de-
fines the H-Noether current B,, h€h and £ ,(0)= f B,
is the corresponding dynamical generator. The Noether
three-forms E, Iy, and B, are built by means of the
left-hand sides of the gravitational, matter, and Yang-
Mills equations. @ The Hamilton equations for
&7, pm,# ), determine the infinitesimal covariant
translations, local SL(2, C) rotations and local H rotations
of the symplectic positions e,I',¢,4 and their conjugate
momenta.

VI. THE ORTHOGONAL DECOMPOSITION OF
DIFFERENTIAL FORMS AND THE
SU(2)-COVARIANT CANONICAL VARIABLES

In the SL(2,C)-covariant Hamiltonian formulation a
slicing of spacetime may be chosen arbitrarily. From the
dynamical point of view, however, much more interesting
are slicings determined by spacelike surfaces in M. The
dynamical picture related to a spacelike slicing corre-
sponds to the initial value problem for the system of par-
tial differential equations of the theory. In subsequent
sections we discuss initial value formulations induced by
the symplectic structures of particular field theories.

Let {0,},;er be a fixed slicing of spacetime. From now
on, we admit only such tetrad fields e“4® on spacetime
that the submanifolds o, are spacelike surfaces with
respect to the metric on M defined by e”2. Let n be a
unit one-form on M orthogonal to the slicing whose orien-
tation is consistent with the o-transversal vector field Z
(5.1, i.e.,

Z 1n>0 6.1)

(this condition requires the external orientability of the

slicing). In subsequent considerations, a very important
role is played by the decomposition of Hermitian matrices
into their diagonal and traceless parts. In particular, for
the tetrad field we have

eB=degtfyte1B (6.2)
The diagonal part % =o{ e of e4® presents a unit
SU(2)-scalar one-form, i.e., (de,‘.ie)z —1 and %“® is the

traceless part of e“5, i.e., 'eAEa(z)lf =0. We have also

(%e,te 4By —0 . (6.3)

The decomposition (6.2) is invariant with respect to SU(2)
rotations of tetrads but is not SL(2, C) invariant (see Ap-
pendix B). Therefore we expect that after an appropriate
local SL(2, C) rotation of the tetrad field, its diagonal part
coincides with the one-form n. Let H45(-) be a field of
SL(2, C) matrices on spacetime such that if

évAi?:H—lACH—IB[)eC[) (6.4)

then

dy_ 5 AB__
e—eABU(0)~n . (6.5)

Of course, the field H*5(+) is determined only up to an x
dependent SU(2) factor. We recall that each element
S €SL(2,C) can be uniquely decomposed into the product
S =H-U (the Cartan decomposition*') where H is an uni-
modular, positively definite, Hermitian matrix, i.e.,
HeS  H(2) and UESU(2). Hence we restrict fields of
SL(2,C) matrices in (6.4) to fields of S, H(2) matrices.
The unique field of S, H (2) matrices satisfying (6.4) and
(6.5) can be constructed in the following way. Let

n =nAéeAB be the decomposition of the one-form n with

respect to the basis (e*#), and n*F="no (5 +n 4" be the
decomposition of the Hermitian matrix [ #“%] into its di-
agonal and traceless parts.

We assume that the one-forms % and n determine the
same time-orientation of spacetime, that is,

(%,n) <0 or equivalently %n >0 . (6.6)
.] and

: (0)BC
[2n 2 C.a{z,?] are Hermitian, unimodular, and positively de-

Now, we observe that the matrices [2nAéa
finite. As a matter of fact, if

[2nAéo a,bER, zEC

owel= z* b

then

(i) 1=—(n,n)=n 4B _ det[2n 4Co

" (0)Bc‘]

=ab —zz* ,
(i) 9 =+5(a +b)>0.
It follows from (i) and (ii) that both the eigenvalues of
the matrix [2n 4o .] are positive, that is, it is positive-

(0)BC
ly definite. We may define the unimodular Hermitian and

positively definite matrices
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[HAB]=[2nAC 1172

(0)BC
and (6.7)

[H—IAB]_[Zn 0' ]1/2 .
It is easy to check that

2 1
d, \—1/2t, AC d,\1/254
HAB—-\/E(I-F n) n U(O)BC+\/§(1+ n)’“6%g

(6.8a)

H=Yy=v2(1+9)~"2'n aAC+V-(1+ In) 284y,

(6.8b)

and that the relations (6.4) and (6.5) hold.

Remark. The set S H(2) does not form a group. If,
however, HES  H(2) then the inverse matrix H ~! also
belongs to S H(2).

The H rotation of tetrads defined by (6.4) gives rise to
the following transformations of the connection coeffi-
cients and the matter field potentials:

FAB =H—1ACHDBFCD+H—1ACdHCB , (6.9)
dE=pZ\(H g™ . (6.10)

In the language of SO_ (3,1) group the H rotations corre-
spond to the Lorentz boosts. As a matter of fact, the Car-
tan decomposition of the Lorentz group reads*! L =B'R,
where R €SO(3) and B is a boost transformation. In the
SO, (3,1) gauge theories, the tilde operations are realized
by means of the corresponding boost transformations.?
The field of S, H(2) matrices (6.8) is the lift of a corre-
sponding field of the boost matrices given in Ref. 22. We
would like to emphasize that such a lift always exists al-
though, in general, we are not able to lift an arbitrary field
of Lorentz matrices to a field of SL(2,C) matrices. The
reason is that the double covering map A (2.8) is induced
by the double covering map SU(2)—SO(3) and the
correspondence S, H (2)«<>boosts is one-to-one.

In the SL(2,C) covariant formulation of theories of
gravity, the field potentials are SL(2, C)-object-valued dif-
ferential forms on spacetime. In the SU(2)-covariant pic-
ture, however, basic geometric quantities are one-
parameter families of SU(2)-object-valued differential
forms on three-dimensional surfaces in M. In order to
decompose differential forms on spacetime into families
of differential forms on slices, we need appropriate bases
in the tangent and cotangent spaces of M. First of all, we
assume that local coordinates in M are consistent with the
slicing, that is to say, the surfaces of the slicing are la-
beled by a real parameter x° and local coordinates on par-
ticular slices are (x*). Such a structure admits the follow-
ing transformations of local coordinates (x%,x°):

x"=x%x%, x¥"=x%(x%x%) . (6.11)

In such coordinates the components of the o-normal vec-
tor field .#" are (1/N,—N°/N), where N and N° are
ADM’s lapse and shift of the metric g=g,,dx"®dx" on

M (cf. Appendix A). The o-normal one-form n =n,dx"
is the anti-Riemannian dual of .#/, that is, n,= —g,WN v

or equivalently n =N dx°.
the tangent space of M:

= 1 N?§

We take the following basis in

do=N"= -iao—yax , 0;=09, . (6.12a)
The dual basis of one-forms on M is
dx°=n=Ndx°, dx°*=dx*+N*dx° (6.12b)

In this basis the metric on spacetime can be written as

g=—t§°®d?0+ ~dx ‘®dx ", where 8+=8s - (6.13)

Having an SL(2, C)-spinor-valued differential k-form on
spacetime

¢2: E ¢2I‘1

By< e <py

o @XM NaxME (6.14)

we perform the H rotation (6.10), take the basis (6.12b),
and obtain the following SU(2)-spinor-valued k form on
M:

= 3

By< <y

¢ g @A AR (6.15)

We decompose the k-form ¢ into its o-tangential and
o-transversal parts

¢ =6%+.4>. (6.16)
The o-tangential part of ¢ =
|;$2= > 5231...31‘(—1;”/\ coe Adx (6.17)
lgsl <t <8y
can be projected onto the surfaces {0 o} oo, and we ob-

tain the following one-parameter family of SU(2)-spinor-
valued k forms on the slices:

II¢2: 2 $2s|"'skdxsl/\ ot Adx’k , (6.18)
lgsl< Tt <8
where 3%, =% ..
In order to project the o-transversal part of ¢ >
8 3= 3 ¢ .. . dx°AdxA - NdxE
15s2< c<s 2 k
(6.19)

onto the slices we transvect it with the normal field .+~
and, then, pull back the (k —1)-form .4 _i,¢* onto
slices. We get the following one-parameter family of
SU(2)-spinor-valued (k — 1)-forms on slices:

#i= 3 dxtA -
1< Sp< <8y
_(;za_z .
This procedure applied to the Hodge dual representa-
tion of a (4 — k)-form A4 (cf. Appendix A)

11
k\/g

gives rise to

A
b
¢ Lsy o5y

Adx** | (6.20)

>
where ¢ < -

g @A N (6.2D)
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A 1 A s s

A=——FF "' . 3xdx2N - ANdx*),(6.22)

kv T T

A=V S et A - Adx™) (6.23)
kg Uk

Where -&ls sk:-—&aﬁz...a() J%sl.nsk:&?gl...yk, and

the 3 is the Hodge dual on o (cf. Appendix A).
If we apply formulas (6.2) and (6.3) to the tetrad one-

form & “2 and perform the (3 + 1) decomposition then we
get
ﬁ":O:ié‘AB , fe=1=%,,
' . (6.24)
té\AB=”fe\AB=té\ ABsdxs X
It means that instead of 16 tetrad components eABM we
have only 9 independent triad components ‘& 4B s (the com-

ponents of the triad one-form 2 218 on sllces)‘ The

remaining independent variables are the lapse N and the

shift N° as well as the three components ‘n
Remark. By

d, _(1__t -ty AB\1/2

n=(1 n g )

AB’
virtue of the

, the quantity %n is not independent.

A connection one-form I'‘p generates the family
lI"AB—l"ABl of zero-forms on slices, and the family
HI" B =T psdx® of one-forms on slices. These quantities
can be decomposed into their Hermitian and anti-
Hermitian parts

(DA =T 4T, TA=IT%+iT4 . (629
The su(2)-valued one-form [T 45 =T “5.dx* is the con-
nection one-form on slices generated by the connection
one-form 'z on M (Refs. 8 and 42). In the subsequentl

Qo)X 1,X,)= fa[al f|ﬁA,; N8y 4

where m 8 is an ‘H (2)-valued three-form on o given by

. ~ . .
m AB: —2‘h[(E2)CA'0'(%I§—2'tn 4B.t ch

In local coordinates m AB =m’”§dx UAdx? ANdx3.

relation

1= (1+9) " H(E2)g

The differential forms &

section we show that the quantities N, N¥, o 4p., and

'n n  have a clear geometric 1nterpretat10n——they are the

gauge variables corresponding to the action of the Diff M,
the local SU(2) and the local S H(2) rotations, respec-
tively.

We would like to recall that in the standard ADM for-
mulation, where the x° coordinate is fixed, the lapse N
represents a family of functions on slices and the com-
ponents of shift N represent a family of vector fields on
slices. In our approach, where we admit more general
transformations (6.11) of local coordinates in M, these
quantities have much more complicated transformation
rules (cf. Appendix A). However, the quantity
3dInN =9,InN -dx* defines a family of one-forms on slices
even if we admit transformations (6.11). This fact will be
often used in subsequent sections.

It is interesting to note that the transition from the
SL(2,C) picture to the SU(2) one can be described as a
symmetry-breaking process.®

VII. THE SU(2)-COVARIANT HAMILTONIAN
FORMULATION OF GAUGE THEORIES OF GRAVITY

We have shown in Sec. V that Lagrangian SL(2,C)
gauge theories of gravity carry a natural Hamiltonian
structure. Now, we discuss a special case of the general
Hamiltonian theory presented there. We assume that the
slicing of spacetime {o,} consists of spacelike, compact
surfaces without boundaries, and deal with SU(2)-object-
valued differential forms on slices. The technique of the
(3 + 1) decomposition developed in the previous section,
enables us to reformulate the results of Sec. V and to ob-
tain the (34 1) form of field equations. In terms of
(3 + 1) variables we get the following formula for the
symplectic two-form (5.3):

+(81 ”ﬁ AB/\SZHf AB+81 ”I'?/E /\82H$2+c.c.)+8,m ABASZT[”/“}] N (71)

o+ (1+9n) = ['nBE(E2) A+ ¢ (E2) B . (7.2)

AB D4 T3t t 1y B @
il B @5 "1 s U s Pa”s | W, and

m48 on o,.involved in (7.1), are called (3.4 1)-symplectic variables of the theory under consideration. In local coordi-

nates they are represented by the following quantities (see Appendix D): @ AB , T Apes $ 2 LS 'n e '@A B“, P 4B,
7//\/2“1 o s", 7B, and formula (7.1) can be rewritten as
Q(O’)(X],X2 f [811@ lS/\th/\AB +(8 .@ABJ'S/\82FABS+8 Wz ‘xk/\82$2s1”.3k+c.c.)
+81m”3/\82‘nm]dx1/\dx2/\dx3 (7.1)

Remarks. (i) In (7.1') the symbol “A” denotes only the antisymmetrization with respect to subscripts 1 and 2. (ii)

Passing from (5.3) to (7.1) we have omitted some three-divergence terms (cf. Ref. 22).

momentum function & (o) reads

‘ZAEN+('Z e 4B-HE

+[(*Z , ¥ 1) (E2) B+ (Z 1\ ¥

B) 1l E2 l¢

The formula for the energy-

A(EMs+(Z 163N (EM)z+c.c.])
(7.3)
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Remark. The o-normal and o-tangential components
of the vector field Z are given by ‘Z=2Z 1n=NZ°,
Z=Z 1ZWV=(Z°+N*Z°0;.

In the SL(2,C)-covariant Hamiltonian approach, the
components of the evolution vector Yy are given by
means of the covariant Lie derivatives of corresponding
geometric quantities (5.6). Therefore we need (3 + 1)-
decompositions of SL(2,C)-covariant Lie derivatives. In
a general case, when Z is an arbitrary vector field on
spacetime and {45 is a metric compatible connection, the
corresponding formulas were presented in Ref. 38. Those
formulas have a relatively simple form if (i) transforma-
tions of M generated by the vector field Z preserve the
slicing. That is, if

Z°=27%x", Z°=2Z%x°x") . (7.4)
(ii) The auxiliary connection {“g is consistent with the

slicing, i.e.,
A~ ha
¢Dn ;=0 or hEAp=0=1C"5 .

The conditions (7.4) and (7.5) are invariant with respect to
the coordinate transformations (6.11) and with respect to
local SU(2) rotations. If the consistency conditions (7.4)
and (7.5) hold then the o-parallel part of the SL(2,C)-
covariant Lie derivative of a spinor-valued k-form ¢v2 on
M consists of two terms. One of them is the SU(2)-
covariant “time” derivative ;@o of ”¢ computed with
respect to the d, connection 9¢4p and the latter is the
SU(2)-covariant Lie derivative of the k-form ”qS on o,
computed with respect to the d; connection ”é' p and tak-
en in the direction of the o- parallel part of Z (see Appen-
]

(7.5)
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dix E). Similarly, for a spinor-valued field of k-vector
densities on M F "' the o-transversal part of its
SL(2, C)-covariant Lie derivative splits into the SU(2)-
covariant time derivative ga@o of 172 and the SU(Q)-
covariant Lie derivative of “—2, computed with respect
to the connection 3¢ —”{,‘ AB, in the direction of Z (see
Appendix E).

Therefore, we may expect that in the (3 + 1) picture the
sympletic components of the evolution vector Yg are
given by means of the relations
lzggoé\A s+gf AAB

Sye (7.6)

and analogous formulas for other (3 4 1) symplectic vari-
ables. The conditions (i) and (ii) give rise to the relation

Sy'n ;=0 1.7

Remark. For a general Z and { we have

dyn1B=Z 1 DnBye B N-3Z° .

We have an SU(2)-covariant version of Theorem 1.
Theorem 1. In the (3 + 1) picture, the Hamilton equa-
tion (5.5) and the evolution postulates (7.6) and (7.7) give
rise to the system of equations
”(EI)AB :0 > i(El)AB :0 P’ ”(Ez)AB:O ,l(ﬁz)ABZO ’
(7.8)

(EM)3=0, [(EM)3=0, }ZomP=0.

It follows from (7.2) and the above formulas that m 4B_
on 0.

Proof. The variations of the energy-momentum function (7.3) can be expressed in the form

ngz fa [(_ayt@ABLSSteABS+8yt€A$S8152 ABLS)+(
1 ' O Ls s ~
JFF(—SY%Vz VUG L, By

—Sy.@ ABLSSf‘ ABS +8yf ABSS.@ ABls-‘l-C.C.)

1s

.Sk67?/'2 V% ce))

(B1) ;8% 18 1+ ((82),5 8T 45, +c.c)

N
s .
+ e 48,4 F 1)

1 A s A
+ ‘F(g“”);l H8pE, gt

+ three-divergences ]dx "Adx? Adx?

In the above formula (£1) 4 é’, etc., denote the coordinate

representations of the left-hand sides of the field equa-
tions (cf. Appendlx D) Takmg into account that varia-

tions 8% 42,51 Bs,ar ON.BN®, &n ;, 86 231
8¢ zsl e sk’6¢ Lsy-- sk’8¢ Lsy--- sk,SF B.L’SF are ar-

bitrary and comparing (7.1), (7.6), and (7.7) we get the re-
sult.

‘S’

(k—l)'

N 1d(21)t 4 ((82) P17 45, +c.c)]+68 15, ((£2) .2 +c.c.)

ABL+((?2)ABL'?ABS+C.C.)]

?./// +C.C.)

2UUNEGE L, ] (7.9)

The analysis of Eqgs. (7.8) shows that we lack the equa-
tion
4E1)=0[or 4Z17=0] . (7.10)
If, however, we apply the 39 operator to formula (7.2)
and make use of Eqs. (7.8) and the contracted Bianchi
identities (3.9b) then we get the missing equation (7.10).
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Remark. The time-maintenance condition (D y» % =0
gives rise, in fact, to the equations equivalent to a part of
the contracted Bianchi identities (3.9). It follows from the
(3 + 1) form of (3.9) that (7.10) is the consequence of the
remaining field equations. The (3 + 1)-Hamiltonian for-
mulation naturally divides the field equations into two
groups

(E1) =0, f(E2),=0, (EM);=0, (7.11a)

i(EI)AB=o , (E2),8=0,
. (7.11b)
W(EM)s=0, m*8=0.

Remark. In the set (7.11b) we may replace the equation
m48=0 by !(E2) 45=0 or by {(E1)=0.

The following result shows that such a decomposition
of the system of field equations is very important for the
initial value formulation of the theory.

Theorem 2. If Egs. (7.11a) are satisfied on an initial
surface o, Eqgs. (7.11b) and the equations

((D(EM)§=0

are satisfied on spacetime then Egs. (7.11a) are also satis-
fied on the whole M.

This result follows from the contracted Bianchi identi-
ties (3.9) and it generalizes a similar result in the Einstein
theory of gravity.’! The essential difference that appears
in our general scheme, in comparison with the previous
results, is condition (7.11c). In theories with matter po-
tentials described by zero-forms, Eq. (7.11c) is trivial for
D(EM)y is a five-form on spacetime. In such cases we
get a simpler version of Theorem 2 formulated in Ref. 22.
Also in some important cases, e.g., in electrodynamics,
Eq. (7.11c) holds automatically. In a general case, howev-
er, this equation is not trivial.

Bearing in mind the statement of Theorem 2, we might
expect that Egs. (7.11a) are the initial value constraints of
the theory and Egs. (7.11b) and (7.11c) define the evolu-
tion of the system. Such a classification, however, is not
true in general.

In further considerations we are going to describe the
constraints for initial values of symplectic variables and
the dynamical evolution of initial data. First of all, we
eliminate the variables m 4% from the theory setting them,
in virtue of (7.11b), equal to zero. After this partial reduc-
tion of the system we have the following (3 + 1)-
symplectic variables:

(7.11¢c)

2, ||¢’2 » (Ws.  (7.12)
Now, the main problem is whether we are able to express
the left-hand sides of Eqgs. (7.11a) by symplectic variables
(7.12). The answer to this question depends on the prop-
erties of the o-tangential part of the matter current ||J5.
If IIj s can be expressed by symplectic variables (7.12) then
the same is true for the left-hand sides of Egs. (7.11a).
For some theories it is the case. In electrodynamics, the
situation is trivial for J=0. A nontrivial example is pro-
vided by the Rarita-Schwinger Lagrangian
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LRsz—‘/%((pA/\eAB ADYP+-Dy, Ae B Agp)

+m[d A1y +2xe A% (P A *eCB)]—I—c.c. ,

(7.13)

where ¢ and d}/i are Weyl-spinor-valued one-forms on
spacetime. Of course, there are also theories for which
the o-tangential component of the matter current cannot
be expressed by the symplectic variables. At the end of
the present section we discuss such an example—the Pro-
ca field.

If ”j s cannot be directly expressed in terms of symplec-
tic variables then we compute it from the field equation
(EM)s=0. We obtain

Js=(—D5(DWs). (7.14)

It follows from the formulas of Appendix F that the
right-hand side of (7.14) is a function of symplectic vari-
ables and their o-tangential derivatives. The relations
(7.14) enable us to eliminate Hj s from the formula for the
o-tangential part of the matter energy-momentum three-
form H]A"A i [cf. (3.8b)], moreover, the o-tangential com-

ponent of the spin three-form ,,?AB can be expressed by
the symplectic variables ”$ % and ”W};, cf. (3.4). Finally,
we are able to express the left-hand sides of the gravita-
tional constraints

(ED =0, %E2),5=0

4B (7.15)

by means of symplectic variables (7.12). In a general case,
that is, when the equation ”(E‘M )x=0 is not a symplectic
constraint, field equations (7.11) can be divided into three
groups:

(A) The dynamical equations for symplectic variables;

(B) the Hamiltonian symplectic constraints (7.15)
preserved in the process of evolution;

(C) other nondynamical equations.

Also the field variables form three distinct sets:

(i) The symplectic variables (7.12);

(ii) the gauge variables N,N%,9T 4p,?

(iii) other nondynamical variables.

The nondynamical equations (C) involve values of the
fields on the surface o and do not involve the time deriva-
tives of field variables. If we pose the initial value prob-
lem on a surface o then we have to: first, specify values of
the symplectic variables on ¢ in such a way that they
satisfy the Hamiltonian constraints (7.15) and second, fix
spacetime values of the gauge variables.

Serious troubles cause the nondynamical field variables
(iii) and the nondynamical equations (C). In some cases
we are able to eliminate the nondynamical variables by
means of the equations (C). A very important example is
provided by the Einstein-Cartan-Dirac theory (see Secs.
VIII and IX). There are, however, examples where a
direct elimination of the nondynamical variables and non-
dynamical equations is not possible. In such cases we
time-differentiate the nondynamical equations (C) and the
obtained time-maintenance conditions help us to deter-

n -;
AB’
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mine the evolution of nondynamical variables. Nontrivial
examples of such a procedure have been recently con-
sidered in Ref. 43 for the ECSK theory with vector
matter fields.

In a general case, we have seven gravitational symplec-
tic constraints (7.15) and ten gauge variables. We should,
however, remember that for the complete set of symplec-
tic variables (7.3) we have three additional Hamiltonian
constraints

mAB_0 (7.16)

That is, the total number of symplectic constraints is at

least 10. Therefore, we may expect a close relation be-

(7.15), (7.16), and 10

tween 10 symplectic constraints

gauge variables ,

8§ (Z,M)— (82 +8) )N, (87 + 8 )N*,(87+8) )T 45, (8 48y 'n ;)

defined by means of (4.1) and (4.2), is one-to-one.

The detailed analysis of the map (7.18) shows that in-
finitesimal covariant translations generated by the vector
field Z on spacetime lead to arbitrary values of
8zN,5zN°. That is why, we call N and N*® the transla-
tional gauge variables. Infinitesimal rotations generated
by x-dependent flelds of matrices M give rise to arbitrary

values of 8,°T" 45, and §,,' n ;- The quantities afhd

and nAb are called the rotational gauge variables corre-

sponding to local SU(2) rotations and to local S H(2) ro-
tations (boost transformations), respectively.

Remark. The role of gauge -variables N,N° (or
equivalently go,) in the classical Einstein-Hilbert theory
was investigated already at the very beginning of its
development. Later several authors contributed to the
problem, see Refs. 31, 44, and 45. The diffeomorphism
group approach to gauge variables in classical gravity was
discussed in Refs. 12, 46, 35, and 47. For a general
S0, (3,1) gauge theory the rotational gauge variables were
found in Ref. 22. In that paper, however, instead of
quantities o 4y and ¥ n, the equivalent quantities Tz,

were considered.

We would like to point out that the number of symplec-
tic constraints can be essentially larger than the number of
Hamiltonian constraints (7.15) and (7.16). The reason is
that a degeneracy of the gravitational or matter Lagrang-
ian can lead to kinematical (primary) constraints in the set
of symplectic variables (7.12).

If all the kinematical constraints are known, then we

search for constraints in the complete set of symplectic

variables. It is clear that the gauge variables tn,ué are

completely independent quantities; they do not enter field
equations (7.8) and have no relations to other elements of
complete set of (3 + 1)-symplectic variables. A much
more subtle question is whether we could expect any rela-
tion between the variables m % and the elements of (7.12).
The analysis of formula (7.2) shows that for some classes
of gravitational Lagrangians the variables m “? are func-
tions of the reduced symplectic variables (7.12). An ex-
am%ol]e is provided by the Hehl-von der Heyde Lagrang-
ian
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N5 A, n - (7.17)
First of all, we explain why quantities (7.17) are called
gauge variables. We recall that in its SL(2, C)-covariant
formulation the theory is invariant with respect to the full
gauge group G =loc SL(2,C) X ,DiffM. This implies that
the set of solutions of field equations is determined up to
a transformation parametrized by elements of G. In the
infinitesimal picture, we pass from the action of G in the
set of solutions of field equations to the action of the Lie
algebra g of G in the set of solutions of the linearized
field equations. It can be proven directly that the action
of g in the set of linearized solutions generates an isomor-
phism between g and the tangent space of the space of
gauge variables (7.17). That is, the mapping

(7.18)
' Kug=—1[0"A%0
+ley NxOD A k(e A x015)]
— ZI;—QAB/\*QBA +c.c. (7.19a)
and by the Yang Lagrangian
Ky=75(Q A%Q8, tc.c.) (7.19b)

as well.

Our analysis shows that if the kinematics of the theory,
that is, the definition of symplectic variables does not
yield symplectic constraints then the only symplectic con-
straints are those given by dynamics. In the vacuum case,
when matter is absent, we have ten Hamiltonian con-
straints (7.15), (7.16), and three of these can always be re-
duced. The situation changes for some special classes of
matter Lagrangians. As we have pointed earlier, in some
cases the left-hand side of the equation

(EM)s=0 (7.20)

is a function of symplectic variables (7.12) and their o-
tangential derivatives. In such a case the set of Hamil-
tonian constraints (B) consists of Egs. (7.15), (7.16), and
(7.20). If, simultaneously, the time-malntenance condition
(7.11¢) is a direct consequence of the (remaining) field
equations then the Hamiltonian constraints (B) are
preserved in time automatically. Then we expect an addi-
tional gauge invariance of the theory and an additional set
of gauge variables. A standard example is given by
Maxwell electrodynamics (see below).

Example. The Proca field and Maxwell field. The elec-
tromagnetic potential is an R-valued one-form
A=A,dx". The Lagrangian reads

1 m2
1 v m2 u
=V —g TF;WF +TA“A

Xdx°ANdx'ANdx? Adx?
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where F=dA= %F,wdx” Ndx",F,,=d,4,—09,4,. The
momenta are equal to #*'=VvV —g FF (or W=xF) and
the matter current #F#=m2V'—g A* (or J=m?2% A).

Remark. For real field we use a modified version of
(3.2) that does not contain (c.c.) terms. The symplectic
variables are 4, and &=V ZF . If m=£0 then the o-
tangential part of the matter current ”./]\
=m 2\/52 tdx! Adx? Adx?, cannot be expressed by sym-
plectic variables. Equation (7.20) reads

VEm2dti9,8=0.

In the case of the Proca field, that is, if m=40, the con-
straint (7.21) is not symplectic. This equation belongs to
the system (C) of nondynamical equations. Fortunately,
this equation can be solved for the nonsymplectic variable
4! and thereby eliminated. Simultaneously, the non-
dynamical variable 4 ! is reduced.

If m =0, Maxwell electrodynamics, the situation is
completely different. Equation (7.21) gives us a symplec-
tic constraint. The theory is invariant with respect to the
gradient gauge transformation A —>A'=A4 +dX and e
is the gauge variable corresponding to this gauge transfor-
mation.

The three-form of energy-momentum for the Proca-
Mazxwell field is given by the formula

TA,',z*L A *eAi;_*F/\ *(eAB A xF)

(7.21)

2
—m xANx(e N*A). (7.22)
It is an easy exercise to check that T . fulfills the sym-
metry condition (3.10). In fact we have

T =8l —V' —g FuFr+m™V/ g 4,4, .  (122)

For spatially closed spacetimes, the energy-momentum
function & is the generator of spacetime translations.
The function &, however, vanishes when computed on
solutions of field equations. That is, the energy-
momentum of spatially closed universes is zero.** In
spatially open cases, the field equations can be obtained
from the Hamiltonian formulation only if appropriate
boundary conditions are imposed. If we assume that solu-
tions of field equations are asymptotically flat at the spa-
tial infinity then the dynamics can be determined by the
Hamilton equation (5.5) with a modified energy-
momentum function & (o). Now, in the Hamilton
analysis only some boundary integrals vanish and the for-
mula for &,,(0) contains volume integrals over o as well
as boundary integrals over the asymptotic boundary of o.
For the Einstein theory this procedure gives rise to the
ADM energy-momentum formula.’"*’ Because of the re-
cent results concerning the positivity of the ADM ener-
gy>° it would be interesting to obtain asymptotic energy-
momentum formulas for other SL(2, C) gauge theories of
gravity. This problem can be solved by analyzing
boundary terms in (5.8). The question whether the ad hoc
imposed boundary conditions are reasonable requires the
knowledge of several examples of exact solutions for par-
ticular theories. Fortunately, some attempts in this direc-
tion have been already done.’!
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While the above-mentioned papers present the standard
Hamiltonian formulation, a new, interesting approach to
the canonical formulation of general relativity in asymp-
totically flat spacetimes has been recently given by Ashte-
kar and Horowitz.>> In this paper, the authors by means
of Witten’s spinor technique define natural asymptotically
constant time-translations and find the corresponding
dynamical generator.

VIII. SPINOR MATTER FIELDS AND
THEIR SYMPLECTIC VARIABLES

As we already know, the invariance of the theory in
question with respect to the action of the gauge group
G =1locSL(2,C) X , DiffM gives rise to ten kinematical
(primary) gravitational constraints

00__ BOO __
@AB =0, Z,°"=0. (8.1a)
The time-maintenance condition applied to the system
(8.1a) leads to ten dynamical (secondary) gravitational
constraints

(??I)Aélzo, (£2),2'=0. (8.2a)

If matter is present, we have further kinematical (pri-
mary) constraints

WEOV‘ ""Yk—0 ,if at least one of
indices v; is equal zero , (8.1b)

as well as secondary matter constraints
()5 k=0, (8.2b)

The structure of gravitational constraints (8.2a) has been
thoroughly investigated in Sec. VII, these equations are
symplectic constraints. The structure of matter con-
straints (8.2b) essentially depends on the particular choice
of matter Lagrangian. In some cases these equations are
symplectic constraints in others they are not.

In the present section, however, we investigate another
feature of first order spinor matter Lagrangians. For such
Lagrangians, the field momenta are proportional to field
potentials and these relations lead to additional symplectic
constraints. For some classical fields, e.g., Dirac, Weyl,
Fierz-Pauli, those symplectic constraints can be complete-
ly reduced. The method we use is based on an appropriate
redefinition of symplectic variables such that the symplec-
tic two-form Q preserves its diagonal form. Until now, it
is not clear for which classes of first order matter La-
grangians such a reduction can be performed.

For second-order matter Lagrangians. examples are
known, where such a reduction is not possible; in such
cases we have additional (differential) secondary con-
straints.*3

For the SL(2, C)-covariant formulation the most natur-
al is the spinor representation of Dirac matrices.”®> The
matter potential of the Dirac field is given by a pair
(¢4 ) of zero-forms with values in Weyl spinors. The

transformation rules hold

'¢A:S_1AC¢C , Il[},i =Sé,i¢c'~ . (8.3)
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The Dirac Lagrangian reads Y Vf*eAB(pB , WA= LBy (8.5)
LD_%((IV.‘/\ e, ADGE 4+, A *eAB/\Dl,bB) In the (3 + 1) language we have
A i o .
1Pa= 73 %045? Pnlo), WA= ‘/2 U(O)¢B’7(U )
—mé?xyp +c.c. (8.4) (8.6)

where 77(0) is the volume element on o (cf. Appendix A).
The matter part of the symplectic two-form ) can be
written

The momenta Wy are given by a pair (® A,\P’i) of three-

forms on spacetime
J

m(@) X1, X)= [ DA8:$ 4 +816 5 N8 (o))

%ZU(O)AB[SI(‘Z\BMG

+ ‘/#Eo(éff[sl(@gn(a)) N8 +815 NS m(0))] (8.7)
It is clear that for the Dirac field interacting with gravity the symplectic variables in (8.7) are not independent quantities.
We can, however, improve the situation by introducing new symplectic variables. Let g be a half-form on o such that

qq =m(0). Then formula (8.7) takes the form

Q@)X 1, X)) = [ [8,:V20 6% N8, 9)+8,(V208ag) NB(F 9] . (8.8)
We see that the proper symplectic variables are spinor-valued half-forms on o

69,9 ,0.iV20 ) . 6%,iV20(i5q . (8.9)

These quantities are linearly independent over the field of real numbers.

Remark. The mathematical notion of a half-form on the manifold enables us to extract the square root g of the
volume three-form 7(o). In general, half-forms exist only on manifolds equipped with metalinear structures.’” In our
case, such a metalinear structure exists by virtue of the orientability of o.

In local coordinates we define the R-independent quantities

§A:‘}/§$A’ §A:W§$A’ XA‘—:V/E{/;A’ X :\yg;{p\A’ (8.9")
and formula (8.8) reads
m(@) X1, X2)= [ [81(1V20, 65 NBEA+8,(1V2oX ) ABX , Jdx ' Adx? Ndx? (8.8)

The diagonal expression (8.8') indicates that the Dirac equations written in terms of variables (8.9) should have a simple
and elegant dynamical form. Such a formulation of the Dirac equations in the Einstein-Cartan theory is presented in
Sec. IX.

The method of diagonalizing the matter part of the symplectic two-form by means of half-densities on o can be also
applied to the Fierz-Pauli Lagrangian54

- A4 B...Bk

L _L((b’i’il kA LD 4B A p Ay Ag-o Ay B,
rp="75(95, . e, ¢ —i—l/}AAl LN\ xe TN ¢ k)+m¢31"'Bszio---,«ik'*'c'c" (8.10)

where ¢ and ¢ are zero-forms with values in SL(2, C) symmetric spinors. We get

B/\B - A

‘/50(0) Dah,- g q)/\52(¢33 5 3,91

(8.11)

~NAA - A ~BB
Qp(0)(X1,X,)= fa [8:(iV200)i8b 5, B,)D /\52(¢;1]1

In our symplectic approach, the technique of spinor-
valued half-forms eliminates the primary constraints,
which are generic for first-order Lagrangians, and leads to

IX. THE DIRAC FIELD INTERACTING
WITH EINSTEIN-CARTAN GRAVITY

an elegant dynamical description of matter fields.

We would like to point out also that some other authors
used spinor-valued half-densities (they called them
weighted spinors) as canonical variables in the standard
Bergmann-Dirac analysis of the Einstein-Dirac field.>

The coupled Einstein-Dirac system was investigated by
several authors in the framework of Riemannian
geometry> 37 as well as in the framework of Riemann-
Cartan geometry.”® Our analysis of the problem, however,
is different from those presented in the above-mentioned
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papers. We reduce the Einstein-Cartan-Dirac field equa-
tions to a system consisting of dynamical equations and
seven first-class initial-value constraints. No second-class
constraints appear in our formulation. The total ECD
Lagrangian reads

INQA, +Lp .

Lig=%(®Ne JNQ 5+ Ne,

9.1

The Dirac Lagrangian L, has been analyzed in the previ-
ous section. Now we discuss the gravitational part of the
total Lagrangian. We have the following formulas for the
gravitational canonical momenta:

_ B__ BC
UAB_O’ P,P=x(e AeAc')‘ 9.2)
In the (3 + 1) decomposition
D hA A o o A
ﬁP AB=0 N ”P AB:U(O)AC3*"'e BC—U(BE)C).3*IIIGAC- N (9.3)

(we recall that 3% denotes the Hodge operator on o, see
Appendix A). The gravitational part of the symplectic

two-form is
Q= [ [5:2VZ % ;) A8y — 205 T 4c))
+81mAB/\82'nAI§ ldx!Adx?Adx3
(9.4)
The dynamical gravitational symplectic variables
¢ =2V 0, K= 200G A (9.5)

have a simple geometric interpretation: ¢* L ATe the com-

ponents of an ‘H (2)-valued vector density on o, and Kj ’“;I
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represent the second fundamental form of the embedding
o—M (cf. Ref. 22). According to the general scheme pro-
posed in Sec. VII we divide the ECD equations into three
groups:

(A) 18 dynamical gravitational equations

WED =0, ¥E2),° (9.6a)
and 8 (dynamical) matter equations
(E¢)4=0, (Ey)i=o0, (9.6b)
(B) 7 gravitational symplectic constraints
(ED) =0, f(E2),°=0, 9.7)
(C) 12 nondynamical equations
"E2),%=0, %(E2),%=0. 9.8)

Also the field variables split into three groups:
(i) 18 gravitational and 8 matter symplectic variables

esABz ,Ks 48 (or hf ABs ) ’ (9.9a)

§A ’§A’XA ’XA ’ (99b)
(ii) 10 gravitational gauge variables

NyNs,af‘ ABl,tnAB; ) (9.10)
(iii) 12 nondynamical variables

hf‘ ABl’af ABs . (91 1)

In the Einstein-Cartan theory we are able to solve non-
dynamical equations (9.8) algebraically and to eliminate
nondynamical variables (9.11). This fact follows from the
explicit form of Egs. (9.8)

A 4 CB_L!AABsa lnN___l_ 1 w41 _cB t7CB ap As 1 tnaC apn Bs ’
c10(0)= 3c o)+ 3P+ e 3.7, (9.8a’)
2- 7 4 vz g vz ¢
A 1 H
tA AB _ tsAB t5 1 AB .ty ha CL_ED | \tnED .an Cp
’S_Z\/E(e sy, — € e L B E o)+ 78,5
. . 1 . . .
L3 CE .ap Dp tp AB t5CD (tp  .ap Ep  ty  .ap Ep ’
+3€%%,% )+2\/Ee b€ ,(eEDs 3P+ %5, ). (9.8b")
For the Dirac field the spin three-form is given by the formula
B_ _ L _ B¢ _ i B¢ . B,C
Sq4 = 3 (¢A¢é ’J’A’l’é)*e 3 (65— yPy )*eAC . (9.12)
Hence, we have
3AB.L 2\/2[ €A§ XAX )O.(O)BC gBé—C_XBXC)U(:é] ,
(9.12")
.;\ABr= 2 [ §A§ XAX )tABCr (ngC_XBXC)té\Aér] .
Moreover, it is easy to show that
1©48=3d (o 4B) SR 4. N B AT B Al 4P, (9.13)

that is to say, 'Q AB,S are the components of torsion of the connection ﬂf 4p on o (cf. Appendix E). The torsion of a
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metric compatible connection determines this connection uniquely (the exphc1t formula can be found in Ref. 38).
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Mak-

ing use of relations (9.12') and (9.13) we solve Egs. (9.8') for T 45, and a4 Bs-
Remark. For the Einstein-Cartan theory coupled to tensor matter fields with quadratic Lagrangians, the components

of spin (9.12') depend also on the three-connection coefficients “I" Aps.
It has been recently shown that such a system can be solved effectively but in some cases its

ed linear system for T “g;.

solutions have singular points.’%*3

In such a case Eq. (9.8b") constitutes a complicat-

The explicit SO(3)-covariant formulation of the dynamical gravitational equations and the constraints has been
presented in Ref. 38. Those formulas rewritten in the SU(2)-spinor language read

3P I Ap, =P T 45, +T 45,3,InN + (%6 o RS+,
_ 1 oacus e EF g PS
+ 2‘/§ (J ‘eper— 7€, 1T ),
3 My CDr_ sCD.tp  ryhPE . __ohn Cs,
90 —2(6 e AB " Cr U(O)E]j 2 2 4

where *R 4, is the Riemann tensor of the connection i 4p on 0, and tr7 is given by tr.7

"(E?l)l=\/§-3R +4‘/§té\ABr,t/e\Cf)s,o.

’(?1 .l_

0es % orFp

sCDt/\ r. (0) (3 ARE
B UED( gs r Ccr—

"(?2),,'“=2x/§("fﬂ,§s-'@/‘é EC{ W E -t BCs.
where 3R is the Ricci scalar of curvature R 45, on o,

g BC‘s+

C.C.
AC ¢

3R:__3RABm,té\

The SU(2)-covariant formulation of the Dirac equations reads

.3 A__ 143 tA s
9 048 Do =3¢ @seﬂ}"‘ V3

0.(0) SQOX __X 39 tAABs+ ABs 39X .

\/5

Remark. SU(2)-covariant operators *%, and 3%, are
defined in Appendix E.

As given above, the manifestly covariant dynamical
formulation of the ECD system enables us to pose the
Cauchy-Kowalewska initial-value problem on the surface
o. We fix the following quantities: (a) initial values of
symplectic variables (9.9) on the initial surface ¢ in such a
way that constraints (9.7) hold and (b) arbitrary values of
gauge variables (9.10) on spacetime.

If these data are analytic functions then in a neighbor-
hood of each point on o we have a unique local (analytic)
solution. We know, however, that much more interesting
is the hyperbolic initial-value problem, which in classical
general relativity enables us to find solutions in a neigh-
borhood of the initial surface. We may expect the ECD
system to be hyperbolic only if we impose a certain gauge
condition. In Einstein’s theory the harmonic gauge'>> is
natural, although it is not convenient for the (3 + 1) pic-
ture. Recently, however, Choquet-Bruhat and Ruggieri®
have shown that in general relativity there exists another
gauge condition appropriate to the hyperbolic analysis of
the (3 4+ 1) decomposition. In this gauge the shift N* van-
ishes and the lapse N satisfies a certain differential equa-
tion. It would be interesting to investigate whether
Choquet-Ruggieri-type conditions could be found for
more general theories of gravity, particularly, for the
Einstein-Cartan-Dirac system.

r3RC
Drs

hNE hQ\F
ST 74T T

2 D~ mmX e

)O' + té\ CDr (O)ED(hF ABth EC _hl-\ A hr ECr)

(9.6a’)

A&l 1S ty AB .
=% +'7A1§s.e o

_hp EAshfFCr)+dy-L:O ,

3grhr\ ECS)"}_I'?‘AB‘L:O ,

9.7

0) A~ Bl
.C")+a'}A =0 )

s hr C %é’A-té\ s hr C §A tAABsa lnN

(9.6b)

A 1 A AB <Y 1 ~ AB
m§A+ X t CBs hr 4 7Xéte ABs,hr CBS +7Xl~;te ABSaSth .

Having the correctly posed initial-value problem, we in-
vestigate the question of independent degrees of freedom.
In the ECD theory we have 18 + 8=26 real symplectic
variables whose initial values are subject to 7 constraints.
These constraints are first class in the Dirac terminology'®
and therefore they reduce 14 degrees of freedom. Thus,
we expect to have only 12 degrees of freedom in the phase
space.’! Four of them describe the gravitational field and
the remaining eight the Dirac field. For spatially closed
spacetimes, a rigorous proof of this statement can be ob-
tained by means of symplectic methods elaborated in
Refs. 12, 47, and 62. The analysis of independent degrees
of freedom based on the symplectic technique gives rise to
the corresponding splitting of the (formal) tangent space
of the set of solutions. The problem of how the decompo-
sition of the tangent space reflects the genuine structure
of the set of solutions requires much more subtle methods.
For the Einstein theory, very profound results in that
direction were obtained by Arms, Fischer, Isenberg,
Marsden, and Moncrief.!>% These authors showed that
the set of Einstein metrics on a spatially closed spacetimes
is a manifold with singularities and that singular points
are symmetric solutions of Einstein equations. Moreover,
the action of Diff M admits a slice, that is, we are able to
decompose (locally) the set of Einstein metrics into orbits
of the diffeomorphism group of spacetime.
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APPENDIX A: THE HODGE DUALITY

Let M be‘ an oriented, four-dimensional, Lorentzian
manifold with the metric g =g,,dx*®dx". We denote by
€q,--a, and €% the Levi-Civita symbols in four di-
mensions (€y,3=€"'2=1). The volume element on M is
given by
vV —8g

4!
where g =det[g,,].

The Hodge dual operator * transforms the space
A*T*M of k-covectors on M onto the space A*~*T*M of
(4— k)-covectors. The basic formula defining this opera-
tor reads

*(dx™'A -+ Adx"*)

=__&_”—g"1"1 ... g“kﬁk
(4—k)!

n(M)= €a - adx TN Adx™, (A1)

R

Xep, ... gdx A - AaxP (A2)

We have the relations

xx=(—1)k+liq ; (A3)
if ¢, are k-covectors then
*PAY=%yYA¢ ; (A4)

if Z=2"%3, is a vector on M and Z=Z,dx" is the corre-
sponding covector on M, ie., Z,=g,,Z*, then for an ar-
bitrary k covector ¢ on M

*(ZAx$)=—Z 1¢. (A5)
For a spinor-valued differential k-form
=_1 .= VIA ... v

A —k!A v dx A Adx* (A6)

its Hodge-dual representation reads

(v —=g)!
A)::___g___&{zul.

(4—k)! L w(d@xMA e AdxR)

g

(A7)

where 42/2”1‘.‘m_k=g/k!e,,]...,,a_k,,l...,,kAzVl k are
the components of a tensor density of weight -+ 1
on M.

Some important formulas in the (34 1) decomposition.
We assume that local coordinates (x%x*) on M are con-
sistent with the slicing. The lapse and shift are defined by
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N=(—g%)~12 Ns=N2%0s (A8)
We have the relations
g0s=Ns =ger’ ’
8w=—N>+N;"N*, (A9)
N'"-N*
grs=3grs_ N2 ,

where [3g”] is the inverse matrix of [g].
The relations (6.12) between holonomic and anholo-
nomic bases may be rewritten as’’

dxP=AF dx" , T)M:A—‘Vﬁav, (A10)
where
A%=N, 4A%=N°*, 4%=0,
s

(A12)

The quantity V represents a family of tensors on surfaces
of the slicing and the valence of these tensors is deter-
mined by nonzero indices. In order to emphasize that in
the (3 4+ 1) decomposition the index “0” is not a tensor in-
dex, we often replace it by the symbol 1. For instance, if
V@ is a spacetime vector then

V1=¥9 isascalaron o,
o (A13)
V*=V* is a vector on o .

In general, three-geometric objects defined by the quantity
V are three-tensors with respect to transformations (6.11).
For the metric tensor we get

gu=-1, 81s=0, 8sr =8sr >
(A14)

§11=_1 , §ls=0, ,§"=3g”.

For a spacetime scalar density F of weight r we define

F=N""%. (A15)
In particular
Vg =N""_—g =V7F =(det[zg,, ]/ . (A16)

The bar operation can also be defined for the holonomic
components I'*, of a connection on spacetime. The cor-
responding formulas are given in Ref. 35.

Applying the bar operation to components of spacetime
tensors and connections, we obtain families of three-
tensors and three-connections on slices. In the complete
theory, however, we have two quantities having specific



3124

properties with respect to transformations (6.11). They
are the lapse and the shift. We have

-1

N, N |2

ax01

ox* , ox*

ox’ ax?

ax();
Ax?

N'=

(A17)
Let us observe that d,In/V are the components of a three-
tensor on o.

The metric g,,, the orientation of spacetime, and an
external orientation of the surface o induce the metric g,
on o and its internal orientation. The volume element on
o is given by

no)=—F ¢, dx" Ndx"> Ndx™ . (A18)

3!

The formula for the Hodge operator *% on o reads

5253

3% (dx'A - Adx’*)

=—(3—_‘/;g;;—)!~gs‘r‘ .. ”Skrke,lrz,sdxr"“/\ <o Adx" .
(A19)
Instead of (A3) we have
Sud% =id . (A20)
In Sec. VI we use the formula
*(nMAP) | g=—>3%(d|,) (A21)

valid for an arbitrary differential form ¢ on M.

APPENDIX B: SOME FORMULAS
OF THE SPINOR CALCULUS

If the Infeld-van der Waerden matrices [U(fg] are de-
fined by (2.5) then we have the numerical relations

O s =~ 100} - (B1)
We have
(@)CD _ Cc &b AB_
O as? =848, 0 0= Nap - (B2)

In the theory of SU(2) spinors, 6“&:\/50(1,1); and
8 5 :\/ia( o145 2T€ unit matrices invariant with respect to
the action of SU(2). The Kronecker symbols 4% and 'SAB

yield the canonical isomorphism of spaces of dotted and
undotted SU(2) spinors. Also we have
(s)CD__ 1 CD__<C &D
95487 =758 57487
(B2")

SU(2)-invariant decompositions of complex 2X2 ma-
trices. Any complex 2X2 matrix [ M“*?] can be decom-

posed into its diagonal and traceless parts
MAé——“dMO'(AbI)}—i—'MAE , (B3)

where ‘M =M "85 and ‘M2 is traceless, i.e.,

(0)4B
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’MABSAézo. Any complex 22 matrix [M“5] can be
decomposed into its Hermitian and anti-Hermitian parts

MAg="MAp oM, (B4)
where

hagd __ 1 asd C sAD.

Mg =5(M"g+M D.S SBC.),

apgA __ 1l pasd C sAD.

Mp=5(M"p—M b8 'SBC)‘

The decompositions (B3) and (B4) are invariant with
respect to the appropriate actions of the group SU(2).

APPENDIX C: THE FULL GRAVITATIONAL
GAUGE GROUP

The diffeomorphism group of spacetime acts naturally
in the space of tensor fields on M. In particular, for a dif-
ferential form ¢ we have

A(@)p=(Dd~ )¢, (C1)

where ® €DiffM, and the asterisk denotes the pullback
operation for differential forms. The Lie algebra of
Diff M consists of (smooth) vector fields on spacetime be-
ing generators of one-parameter families (subgroups) of
diffeomorphisms. The action of the Lie algebra of Diff M
in the space of tensor fields is given by the standard Lie
derivative . ;. We have the consistency relations

[L2,L2]=L1z,2, - (C2)

If we apply formula (C1) to SL(2, C)-spinor-valued dif-
ferential forms then we indeed get an action of Diff M but
this action is not SL(2,C) covariant. Therefore we need
the following construction:

(i) We assume that there exists a neighborhood & of
the zero-vector field on M (in a suitable topology in the
space of vector fields), a neighborhood % ., of the identity
in DiffM (in a suitable topology in Diff M), and a dif-
feomorphic exponential mapping exp: &o— % .,

Remark. The problem of how to choose a topology (a
differentiable structure) in Diff M and in its Lie algebra in
order to get an exponential mapping is not trivial. It is
known that even for compact M, C* topologies are not
appropriate. However, for compact M the groups Diff M
carry the structure of the inverse Hilbert limit Lie
groups® modeled on H* spaces and the corresponding ex-
ponential mappings are local diffeomorphisms. We may
assume that under some, even restrictive, conditions these
results can be generalized for noncompact manifolds.

(i) Let ZE, and ®=exp(Z). The curve [0,1]>D¢
—®, =exp(tZ)EDIffM joins the identity and ®. For
each point x € M we have the curve t— ®,(x) joining the
points x and ®(x).

(iii) Let S(p) be the spinor space corresponding to a
representation p of SL(2,C). Each element sES(p) is
represented by its components s* with respect to a chosen
basis in S(p). S(p)-valued differential k-forms on M are
elements of the tensor product S(p)® A*T*M and simple
elements s® ¢ have the coordinate representation
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s2®¢”l...#kdx”‘/\ < AdxM*
=¢2ﬂl...#kdx”‘/\ S AdxMR L (C3)

Covariant translations generated by Diff M are defined by
the rule

(AP)s®P)=5s'0", (C4)

where ¢' = A4 (P)¢ and s’ is the result of the parallel trans-
port of s along the curve t—®,(x) from the point x to
the point ®(x) (a background connection { determining
the parallel transport is fixed).

Infinitesimal generators of covariant translations are
the covariant Lie derivatives (4.2). It follows from com-
mutation relations (4.3a) that the composition of two co-
variant translations is not a translation. We explain this
fact, observing that, in order to perform two consecutive
transformations (C4) for diffeomorphisms ®; and ®,, we
transport differential forms by means of the diffeomor-
phism ®;=®,0P,, as well as simultaneously parallel
transport spinors along the curve x,(z)=®,(x) and then
along the curve x,(t)=®,,(P(x)). For ®; we have the
curve x3(t)=®,,0P,(x). The final point for the compo-
sition of x,(#) and x,(¢) coincides with the final point of
x3(2) but these curves do not coincide. That is why, the
composition of transformations (C4) for ®; and &, is
equal to the translation corresponding to ®; composed
with a local SL(2, C) rotation.

Our considerations show that the set of pairs (S,®P),
where S is a field of SL(2,C) matrices on M and
®E€ %,,CDiffM, has a bundle structure over %,,, (over
DiffM). The fiber over a fixed point of the base is iso-
morphic to the local SL(2,C) group. We write
G%/_(/ = loc SL(Z, C) Xp @,;/ [G = GDiffM = loc SL(2,C)
X p DiffM]. The group G acts in the space of SL(2,C)-
spinor-valued differential forms. Of course, making use
of the results of Sec. IV we can extend this action onto
sl(2, C)-valued connection forms on M.

The essential formulations and the statements of the
theory are invariant with respect to the action of G.
Therefore this group is the full gravitational gauge group
for SL(2, C) theories. The local SL(2,C) group is a nor-
mal subgroup of G and the quotient group
G,=G/locSL(2,C) is isomorphic to the group of
transformations generated by the standard action of
Diff M. In special cases, if the connection {5 is flat, i.e.,
;QA =0, the covariant translations form a subgroup and
G is the semidirect product of the locSL(2,C) and
DiffM.?> The bundle structure of G depends essentially
on the choice of the connection §. It follows from the
commutation relations (4.3) that the group corresponding
to different connections are locally isomorphic if curva-
tures of these connections coincide.

APPENDIX D: FIELD EQUATIONS
IN LOCAL COORDINATES

According to the general rule [(A6) and (A7)] we have

2V —g UAB:@ABW*(dx“/\dx") ,
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. ¢
YU 48" =% 4™ ep) o

2V —g P B=2 (B, x(dxH Ndx") , (D1)

(k+1DWV —gWs=7"%, . (dx" A -+ Adx ¥+

""k+l*

[the symbol (AB) denotes symmetrization in the indices
4,B]

V4 _ v _ c
—8 VAB_VAB’V*dx N VAB*VC(AVeB) v s

. c
V' —g T ;=7 5, %%, Tap=T¢a’ e v,

V=g s 8=0s,8xdx", (D2)

KWV =g Js=F sy . ®ldx Ao Adx™) .

Vi

V_gK=¥%x1, V—_gL=%x1,

V—g(El) .=(&1)

. xdx?
AB ABv dx”,

(51)45'—"(%1)6(/93)&‘/ ,
(D3)

Vg (E2)P=(82) L xdx",
kW =g (EM)z=(& M)z, ..., x(dx" A -+ Ndx'™™).

It follows from (E3) that for a (3— k)-form Wy given by
(D1)

kW —g DWs =, # s, ..., x(dx"" A - -+ Ndx™*)

(D4)

For the field strengths we have

eAf}:%QAdexu/\dxv , Q4p=1R4p,dx" Ndx",

(D5)
(k+l)!F2=F"v1...Vk+ldxv‘/\ cee Adx TR
The field equations (3.3) in the component form read
(1) F=T e+ VAB"—@A%AB"“=O ,
(82) Br=0s Bry Yy Br_,2 ™10, (D6)

(&) = g g st R =0

The conversion laws (3.7) read
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‘9’“7/1 __fCDAQc € Bu__eABu scP*RC Dur+ k'(g.///) Fukl g
T 11)! DEM)s I L Hee |, (D7)
9}?,43}‘:—-7}3—%(3-//)2%mlk(ﬁAkl~~AkP2AAB*%($-//)iMmkk(ﬁ"x,-—-AkPi}\AB
The contracted Bianchi identities (3.9) read
DB r=—(81) 0P F—e # [(B2)PPRE DM—k‘(wnz MEE o
+Tki—mgk(%/z)z“z”'""¢§A2...Lk+c.c. , (D8)

Dy(82)," = —(E1), = (B)5" A Ly s %( T LN TV

APPENDIX E: SU(2)-COVARIANT DIFFERENTIAL OPERATORS AND DECOMPOSITION
OF THE COVARIANT EXTERIOR DERIVATIVE

In the present paper we deal with SL(2, C)-spinor-valued differential forms on sg)acetlme Generally, we may consider
SL(2, C)-spinor-valued spacetime tensor fields and tensor densities. Let 7 io(7 v - ”") be a spacetime tensor density
of weight  with values in a spinor space. We define the following SL(2, C)-covariant denvatlve

Spy oy Spy Spy s B Ap, o p .. Apy o n Sa---p
— A 1 k 3 BrA 1 k Hy k
'@kg vy, =0,7 Vi, —-ry’,;ﬁ" Vi, +pP A4 | Y Voo, +p Ad r Bkj Vi, +vY T v

3

+...

P Sp,cca Spycccpy Spyc g
+v kah‘?-v]-”vt —}/Bleyﬁ.!.vL e ‘yﬁvlk'/a_vl .]‘.ﬁ . (E1)

where 7€, are components of the Riemannian connection on M. In particular, if 4% is a spinor-valued k-form on M
given by (A6) then

1
DA2=HQVOAZVI...dex”°/\ coe AdxE (E2)
For the dual representation (A7) we obtain

DA*=— k,‘/— DA%, AN Nax) (E3)

. . . . . -2
In the (3 4 1) picture we work with the tilde-overbar components of geometric objects. The quantities T’n#‘l' .- and

~ ~3@. -0
DrF 1:1“-1- .T,”k can be computed by means of formulas (6.10) and (A12). The tilde-overbar components of the covariant
derivative can be also computed from (E1) directly if we take the formal tilde-overbar expression of the right-hand side
of this relation. The corresponding formulas for 9; and 7 €, have been presented in Ref. 35 [, are defined by (6.12a)].

Now we discuss SU(2)-covariant geometric objects on the initial (spacelike) surface o. Let Fi=(5 ,:f . ;Lsk) be a spa-

tial tensor density of weight » with values in an SU(2)-spinor space. We define the o-tangential covariant derivaitve of
G2

3 A Zsy s A Zs s _ A Zs s S Bana oA s s BapAd ohn Sk
L RV VAL S RS UL R S
. . 35, S,
5 53 53500 1Sk _ . _pe g%
+7 1@.7,1, -r, + +7’ qpy _?’ rlpy oo -y ,pr,l...q . (E4)

Here 7'y, =7/73’7 are components of the Riemannian connection on o induced by the connection Y€, on M, of: 4 Bp are the
components of an su(2)-valued connection one-form on o.

Remark. As it was mentioned in Appendix B, for SU(2)-spinors the matrices 8 and 842 realize an isomorphism be-
tween dotted and undotted spinor spaces. We maintain, however, the formal dxstlnctlon between these spaces in order to
have formulas manifestly corresponding to the four-dimensional picture.

In order to define a o-normal SU(2)-covariant derivative, we need connection coefficients for the 9, operator. It has
been shown recently in Ref. 38 that for SU(2)-spinor indices we may take anti-Hermitian matrices afr 4 1 and for spatial
indices appropriate connection coefficients are the following objects o°, =N ~!-3,N*. We define
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3 A Zs sy /\Esl C S A Zs s S Band oS Bap 4 o Aspcs
DoF L =00, 0P, T pRp B A 5 R p® BapA g
1 1 1 L 1 AAd BL 1 v
s A AES cetp A Zs oS AZs -8
+01p.7,l... L +a T o, —op,l.?p.l..,Lk—-"—op,LY,lf..pk. (ES)

The differential operators (E4) and (E5) are covariant with respect to local (x°x°)-dependent SU(2) rotations of triads
!5 48 o the initial surface o and are consistent with the transformations (6.11).
Remark. The connection coefficients o’y can be obtained by the following construction. For the nonholonomic basis
(6.12b), we define the object of anholonomity
d(dx )=S0 pdx P Ndx " . (E6)

We get 0°5=3,InN, o"g=N""-3.N’, o _—O We see that 0’y =
For an SU(2)-spinor-valued k form ¢ $=ono

tal ~
=]

$*= ¢s1 TAC - Adx , (E7)
the SU(2)-covariant exterior derivative is given by

3D$2=7(1—!3950$231...Skdx“°/\ e Adx™ (E8)
Formulas (6.18) and (6.20) enable us to perform the (3 + 1) decomposition of the covariant exterior derivative. We get

||(DA2)A=.3D“2 z+p2AABﬁf~ A0\ ”2 A‘*‘PEA,aélhlf /ié A ”2 A (E9)

ADAD= AR, A e N R A A AN, PR 383D, A B A, A, A

—p* BITA AL AN 2dInN A, A (E10)

For the Hodge-dual representation of a form 4 (A7) the first term in formula (E10) is replaced by
Vgt
(3—k)!

Making use of the above formulas and taking into account that the anticommutator of two ‘H (2) matrices is an “H(2)
matrix, and the anticommutator of an ‘H(2) matrix and an “H (2) matrix is an ‘H (2) matrix, we get the (3 + 1) decom-
position of the torsion two-form ©4%= De 48

Zlsy -

CDod N By (@X A s Ndx ) (E11)

dN AB__hh 4 tACB , h{\B tAAD tNAB__3pytp AB
19 =i Ng=+ %, Aye s, @ ="Djeg*”,

. (E12)
féAB:il’f AC (e CB FB tAAD —3d1nN , tlé ABZSQOté\ABdes_ZﬁfACU(%B;'
It follows from (E12) that the two-form | g 5 4B 5 torsion of the connection ﬁf 4p on 0. Analogously we have
‘IﬁA g FA dx + C ”F B_LF B FAC , TﬁAB=3=@0hfABdes—:;foAB—ff‘AB’sdlnN ’
N (E13)
oA 304 A ™4
ﬁﬂ B=QB+||F C/\”F B » ”Q B—D“F B -
Here
3QAB=3dﬁ’r\ AB+ﬁf~ Ac/\ﬁf cB ) (E14)
is the curvature two-form of the connection f’,f‘ 4, on o and
37 T g, =0T 45, —3,°T 45, +°T 4, T Cp —T 42T €5, — 9T 45,0, InN — T 4, N~ 1-3,N" . (E15)

Remark. We note that ﬁf“ and ff“ are SU(2)-spinor-valued differential forms on o. They obey tensor transformation
rules with respect to the action of the group SU(2) (Ref. 8).
The (3 + 1) decomposition of SL(2, C)-covariant Lie derivative

If a connection £ on spacetime satisfies the condition *£ 45 =0 and if Z°=2Z%x) [cf. (7.4) and (7.5)], then for a
spinor-valued k-form 4% (A6) we have
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(L 2AX ='Z 3D A2 +}.L 7 A%, (E16)
(L2 AR =12 3D A3 43 L 7 A2+ (DG Z+Z 1A N, A2+ (32'Z) 1) 4> . (E17)
For the component description of 4> (E16) reads
é—jzﬁ zsl ...Sk.-:lZ‘z-@O;i 251 ...sk+2-$2A Esl s o
(E16')

A3 A Slss--- A 31§,

gfzd Lsy s4_k=12_290d ) S4_k+éfz-9{ S37 " S4_k
In these formulas 2@0 is the covariant “time” derivative (E5) computed with respect to the background connection
¢ 45, instead of the dynamical one °T" 4p,. 23 2 denotes the covariant Lie derivative on particular slices (with respect to
the background connection 3¢) taken in the direction of o-tangential part of the vector field Z.

APPENDIX F: THE GRAVITATIONAL CONSTRAINTS IN THE SU(2)-COVARIANT FORM
_— — A A N A A 2~ ol
e\ =F+L—2% Cbu'Q P +3D AU 2% Aéls' "T ABsaﬁ))

25 S 1 o 1s;- 1 A LSyt sy _
- [W’c"“-R “bist 777z K PR, g e | =0, (F1)

USkL = N
F lsl"'5k+(k_1)! b

(B =D U5, =222 T C 0

)CB
J"Ve\ABr %@Cb“'é Cb"_*—'@ chs'ﬁ “brs + 7:_!7;/2“1 . “Skﬁz’sl oyt (k 11)! iilsz sk$zmz TSk
+c.c =0, (F2)
(gz)AABingm_'_@ ABL+3c@s'@ ABis__hf CAs.@ CBls’f‘hf\BCs-@ Ac1s=0 , (F3)
(g.///)/\;sz“'-‘k=ﬁz“z”'Sk+3gr7’/‘/~zi’sz'"Sk_%‘/-Al’sz""k,hfw AB,pAzAB_y’/f/Al’Sz"'sk.hf ABYPAEAB=0 ) (F4)

Addendum. 1In their recent paper,®® Blagojevi¢ and Nikoli¢ discussed the Hamiltonian dynamics of the theories of
gravity with Lagrangians quadratic in curvature and torsion. They have found several canonical constraints for particu-
lar Lagrangians and investigated the time maintenance of these constraints. We would like to note, however, that the
complete treatment of particular theories requires a much more complicated analysis than that presented in Ref. 65. Re-
cently, one of us has solved the problem for the Yang theory®® giving its complete set of canonical constraints, dynamical
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