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Charged spinning fluids with magnetic dipole moment
in the Einstein-Cartan theory
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A classical perfect charged spinning fluid with magnetic dipole moment in the Einstein-Cartan
theory is described by using an Eulerian Lagrangian formalism. The field equations and equations
of motion so obtained generalize those proposed by Ray and Smalley. We also clarify some open
questions which appear in the works of Ray and Smalley and of de Ritis et al.

I. INTRODUCTION

At present, classical spinning fluids are often used as a
simple model of media with internal degrees of freedom.
The pioneer work of Halbwachs, ' which describes perfect
neutral spinning fluids in special relativity, has been ex-
tended to more complete theories like general relativity
(GR) and Einstein-Cartan theory (EC theory). In the
latter context, spin acquires a fundamental status, since it
is dynamically coupled to geometry.

In a previous work we have presented Lagrangian
treatment of charged spinning fluids with magnetic dipole
moment in GR, which generalizes the work of Ray and
Smalley on neutral spinning fluids.

In this paper we consider the fluid treated in Ref. 6 in
the framework of the EC theory. The spin-torsion in-
teraction is introduced by using a minimal-coupling pro-
cedure. In the limit of vanishing electromagnetic (EM)
fields we obtain the same energy-momentum tensor pro-
posed by Ray and Smalley. It is possible, however, to ex-
tend their results, by writing the complete differential sys-
tem for the fluid. This complete system of equations al-
lows us to perform a critical analysis on some topics treat-
ed by Ray @nd Smalley and by de Ritis et al. We clari-
fy the dependence on spin of the proper internal energy
and its relation to the Lagrangian treatment. The origin
of the Mathisson force which appears in the generalized
Euler equation is also clarified.

In Sec. II we present a brief review of the EC theory.
In Sec. III we introduce the Lagrangian which describes
the charged spinning fluid. Section IV analyzes with
some detail the spin-torsion coupling induced by that La-
grangian. In Sec. V we obtain some of the alternative
forms of the energy-momentum tensor and give the expli-
cit form of the conservation laws. Section VI is devoted
to point out some consequences of the Euler equation de-
duced in Sec. V.

II. THE EINSTEIN-CARTAN THEORY

The general theory of relativity is constructed in a
Riemannian space-time. The arena of physics in the EC
theory is the more general Riemann-Cartan manifold U4

where the connection is asymmetric and its antisymmetric
part

kI I;)——S; (2.1)

is the torsion tensor related to the spin by the U4 field
equations. The derivation of the equations which will be
listed in this section can be found in the review of Hehl
et al.

The metric condition

V gJk=O

requires that the connection in U4 be written as

iI jk= Jk
.—+zk' (2.2)

where

(2.3)

with respect to the metric, the torsion, and the other fields
which can appear in the source Lagrangian I.. We define
k =8~G, where G is the gravitation constant (we use
c =1). L is usually constructed by using a minimal-
coupling procedure which consists in substituting the
Riemannian covariant derivative of GR by the U4 covari-

is the contortion tensor. Thus KJ"
ICJ "(S~~",gI——~ ),

which is important in obtaining the field equations by a
variational principle.

The Riemann curvature tensor is

IR jk ——28);I .
)k +2I I;

~

I
( J)k

and the Einstein tensor is

k
Glj kij 2 gijR

where the curvature scalar is defined as

R =Rki Ik

The field equations in the EC theory are obtained by
varying the action
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Gij q+ ( Tijk Tjki+ Tkij )
—k ij

k (2.4)

ant derivative, constructed with the connection (2.2). This
procedure can be broken in some cases, if we intend to
maintain some fundamental principles, as gauge invari-
ance of Maxwell or Yang-Mills fields and mass conserva-
tion of classical fluids. So we will define a Maxwell ten-
sor in the usual way, i.e.,

FJ ——8;Aj —BjA;,
where 3; is the electromagnetic vector potential.

Variation of the total action with respect to g,J gives

k
iJ (ij] (2.13)

We assume the conservation of charge and mass for the
spinning fiuid, which implies that (charge density)/
(mass density) must be constant along the stream lines. It
is also assumed that it is not submitted to any dissipative
process. Thus we write the charge density current as

In Sec. III we introduce a Lagrangian describing the
charged spinning fluid with magnetic dipole moment in a
U4 theory.

III. THE CHARGED SPINNING FLUID

where J'=ePQ' . (3.1)
2 M.

v' —g 6g;,

is the dynamical energy-momentum tensor,

T,J S,J +25), S))k k k

(2.5)

(2.6)

Here u is the four-velocity of a fluid particle, p is the
mass density of the fluid, and ep is its charge density,
with e a constant with diinension of (charge)/(mass).

The magnetic dipole density is

is the modified torsion tensor, and the star derivative is

V; —=V;+2S;

M'J =XpS'J,

where

(3.2)

Tij k k~~ijk (2.8)

where

Variation of the total action with respect to torsion
gives, after using (2.3), the algebraic relation

g' =jt (x)(a "a asia—'j) (3.3)

is the spin tensor of a fluid particle and X is another con-
stant. a", p = 1,2, 3,4, are components of an orthonormal
tetradic field which is used to dynamically describe the
spin. ' We identify

(2.9)

is the canonical spin tensor.
By using (2.8), we can write the field equation (2.4) as

a4'= u',
which is sufficient to assure that the constraint

S'JQ =0J

(3.4)

(3.5)

G'J =km'J,

where

+ij ~ij+p (~~V'k ~~jki+~~kij)
k

(2.10)

(2.1 1)

is satisfied.
The angular velocity'

(3.6)

is the canonical (asymmetric) energy-momentum tensor.
It can be proved that X'J and ~ 'J satisfy the conserva-

tion laws

(2.12)

and

implies that the spin kinetic energy density is written as

T, = —,
'
pcs;JS'j=pLa "a; . (3.7)

The overdot is the proper-time U4 covariant derivative,
a "'=u JV.a"'.J

The U4 generalization of the Lagrangian found in Ref.
6 is

L/v' —g =F+J'3;+ ~M'jFj —T, —4FjF'j+Ai(u;u'+I)+A (p 2).u;+A+;u'+A@';u'+A. "( aa—1)

+A, (a 'a; —1)+2k, ' a "a; +2k. ' a "u;+2i(. a 'u; . (3.8)

In expression (3.8),

F=p(1+e)— (3.9)

is the proper mass-energy density of the fluid. The A.

terms are necessary to impose the conservation of the
orthonormality of the tetradic field a"', the constraint
(3.4) and the mass, the entropy S and the particle identity
X (Ref. 2). For vanishing EM field, (3.8) is the same La-
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grangian as the one proposed by Ray and Smalley. The
independent variables we have to take in account in the
variation of the total action are g;J, S;J",p, S, X, u', a ",
a ', and the Lagrange multipliers P.

In what follows we will consider some consequences of
choosing (3.8) as the source Lagrangian for the U4
geometry. A,

' =E=O, (4.8a)

We observe that a p term does not appear in (4.5) and
(4.6) since it was eliminated, with the aid of the continuity
equation (4.4).

By contracting (4.6) and (4.7) with a", a ', and u;, we
obtain the explicit form of the Lagrange multipliers

IV. SPIN AND TORSION A,
'4= (—u'P;, +pu, )a",

2
(4.8b)

From (2.9) and (3.8) we see that the canonical spin ten-
sor is

= ——(u'P; +pu~)a",
2

(4.8c)

~~ijk & grJ k—2P (4.1) T, ——,P;Is11 22 & & tl (4.8d)

which has a Weyssenhoff convective form. The con-
'

straint (3.5) implies that

Also, (2.6) and (2.8) give

We can substitute (4.8) in (4.5) and (4.6) to obtain

pKa, '. = (T, +—, P„,S ')—a,'+pKB;Ia"

and

pICa; =+(T,—, PkIS ')a +—pKB;Ia ',

(4.9)

(4.10)

(4 3) where

and as the torsion is also trace-free, the star-derivative
V' =V, which simplies the field equations.

We note that the Lagrangian (3.8) could be used as the
source of any gravitation theory constructed in a U4
space-time. In any of these theories Eq. (4.1) would be
valid. On the contrary, Eq. (4.3) is a specific feature of
the Einstein-Cartan theory, since it depends on the specif-
ic choice of v' —g R for the gravitational Lagrangian.

Variation of the action with respect to A, 2 gives the con-
tinuity equation

BE
Bg/ = ( uf u +5; ) XII — . + uf uI

BSj' (4.11)

We note that the spin is Fermi-Walker transported
along u' if we take Pa=0.

The variation of the action with respect to p and u'
gives, respectively.

From (4.9) to (4.10) we obtain the equation of motion
for the spin,

(4.12)

(pu').,; =0 . (4.4a)

However, from (2.2), (3.5), and (4.3) it is easy to see that
it can be written as and

8E/dp= T, /p F.S eA—;u'+A,—p;—u'
2

(4.13)

V;(pu') =0 (4.4b)

without loss of mass conservation, which could be associ-
ated with torsion.

We emphasize that the two forms of the continuity
equation, constructed with the Riemannian and the U4
connections, respectively, would in principle be in-

equivalent. It is interesting to note that if one imposes the
conservation of the form (4.4b) in place of (4.4a), by using
an alternative Lagrangian multiplier term in (3.8), the
simple convective form of the canonical spin tensor which
appears in (4.1) is lost.

The precession equations are obtained if we make a
variation with respect to a ', B = 1,2. They are

2A, ~u; —pk2; pKa 'JV; a +—13X,.+gp', . .

+A, a; +A, a; +epp; =0, (4.14)

2~ + T, +p2;u' —epA;u'=0 .
From (4.13) and (4.15) we see that

A, i ———( , M.F+pdF/Bp) . —

The Maxwell equation

F'J) ——J'+M'J.j

(4.15)

(4.16)

(4.17)

which is a potential representation of the four-velocity.
By contracting (4.14) with u', we get

P,a"—pyga, '+2X "a,'+21'2a'+2g "u =0 (4.5) is obtained when we perform a variation with respect to
Of course we could have written (4.17) with the U4-

covariant derivatives, but this would bring no new insight.
—ECP;Ia' +pea; +pea, '+2k, a; +2k' a; +2k, u; =0,

(4.6)
V. THE ENERGY-MOMENTUM TENSORS

AND THE CONSERVATION LAWS

where

P;I =p(XF;I —28e/BS") . (4.7)

To obtain the dynamical energy-momentum o' we have
to do a direct but long calculation. From (2.5), (3.8), and
(4.7)—(4.16) we arrive at



3102 RICARDO AMORIM 31

o' =pEu'u +(g' +u'u )P+V„[pu'S ' ]

+[(u "Pk(+u()u' P—' (]S "+at(M,

where

(5.1)

~
pu ~ S~~"

~ „,. = —&~ ( }' u JS"+ , —V()(ps'1), (5.11)

in a Riemannian space-time, which can be seen with the
aid of the usual Ricci calculus.

oEM P F I gg PImP

is the usual EM energy-momentum tensor,

(5.2)
VI. SOME COMMENTS ABOUT THE FIRST LAW

OF THERMODYNAMICS

E= 1+@ (X—I2)S F (5.3)

P=p 2 BE

Bp
(5.4)

is the pressure.
Expression (5.1) has the same form as the one previous-

ly determined in Ref. 6 in the context of a Riemannian
space-time.

From (2.11), (4.1), (4.11), and (4.12) we obtain for the
canonical energy-momentum tensor the expression

X'~ =o'1—V'„(u 'SJ'")+ —,pS 'J

=psu;u +(g'J+u'u~}P P',SI'—

Assuming the first law of thermodynamics as Ray and
Smalley,

«= T dS Pd (1/p)+——,co;~ds'~, (6.2)

we have

When we examine in more detail the Euler equation
(5.10) we note that by contracting it with u;, we obtain the
strong relation

BS,'
(6.1)

+(u "P//+pu/)u S' +cryM .

We note by (5.3) that

pE =(X'J—oPM}u;uj
—mij

matterui uj

(5.5)

(5.6}

E

BS'j CO

S,p

From (6.3) and (6.1) we have

u; VJ(pcs'S i)J=0,

(6.3)

(6.4)

and

pm'= —2'J,«„uj =p[Eu'+S"(ui Piku "Ip)]—(5.7)

which has no clear interpretation.
Also, assuming the first law as

can be interpreted as the covariant (matter) energy and
momentum densities. With (5.7) we can write (4.12) as

DS'j; 2=2m~'u j~+ —S~' Pj~' .
D~ p

(5.8)

The conservation law (2.13) is written as the identity

(5.9)—,'ps"=V„(w" )

which can be seen from (4.1) and (4.4). On the contrary
(2.12) gives the generalized Euler equation

l

p = —(g'f+u'u )V P+F' J +,M V Pkl
Dw

+ 2p jkl

+2S' "S.lP k —V' 2p SBS'
l

(5.10)

which can be seen from (2.12), (3.5), (4.4), (4.11), (4.12),
and (4.17). This Euler equation also appeared in Ref. 6
and has the correct limit if spin and torsion vanish. In
(5.10) the Riemann tensor term, which is called the Math-
isson force, seems to be a peculiarity of the EC theory, as
pointed out by de Ritis et al. However, we have proved
that it appears also in torsion-free theories. There, its ori-
gin is the identity

d e = T dS Pd ( 1 Ip ) + A—dE, (6.5)

as in the letter of de Ritis et a/. , it can be proved from
(4.4), (6.1), and (6.5) that

p= —pS 'S JVju; (6.6)

which seems to be a meaningless relation. In (6.6) S' is
the unit vector of the spin four-vector S'= q'J"'u Sk~.kl.

However, if we assume

BE'

BS'J (6.7)

i.e., if we suppress the spin term in (6.2) or (6.5), we do
not find these spurious features. We point out that the
Lagrangian dependence on the spin is complete in the
sense of containing all spin interaction terms and its prop-
er spin kinetic energy, so the energy density represented
by pe must be spin free, in order to avoid double varia-
tions. We note that in different treatments, interaction
terms can appear included in e but then they are explicitly
absent from the Lagrangian. ' Another spurious conse-
quence of (6.2) or (6.5) in this kind of Lagrangian formal-
ism is the loss of free Fermi-Walker transport of the spin,
which can be seen from (4.11) and (4.12). This law of
motion is usually prescribed by the theories consistent
with (3.5).' "
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VII. CONCLUSIONS

We have shown a complete and full consistent Lagrang-
ian treatment of perfect charged spinning fluids with
magnetic dipole moment in an Riemann-Cartan space-
time. The spinning fluid is the source of curvature, tor-
sion, and EM fields and the complete differential system
of the streain lines has been presented. The field equa-
tions and the equations of motion have the expected limit
when spin, EM interactions, or torsion vanish. We have
also clarified some questions about the dependence of the

proper energy density on spin and its relations to the La-

grangian formalism.
A characteristic feature of theories submitted to condi-

tion (3.5) is the presence of helicoidal solutions even in the
absence of interactions. These solutions are also found

here, which can be seen from the Euler equation (5.10).
In order to avoid these helicoidal motions, some au-

thors have used alternative spin constraints, " ' but not
in fluid media. An open question is to known if it is pos-
sible to extend these alternative spin constraints to spin-

ning fluids. Work on this question is in progress and will

be reported elsewhere.
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