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In Newtonian mechanics the energy of a particle is defined only up to an arbitrary additive con-
stant. By using affine functions to model the Newtonian energy we show that it is possible to refor-
mulate arbitrary time- and velocity-independent forces as R affine gauge potentials. Solutions of
Newton's second law then define R' affine energy geodesics, and the R ' flat gauge potentials are
shown to correspond to conservative Newtonian forces. We generalize these ideas to relativistic
mechanics by modeling the energy-momentum of classical particles as R affine four-vectors. If
this R affine structure is to be compatible with the O(1,3) Riemannian structure of spacetime, then
the R gauge potential must correspond to an antisymmetric tensor field on spacetime, and this field
is identified with the electromagnetic field tensor. We are eventually led to a reformulation of the
Einstein-Maxwell theory as a P(4)=O(1, 3)(&(R affine gauge theory in which the timelike affine
geodesics correspond to Lorentz-force-law trajectories, and the Einstein-Maxwell field equations are
reformulated as gauge field equations in terms of the P(4) curvature.

I. INTRODUCTION

A unified theory of gravitation and electromagnetism
based on the Poincare group P(4) =O(1,3)(XR is present-
ed in this paper. In the theory the subgroup R arises as
the gauge group for affine-vector fields that are used to
model the energy-momentum of classical charged parti-
cles on spacetime. The affine-vector model is introduced
in order to deal with a certain arbitrariness that is implicit
in the definition of the energy-momentum for classical
particles, and it may be considered as a generalization of
the situation in Newtonian mechanics where the total en-

ergy of a particle moving under the influence of a conser-
vative force' F is defined only up to an arbitrary additive
constant. In an inertial frame the total energy is
E= —,'mv + V and the potential energy function V, de-
fined by

P
V(p) = —f F.dl,

&0

clearly depends on the reference point po. Upon changing
the reference point from po to pi the potential V(p)
changes to V(p)+5V(po, p& ), where

Pl
5 V(po,pi ) = F dl= const . (1.2)

Ipp

The total energy of a particle defined relative to po and pi
also differs by the constant 5V(po, pi), and since any
point may be chosen as the reference point, the additive
constant is completely arbitrary.

A given conservative force thus does not define a
unique potential energy function, but rather it defines a
class of potential energy functions all differing one from
another by a constant. It is customary to ignore this fact,
mainly because it causes no problems with the law of con-
servation of energy, —,

'
mv + Vbeing constant with respect

to all reference points if it is constant with respect to one.
In this paper this arbitrariness in the definition of the

energy of a Newtonian particle is reexamined, developed,
and then generalized to relativistic mechanics. The fun-
damental idea in the Newtonian case is to incorporate the
arbitrary additive constant into the definition of the ener-

gy of a particle, and this will be done by modeling the en-
ergy as an affine function instead of a real-valued func-
tion. The generalization to relativistic mechanics leads to
an affine-vector model for the energy-momentum of a
particle, and when this affine-vector model is properly
formulated on the spacetime manifold we find that the
natural R gauge potential defined by the new affine de-
grees of freedom corresponds to a second-rank antisym-
metric tensor field which we identify with the electro-
magnetic field tensor. We are eventually led to a refor-
mulation of the Einstein-Maxwell theory as a P(4)
=O(1,3) (XR affine gauge theory in which the timelike
affine geodesics correspond to I.orentz-force-law trajec-
tories, and the Einstein-Maxwell field equations are refor-
mulated as gauge-field equations in terms of the P(4) cur-
vature.

In order to see how affine geometry may be used to
model an additive arbitrariness in a physical theory, we
begin in Sec. II by reformulating the definition of the en-
ergy of Newtonian particles in terms of affine functions.
An arbitrary time- and velocity-independent force
F=F'8; is interpreted as defining an R '-gauge potential
K.=F;dx', the R '-translational degree of freedom corre-
sponding to the additive arbitrariness in the definition of
the energy. After introducing the concept of R' affine
energy geodesics, we show that such curves are defined by
solutions of Newton's second law. The R ' curvature cor-
responding to the potential K is defined, and we show
that the flat (integrable) R'-gauge potentials correspond
to conservative Newtonian forces.

In Sec. III these ideas are generalized to relativistic
mechanics by modeling the energy-momentum of classical
charged particles as affine vectors on spacetime. We first
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consider covariant constant electromagnetic fields on
Minkowski spacetime and show that for such fields one
can define an integrable electromagnetic potential energy-
momentum affine-vector field q&' such that
m—:mu J+q8 is constant along a trajectory that is a solu-
tion of the Lorentz force law for charged particles. The
electromagnetic potential energy-momentum q&' is de-
fined only up to an additive constant four-vector because
it depends on a reference point in a manner analogous to
the dependence of the Newtonian potential on reference
point, and this leads to the affine-vector model for the
energy-momentum of classical charged particles.

In order to deal with more general fields we next intro-
duce an initially arbitrary R -gauge potential
K=K'JB;(3)dx~, the R -translational degrees of freedom
corresponding now to the additive arbitrariness in the
energy-momentum of a particle. After generalizing the
R'-affine energy geodesics introduced in Sec. II to R-
affine energy-momentum geodesics, we show that in a cer-
tain zero-translation gauge in which the linear part of the
energy-momentum is the kinetic energy-momentum per
unit mass pi = u J, the tensor field Kzdx'Igidx I must be an-
tisymmetric, and we identify this tensor field with the
electromagnetic field tensor. The timelike affine geo-
desics of type o are then solutions of the Lorentz force
law for charged particles with charge-to-mass ratio cr In.
order to identify this zero-translation gauge physically we
examine how charged particles are observed relative to un-
charged particles, and we show in Sec. IV that the zero-
translation gauge is canonically defined by uncharged par-
ticles. In the development the R curvature is introduced,
and the integrable R -gauge potentials are shown to
describe covariant constant electromagnetic fields on
spacetime.

The physical ideas presented in Secs. III and IV are
made rigorous in Secs. V—VII. In Sec. V an Einstein-
Maxwell spacetime is reinterpreted as an Einstein-
Maxwell affine spacetime, and charged particle trajec-
tories are then geometrized as affine geodesics. In Sec. VI
the Maxwell equations are geometrized in terms of the R
curvature, and the geometrization is completed in Sec. VII
where we show that the Einstein-Maxwell field equations
can be reformulated as geometrical equations in terms of
the P(4) curvature. A summary and conclusions are given
in Sec. VIII.

II. NEWTONIAN ENERGY AFFINE FUNCTIONS

Let a classical particle of mass m move along a curve
r(t) in an inertial frame under the influence of a conserva-
tive force F. Newton's second law of motion
(d/dt)(mv) =F leads to the energy equation

gy states that for any two points p &
and p2 along the tra-

jectory

( —,
'

mu + V)(pq) —( —,mu + V)(p~) =0, (2.3)

and it is customary to say that the total energy defined by

E= —,mU +V (2.4)

is thus a constant of the motion.
Note that the quantity —,'mu + V is used in two dif-

ferent ways in (2.3) and (24), since only its difference
occurs in (2.3) while it is used to define the quantity E in
(2.4). That is to say, while the law of conservation of en-
ergy only refers to the difference between total energies at
two points, Eq. (2.4) gives an independent existence to the
total energy at each point. This shows that any constant
can be added to the right-hand side of the definition (2.4)
without affecting the law of conservation of energy in the
form

E(p2) —E(p, ) =0, (2.5)

E(p)='E(p)eE~(p) .

The relative energy 'E(p) is defined by

'E(p) =&(E(p),E~(p)),

(2.6)

(2.7)

and it can be thought of as the linear (or vector) com-

ponent of E(p) with respect to the origin field E&(p).
To make these spaces physical we postulate the ex-

istence of a vacuum affine energy field V such that
V(p)CS'~ for each p. For the energy of a particle we
now write

E(p) = E(p)e V(p), p =r(t) .

Moreover, we assume

(2.8)

and this arbitrariness can be traced to the definition (1.1)
of the potential as discussed earlier.

We shall model this arbitrariness in the definition of
the energy at each point in space as follows. We assign to
each point p in Newtonian space a local energy space kz.
These local spaces are to have the property that the differ-
ence between two energies at any one point is well defined,
but no natural zero exists for each space so that individual
energies are known only up to an arbitrary additive con-
stant. Mathematically the 8'~ are one-dimensional affine

2spaces, the difference between two affine energies E& and
A A

E2 at p being given by the real number 5(E&,E2), where
5:8'~ X 8'~ ~R ' is the difference function. If an arbitrary
reference energy, say, E&(p), is selected at each point p,
then all other energies at p may be decomposed as

d
( —,mu ) —v F=O,

dt
(2.1) E(p)= —,mu —= T . (2.9)

d
( —,mu + V)=0.

dt
(2.2)

The integrated form of this law of conservation of ener-

and upon using the definition (1.1) for any reference point
Eq. (2.1) can be rewritten as

Thus V(p) will be chosen as the reference energy at each p
so that the physical zero of relative energy at p is assigned
to the vacuum.

Now since each local energy space 8'z has an indepen-
dent existence, an energy transport law must be specified
in order to correlate information gathered at different
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points, and this law must be a transport law between af-
fine spaces. For this transport law we take

DV= —F (2.10)

whether or not the force F is conservative.
In this affine formulation the R '-valued one-form

K= —F;dx' obtained from the force F=F'0; is interpret-
ed as an R '-gauge potential. The affine covariant deriva-
tive of the energy E=Te V of a particle along its trajec-
tory is

DE/Dt =dT/dt +DV/Dt,

and upon using (2.10) in (2.11) we obtain

DE/Dt =dT/dt Fz(d—xj/dt) .

(2.11)

(2.12)

These ideas suggest the following definitions.
Definition 2.1. A classical Newtonian particle is a pair

(m, r(t)), where m H [0, oo ) is the mass of the particle and
r(t) is a curve in R, the trajectory of the particle.

Definition 2.2. The energy of a classical Newtonian
particle is the one-dimensional affine vector
E = T(m, r(t) )e V(r(t)) defined along the trajectory of the
particle, where T(m, r( t) ) = —,m u .

Definition 2.3. The trajectory r(t) of a classical particle
(m, r(t)) is an R -affine energy geodesic if its affine ener-

gy is parallel along its trajectory, that is, if DE/Dt =0
along r(t).

From Eq. (2.12) and definition 2.3 we have that the tra-
jectory of a classical particle is an affine energy geodesic
1f

DE/Dt = ( —,mu ) —v.F=O .
dt

(2.13)

This result proves the following theorem.
Theorem 2.2'. The trajectory of a classical particle mov-

ing under the influence of a force F is an affine energy
geodesic of the R '-gauge potential K= F~dx'—

Note that this theorem does not require the force F to
be conservative.

Return now to the energy transport law (2.10). This
law can be used to consistently transport an arbitrarily
chosen zero of energy at p to a neighborhood of p if and
only if the loop integral f F dl vanishes for all loops at

p. An application of Stokes's theorem shows that this re-
quires V&&F=O, which is of course the usual condition
for a conservative force. In the affine theory this condi-
tion arises in a different but equivalent way as follows.

Since the group R ' is commutative, the curvature of
the R '-gauge potential K= —F;dx' is the R '-valued
two-form

N)Jdx ' 5, dx = —B~&Fj]dx A dx

The R '-gauge curvature is flat (i.e., integrable in the sense
described above) if and only if @=0. This implies

B~;Fj]——0, which is equivalent to VXF=O. We have
proved the following theorem.

Theorem 2.2. The R '-affine gauge potential
K= —FJdxJ defined by a time- and velocity-independent
force F=FJBJ is integrable if and only if F is conserva-
tive.

The above results are of course mainly a reformulation
of standard Newtonian concepts. However, they show
that a consistent reformulation of Newtonian forces as
R -affine energy potentials is possible. Moreover, in the
reformulation the Newtonian energy equation (2.1) occurs
as the equation of an affine energy geodesic.

Theorem 2.1 shows that solutions of F=m a for time-
and velocity-independent forces are affine energy geo-
desics. Time-dependent forces will be dealt with implicit-
ly in the next section on relativistic mechanics, but here
we wish to briefly consider if there are solutions of
F=ma for velocity-dependent forces that are also affine
energy geodesics. At least one special case is clear, name-
ly, F& ——v&B for some vector field B. In this case
v.F& ——0 and if ma=F&+F2 with F2 conservative, then
solutions of this equation will also be energy geodesics of
the R' potential defined by F2 alone. However, it does
not seem possible to use v t& B to define an R ' gauge po-
tential. In fact, since such forces "do no work" and thus
do not contribute to the energy they should not fit into the
R' formalism. However, one might speculate that the
three-momentum p =m v could be treated as an affine
vector, and then the force v XB could be used to define an
R -gauge potential. This can be done, but we prefer to
treat this aspect of the problem relativistically in the next
section.

One further remark is in order. Above we have tacitly
assumed that all classical particles couple to the given
Newtonian field, and it was this assumption that led to
the postulate of a vacuum affine energy field V. As we
shall see in Sec. IV, if certain particles do not couple to a
given field, then these "uncharged" particles may be used
to define the reference energy field.

III. RELATIVISTIC ENERGY-MOMENTUM
AFFINE VECTORS

In relativistic mechanics the separate Newtonian con-
cept of energy and three-momentum of a particie are not
Lorentz invariant, and they must be replaced by the
Lorentz-invariant energy-momentum four-vector. In this
section we generalize the above reformulation of Newtoni-
an energy as an affine function to relativistic mechanics
by modeling the energy-momentum of classical particles
as affine four-vectors. Rather than considering general
forces we will initially consider only the classical elec-
tromagnetic interaction, and in order to see how an
affine-vector model can arise for the energy-momentum
of a classical charged particle we first consider static, uni-
form electromagnetic fields in Minkowski spacetime M.

The equations of motion of a classical charged particle
of mass m and charge q in flat spacetime are

(mu ) =qI' k(dx "/ds) .
ds

(3.1)

Here s is the proper time, u J=dxjlds is the four-velocity
of the particle, and the F k are the components of the
electromagnetic field tensor in global Lorentzian coordi-
nates.

When the electromagnetic field is static and uniform
8;F/k =0, and using this fact, Eq. (3.1) can be rewritten as
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(mu J qF—J,x")=0 .
ds

(3.2)

We can conclude from this equation that when the elec-
tromagnetic field is covariant constant in flat spacetime
the quantity

momenta in H~ can be decomposed as

& (p) = ' &.(p)6&i(p) . (3.7)

The four-vector 'w is the linear component of ~ with
respect to the origin field &~, and it is defined by

~~= mu J—qFJkx k (3.3)
' &(p) =5[&.(p), &.~(p)] . (3.&)

This definition is a relativistic analog of the Newtonian
definition (1.1) and S, like the Newtonian potential, clear-
ly depends on the reference point po. Upon changing the
reference point from po to p~ the potential &' changes
from 8J to $+58J(po,p& ) where

k58 (p„p, ) = Fj„dx
Po

=Fjk[x (p, ) —x "(po)]=const . (3.5)

Thus a covariant constant electromagnetic field on
Minkowski spacetime does not define a unique potential
energy-momentum four-vector, but rather a class of four-
vectors each differing one from another by a constant
four-vector. As a result the total energy-momentum (3.3)
of a charged particle in such a field is also only known up
to an additive constant four-vector. Any constant four-
vector may thus be added to the right-hand side of the
definition (3.3) without affecting the law of conservation
of energy-momentum in the form

is constant along the trajectory of the charged particle.
We may thus call ~~ the total energy-momentum of the
particle It. is the sum of the kinetic energy mom-entum

p J=mu J and the electromagnetic potential energy-
momentum q&'= —qEJkx . Thus a charged particle in a
covariant constant electromagnetic field in Minkowski
spacetime will move along a world line so as to keep the
sum of its kinetic and potential energy-momenta constant.

The electromagnetic potential energy-momentum four-
vector 8' can be defined for a given covariant constant
electromagnetic field by

S(p) = —J F~kdx"
Po

= —F'k[x "(p)—x "(po)] . (3.4)

We will assume this affine structure for the local
energy-momentum spaces H& whether or not the elec-
tromagnetic field is covariant constant. More generally,
we shall temporarily drop specific reference to elec-
tromagnetic fields and consider instead a general affine
transport law between the affine spaces II&. On flat Min-
kowski spacetime M such a transport law is specified by
an affine covariant derivative

D8J=o t Kjkdx (3.9)

DX/= [ Kjkdx "j . (3.10)

The type (l, l) tensor fields KJk and KJk are related by

&'k ='&'k+ ~kt'

where ot= X=5(X,8). Thus

X(p) =ot(p)e8(p) for each p HM .

(3.11)

(3.12)

Equation (3.11) is the affine transformation law for the
R -connection coefficients when the reference gauge is
changed from 8 to X as in (3.12).

Finally, suppose m is an affine-vector field on space-
time, and let us take 0 as origin field. Thus

&J(p) = ~~(p)e 8 J(p) for each p eM .

Then the affine covariant derivative of S.~ is

(3.13)

In this equation D denotes the affine covariant deriva-
tive operator, o is a coupling constant, and the type (1,1)
tensor K~kB (3dx is the tensorial component of the R
connection K in the translation gauge 8. As con-
nection coefficients the K are thought of as four-vec-
tor-valued one-forms, but each K is a type (1,1) tensor
field on spacetime. If we choose X as origin field instead
of 8 then we have

m-'(p, ) ~'(p, ) =0 . — (3.6) '=8k( ')+Dk8' . (3.14)

The arbitrariness in the definition (3.3) of the total
energy-momentum of a classical charged particle is clear-
ly analogous to the arbitrariness in the definition of the
Newtonian total energy, and an obvious analog of the lo-
cal energy affine spaces 8'& is suggested. We assign to
each event p in spacetime a local energy-momentum space

2Hz. Each space H& is a four-dimensional affine space
whose elements are energy-momentum affine vectors S..
No absolute zero exists in an affine space so that individu-
al energy-momenta in H& are known only up to an addi-
tive four-vector at each event p. The difference between
two affine energy-momenta ~& and m.2 at p is the
four-vector 5(&.&, &2), where 5:II~ X 11~~TzM is the
difference function.

If a reference energy-momentum affine-vector field &~
is chosen arbitrarily, then at each p HM all other energy-

Using (3.9) in this equation yields the formula

(3.15)

The affine covariant derivative of m J along a curve
[x"(s)] is thus

Drr /Ds =d( ~J)/ds+o ( Kjk(dx /ds)] . (3.16)

In order to make the local energy-momentum affine
spaces physical we introduce the following postulate.

Postulate 1. There exists a reference energy-momentum
gauge P such that ~n. =5(&.,P) =u for each classical parti-
cle with energy-momentum ~ and four-velocity u.

We shall refer to the gauge P singled out by this postu-
late as the zero-translation gauge, since each particle's ki-
netic energy-momentum per unit mass is untranslated in
this gauge. The physical identification of such a gauge
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will be discussed in the next section. We have used the ki-
netic energy-momentum per unit mass in the postulate
rather than m u in order to incorporate into the structure
of the theory (cf. Sec. IV) the fact that all classical
charged particles with the same charge-to-mass ratio fol-
low identical trajectories in spacetime.

Consider now a particle with timelike world line x~(s)
and affine energy-momentum &(s) defined along xj(s).
The affine covariant derivative of &(s) along x J(s) is by
(3.16) and postulate 1,

D&J/Ds =d (u~)/ds +o [~K k(dx "/ds)] . (3.17)

This equation may be compared with the Newtonian
equation (2.12), and proceeding as in Sec. II we introduce
the following definitions.

Definition 3.1. A classical particle is a triple
(m, cr, xJ(s)), where m E [0, oo ) is the mass of the particle,
a. H( —oo, oo) is the affine charge of the particle, and
x J(s) is a future-pointing timelike ( m & 0) or null ( m =0)
world line in spacetime.

Definition 3.2. The energy-momentum of a classical
particle is the affine four-vector & =us@ defined along
the particle's world line, where u is the instantaneous
four-velocity of the particle.

Definition 3.3. The world line of a classical particle is
an R -affine energy-momentum geodesic if the energy-
momentum of the particle is affine parallel along its
world line, that is, if DS./Ds =0 along x~(s).

From Eq. (3.17) and definition 3.3 we have that the
world line of a classical particle is an energy-momentum
affine geodesic if

du J/ds +cr(~KJku") =0 . (3.18)

Up to this point we have not had to place any restric-
4tions on the R -affine connection K. However, if Eq.

(3.18) is to be compatible with the Riemannian structure
of spacetime, then the identity uj(du J/ds) =0 satisfied by
the unit tangent vector to a curve and Eq. (3.18) imply

PE kudzu"=0 .Jk

This equation will hold for arbitrary unit tangent vectors
if and only if

PE(jk) ——0 .

The result is that postulate 1 and the affine geodesic
equation will be compatible with the Riemannian struc-
ture of spacetime if and only if the R -connection K is
antisymmetric in the zero-translation gauge, that is, if and
only if

+jk +[jk]

Since this compatibility should be required of a relativ-
istic theory, we introduce the following postulate.

Postulate 2. The R -connection K is antisymmetric in
the zero-translation gauge.

If we now identify ~Kjk with the negative of the elec-
tromagnetic field tensor —I'Jk, then the affine geodesic
equation (3.18) may be rewritten as

This equation is the Lorentz force law for a classical
charged particle with charge-to-mass ratio o..

To summarize, we have shown that postulates 1 and 2
require ~K to be an antisymmetric tensor field on space-
time, and if this tensor field is identified with the negative
of the electromagnetic field tensor, then the affine
energy-momentum geodesic equation is the Lorentz force
law for charged particles. Now while postulate 2 is a
mathematical compatibility condition, postulate 1 is a
physical statement and an operational definition of the
zero-translation gauge is needed in order for postulate 1 to
be meaningful. In the next section we describe a thought
experiment that shows that the usual concept of instan-
taneous rest frame for charged particles implies a local
definition of the zero of energy-momentum that may be
used to define the zero-translation gauge.

IV. THE ZERO- TRANSLATION GAUGE

Consider a freely falling laboratory that is free of elec-
tromagnetic fields and charges except for a charged test
particle at rest in the laboratory. We seek an operational
definition of the instantaneous rest frame (IRF) of the
charged particle for laboratory times greater than some
initial time so. As long as the laboratory is freely falling
in a region of spacetime in which there is no electromag-
netic field, then the laboratory itself can serve as the IRF
of the particle. Suppose that at si &so the laboratory
enters a region U of spacetime containing a nonzero elec-
tromagnetic field. Then for times s greater than si the
laboratory clearly can no longer serve as the IRF since the
charged particle will begin to accelerate at time s& and
hence will not be instantaneously at rest with respect to
the laboratory for s &s~.

Thus we need to define the IRF of the charged particle
for times s ~s&. As a representation of the IRF of the
charged particle at p EM we take an uncharged particle
that is unaccelerated and instantaneously comoving with
the charged particle at p. This representation of the IRF
can be realized as follows.

Let the charged particle enter U at pI at time s&. Then
knowing the Maxwell field tensor I'Jk in U and the initial
energy-momentum mu J(s i ) of the charged particle at p i,
we can integrate the Lorentz force law

(~o)t(s) =u~(s),

d„(pro)J(s) =0 .

(4.1)

(4.2)

Here the subscript 0 indicates zero charge, and d„m J(s)
denotes the directional derivative of ~J in the direction of
u at xj(s).

The second condition (4.2) distinguishes the charged
test particle from the IRF, since the charged particle
obeys the set of equations

k(mu~) =qFJku
dx

to find the trajectory x J(s) and u J(s) =dx~/ds.
Using this solution we define the IRF of the charged

particle by

du /ds —o.I ku =0. (3.19) i'(s) =u J(s), (4.3)
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d„m (s)=(q/m)FJku (s) . (4 4) Going next from a to b in the direction of v we obtain

At each s &si we have from (4.1) and (4.3) the differ-
ence equation

(0, ) (b) =(0,V(a)+d„(V(a)

=(V(p) +oFJk(p)u "+crFJk (a)uk .

n(s) —no(s) =O~Ixj(s) I, cr=qlm . Upon expanding Fjk(a) to first order we get
4.5

d„(O~V(s) =dgm J(s) d„(no—) (s) .

Using (4.2) and (4.4) in this equation we obtain

(4.6)

We interpret this equation as defining an instantaneous,
or local zero of energy-momentum for the charged particle
at each point xj(s) along its trajectory. Moreover, we
identify this field of local zeros of energy-momentum with
the zero-translation gauge P assumed in postulate l.

By analogy with Eq. (4.5) we define d„(0 V(s) to be the
difference between d„rrJ(s) and d„(~OV(s) at each point
xj(s}:

(0 V(b)= 0'(p)+ F' (p)u "+oF' (p)U"

+o(a;FJ„)(p)u'U" .

Going from p to b along C2 we obtain in an analogous
manner

(0 V(b)=(V(p)+ F' (p)U + F' (p)u

+ (a,Fi, )(p)U'u".

The difference 5(0,2) (b):= (Oz V(b) —(Oi ) (b) between
these two values at b is then

d„(0 V=oFJ„u". (4.7) 5(0ip)J=2oB(;F~k)u'U" . (4.9)

If we now insist that the result (4.7) be independent of
the freely falling laboratory then it must hold for all time-
like u J at each p. We assume that it is true for all vectors
u J at p and generalize (4.7) to

d(0 ) =oFJkdx" . (4.8}

Equation (4.8) is the differential transport law for the
local zero of energy-momentum for charged particles, de-
fined with respect to uncharged particles by Eq. (4.5).

Is this transport law integrable? That is to say, can this
law be used to extend the local zero 0 (p) away from p to
define a path-independent potential energy-momentum
field on a full neighborhood of p? To answer this ques-
tion we transport 0(p) along the two infinitesimal paths
C& ——pab and C2 ——pcb shown in Fig. 1 using the transport
law (4.8).

Along the first leg of Ci we obtain

(0& V(a) =(V(p) +d„(V(p)

=(V(p)+ oFJk(p)u

The transport law for the zero of energy-momentum for
charged particles will thus be integrable if and only if the
right-hand side of (4.9) vanishes for all possible vectors u
and v. Integrability is thus equivalent to (o =q/m&0)

N.k'= 28(jF'k] ——0 . (4.10)

If Njk'&0 the local zero of energy-momentum for
charged particles at p cannot be extended to any neighbor-
hood of p in a path-independent manner using the trans-
port law (4.8). This four-vector-valued two-form
@=@~k'd;sdxjhdx" is the R curvature of the R-
affine connection Fjk dj dx (cf. Sec. VI).

In the above discussion we have assumed that the an-
tisymmetric tensor Fjk was a Maxwell field tensor, but we
have not needed nor have we used the Maxwell equations
in the discussion. Let us for the moment simply view Fjk
as an antisymmetric tensor field and investigate what the
integrability condition (4.10) implies about the dynamical
behavior of F~k. Upon contracting Eq. (4.10) (set j=i)
and using the antisymmetry of Fjk we obtain

(4.1 1)

If we next lower the index i on Njk' and then antisym-
metrize over all three indices we obtain from (4.10)

Nt Jk ] 2a,jFk] 0 (4.12)

FIG. 1. Two infinitesimal paths, C& ——pab and C2 ——pcb,
from p to b.

The integrability condition (4.10) thus requires FJk to
satisfy (4.11) and (4.12), which are the source-free
Maxwell equations. Combining (4.10) and (4.12) one can
show that Fjk must in fact satisfy

8;FJk ——0 . (4.13)

In summary, if we use the law (4.8) to transport the lo-
cal definition of the zero of energy-momentum for
charged particles, with FJk an arbitrary antisymmetric
tensor field on spacetime, then the resulting field will be
path-independent if and only if Fzk is a covariant constant
Maxwell field.

When @Jk'&0 the transport law (4.8) will not be inte-
grable, whether or not the antisyinmetric tensor field FJk
satisfies the Maxwell equations. In the nonintegrable case
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we can ensure that Fjk satisfies the source-free Maxwell
equations by adopting Eqs. (4.11) and (4.12) as field equa-
tions without the stronger condition {4.13) that is implied
by (4.10). These equations will be made rigorous in Sec.
VI.

V. GEOMETRIZATION
OF CLASSICAL PARTICLE TRAJECTORIES

In the preceding sections of this paper we have
described the physical basis for an affine theory of the
classical interaction of charged particles with the elec-
tromagnetic field. In this and the next two sections we
put the theory on a firm mathematical foundation by for-
mulating the theory geometrically on the spacetime mani-
fold. The end result will be a P(4) gauge-field description
of Einstein-Maxwell dynamics.

In the remainder of this paper we denote an Einstein-
Maxwell spacetime by (M, g, F), with g the metric tensor
and F the Maxwell field tensor on the four-dimensional
manifold M. The geometry of an Einstein-Maxwell
spacetime is Riemannian and may be regarded as a theory
based on an O(1,3) connection. We shall reinterpret such
a spacetime as a P(4) =O(1,3)(&&R Poincare spacetime in
the following way.

A generalized affine connection on M can be specified
uniquely by a pair (I,'K), where I' is a Gl(4) linear con-
nection and 'K is a type (1,1) tensor field representing the
R part of the connection in the t translation gauge. Let
(M, I, 'K) denote an A(4)=G1{4) &&R -affine spacetime
based on the affine connection (I,'K).

Definition 5.1. For each Einstein-Maxwell spacetime
(M, g, F) define the associated P(4) Einstein Maxwell af-
fine spacetime to be (M, I jg —F), where [ jg denotes
the unique torsion-free linear connection based on g and
~K= —F= FjkBJdx —is the Maxwell field tensor in its
(1,1) tensor form.

In order to model geometrically the affine energy-
momentum geodesics introduced in Sec. III we need the
following generalization of a well-known concept in affine
differential geometry.

Definition 5.2. For each curve x~(s) on M and each real
number cr&0 define the cr-tangent affine-vector u~ by
u J=dx J/dseP~. For cr =0 define the zero-tangent affine
vector to be the usual linear tangent vector to the curve.
When xj(s) is timelike the parameter s is to be chosen as
the Riemannian arc length.

The affine-vector field P in this definition is the zero-
translation gauge affine field introduced in Secs. III and
IV.

From all possible curves on M we single out those that
generalize the concept of linear geodesic.

Definition 5.3. A curve xj(s) on M is a (generalized) af-
fine geodesic of type o. if its o.-tangent affine vector is
parallel along x~(s). Thus u J satisfies the equation
D„u ~=0, where uj=dxJ/ds and D„denotes the affine
covariant derivative operator in the direction of u.

The expanded form of the affine geodesic equation
D„u J=O can be obtained from Eq. (3.18) by replacing
du J/ds by the linear covariant directional derivative V„u,
so that

D„u ~=V„u~+o(~K. Jku ) =0 . (5.1)

From this equation and the identification K= —F in an
Einstein-Maxwell affine spacetime we may infer the fol-
lowing theorem.

Theorem 5.1. A timelike affine geodesic of type cT+0
in an Einstein-Maxwell affine spacetime is the trajectory
of a classical charged particle that obeys the Lorentz force
law with charge-to-mass ratio o.. A timelike or null affine
geodesic of type o =0 is the trajectory of a free uncharged
particle.

A special feature of the affine theory is that it allows us
to incorporate into the formalism the empirical fact that
massless particles in nature are always uncharged. If m
denotes the mass of a particle, then the particle's electric
charge q can be defined by q =m o, thus guaranteeing the
empirical law that m =0 ~q =0.

V[&Fjk] —0

Vj F~k ——0 .

(6.1)

(6.2)

In the last section we associated with each Einstein-
Maxwell spacetime ( M, g, F) an affine spacetime
(M, I js, —F) in which the Maxwell field tensor F plays
the geometrical role of minus one times the R connection
K in the zero-translation gauge. To complete the
geometrization of the electromagnetic field we show in
this section that the Maxwell equations (6.1) and (6.2} can
be reformulated as geometrical equations in terms of the
R curvature. We postpone until the next section con-
sideration of the coupling of the electromagnetic and
gravitational fields through the Einstein equations.

Definition' 6.1. An affine connection ( I jg, eK) is an
electromagnetic affine connection if there exists an affine
gauge P such that ~K is antisymmetric and satisfies the
Maxwell equations (6.1) and (6.2).

A (generalized) affine connection ( I js, K) defines "
a (generalized) affine curvature (R, @), where R is the
Riemannian curvature tensor of I js, and @ is a rank-
three tensor field representing the R part of the curva-
ture in the 8 translation gauge. The field @ can be ex-
pressed in terms of (( jg, K) by [cf. Eq. (4.10)]

C'k'=VJ( K'k) —Vk( K' ) . (6.3)

Upon changing the origin field from 8 to X the fields
K and @ transform into K and @, respectively, ac-

cording to the rules

K~k ——K~k+ Vkt~, (6.4)

N) 'k +Rp I (6.5}

where at=5(X, H). Note that these equations contain
nonhomogeneous terms characteristic of the transforma-
tion laws for affine tensors.

Theorem 6.1. An affine connection (I js, K) is an
electromagnetic affine connection if and only if there ex-

VI. GEOMETRIZATION
OF THE MAXWELL EQUATIONS

In a source-free Einstein-Maxwell spacetime the
Maxwell field tensor F satisfies the field equations
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VII. GEOMETRIZATION
OF THE EINSTEIN-MAXWELL EQUATIONS

We now come to the problem of geometrizing the full
Einstein-Maxwell theory as a P(4) affine theory. We con-
sider first an Einstein-Maxwell spacetime ( M, g, F)
without sources. Then g and F are coupled together by
the Einstein-Maxwell field equations

Rp, Smk(F);Fk——' ,gjkFm„F—"—),

V( F)k)=0

(7.1)

(7.2)

ists a gauge P in which the following equations hold:

(a) ~K(jg, )
——0,

+(Jk }=0
(c) ~@

Proof. If ([ ]s, K) is an electromagnetic affine con-
nection then there exists a gauge P such that ~K= —F
where F is a Maxwell field tensor satisfying (6.1) and
(6.2). Thus (a) is satisfied. Moreover,

(VJF—k; VkF—J., ) from which we get
= —2V ~~Fk; j ——0. Contracting Njk' we obtain
=V'kF) k ——0.

Conversely, suppose there exists a gauge P in which (a),
(b), and (c) hold for an affine connection (( J~,~K).
Condition (a) requires IC&k to be an antisymmetric tensor
field. Then (b) and (c) together with the definition (6.3)
show that ~KJk satisfies the Maxwell equations (6.1) and
(6.2).

the affine geodesic represents the trajectory of a particle
with affine charge cr. Moreover, if m denotes the mass of
the particle, then the electric charge q of a particle is de-
fined by q =ma. so that m =0 =-q =0. %"hen o.=0 the
affine geodesic represents the trajectory of an uncharged
test particle.

%Shen matter and current sources are present in space-
time then the above equations must be modified. A
straightforward generalization is

Gjk =8~k[ KJ, ( Kk') ,Rp—,—( K~„)( K ")+&jk],
P+()k)

(7.8)

(7.9)

(7.10)

(7.11)

(7.12)

Equation (7.12) represents symbolically the equations
for the matter source fields which we denote collectively
by [8 j. In Eq. (7.8) Gjk is the Einstein tensor and Tjk is
the stress-energy tensor of the matter sources. The term
J~ in (7.11) represents the electric source current of the
matter.

Finally we show that the R -flat solutions of Eqs.
(7.4)—(7.7) correspond to the covariant constant Maxwell
fields that motivated the affine-vector model. If the R
curvature is integrable then ~@jk'——0, and Eqs. (7.6) and
(7.7) are satisfied. Then Eq. (6.3) together with (7.5) and
(7.6) show that V;(~KJk)=0, so that the Maxwell field
Fjk ———(~KJk) is covariant constant.

V) FJ =0. (7.3) VIII. DISCUSSION AND CONCLUSIONS

Rp, ——Smk [~K~;(~Kk') —,gjk(~K „)(~K—")],
PX()k) ——0,
P

i)kj
——0

Pq) k 0

(7.4)

(7.5)

(7.6)

(7.7}

Furthermore, we postulate that the trajectories of classical
test particles are the timelike and null geodesics of type o.,
a&R, of the P(4) affine connection. When cr is nonzero

In the Einstein-Maxwell theory only the metric tensor g
from which the Ricci tensor R~k is constructed is con-
sidered as a basic geometric quantity. The Maxwell field
tensor F is regarded as an auxiliary tensor field whose
energy-momentum tensor on the right-hand side of (7.1)
serves as the source of the geometric gravitational field.
Even in the "already unified theory" of Rainich, Misner,
and Wheeler' the Maxwell field tensor is relegated to the
role of the "Maxwell square root" of the Ricci tensor.

Using the results of the preceding sections it is now a
simple matter to reformulate the source-free Finstein-
Maxwell theory as a fully geometric P(4) affine theory.
We replace F in (7.1) by —( K), and replace the Maxwell
equations (7.2) and (7.3) with the geometric P(4) field
equations given in theorem 6.1. Thus the field equations
for an Einstein-Maxwell P(4) spacetime (M, [ )s,~K) in
the absence of electric sources are

In this paper we have shown how to reinterpret the
Riemannian geometry of an Einstein-Maxwell spacetime
as a P(4) affine spacetime The .reinterpretation can be
thought of as a completion of the geometrical unification
of gravitation and electromagnetism that is only partially
complete in the Einstein-Maxwell theory in which the
geometry is Riemannian and the electromagnetic field
plays only a secondary, nongeometrical role.

In the P(4) theory the Maxwell field tensor is identified
with the R part of the P(4) connection and is thus placed
on a geometrical level with the Riemannian linear connec-
tion. The resulting P(4) unification of gravitation and
electromagnetism led to a geometrization of the coupled
Einstein-Maxwell field equations in terms of the O(1,3}
and R parts of the P(4) curvature. Moreover, in the P(4)
theory the affine geodesics of type o. are the trajectories of
test particles with charge-to-mass ratio o. that obey the
Lorentz force law. The geometrical unification of gravi-
tation and electromagnetism presented in this paper thus
goes beyond the already unified field theory of Rainich,
Misner, and Wheeler' in which the Maxwell field tensor
is relegated to the role of the Maxwell square root of the
Ricci tensor. Moreover, since the P(4) theory presented
here is based on a P(4) connection it seems reasonable to
expect that a variational principle can be found that
would yield the geometrical Einstein-Maxwell affine field
equations presented in Sec. VII. It should be recalled that
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a satisfactory variational principle for the Rainich-
Misner-Wheeler theory has not yet been found.

The fundamental idea in the P(4) theory is to model the
energy-momentum of a classical particle as an affine vec-
tor of type o defined along the world line of the particle.
If m denotes the mass of the particle, then the particle's
electric charge q can be defined by q =mo. , thus guaran-
teeing the empirical law that m =0 =-q =0. The R
coupling parameter o thus can be identified with qlm
whenever m &0.

On the physical side the energy-momentum translation-
al freedom was related in Sec. III to the existence of an in-
tegrable electromagnetic potential energy-momentum in
flat-Minkowski spacetime when the Maxwell field tensor
is covariant constant. The covariant constant Maxwell
fields were shown in Sec. VII to be precisely the R -flat
solutions of the Einstein-Maxwell affine field equations
(7.4)—(7.7). In addition, the usual notion of an instantane-
ous rest frame of a charged particle was related in Sec. IV
to a local definition of the zero of energy-momentum.

The P(4) theory is in general agreement with the results
of Boisseau and Barrabes. ' Working within the Hamil-
tonian formalism they have shown that the only canonical
transformations that can also be considered as gauge
transformations lead to gauge fields that Boisseau and
Barrabes identify with the gravitational and electromag-
netic fields. The canonical transformations considered by
Boisseau and Barrabes involve a general coordinate

transformation together with a translation of the canoni-
cal energy-momentum; however, Boisseau and Barrabes
do not relate their work to P(4) affine geometry.

A number of questions about the P(4) theory presented
in this paper remain open. In the P(4) theory the Maxwell
field tensor enters the theory geometrically as the R"-
connection coefficients.

'

In this sense the P(4) theory is
parallel with the five-dimensional Kaluza-Klein theory'
in which the Maxwell field tensor appears as certain of
the components of the five-dimensional Riemannian
linear connection. Does there exist a fundamental rela-
tionship between the P(4) theory presented here and the
theory of Kaluza and Klein? A more important question
concerns the gauge invariance of the Einstein-Maxwell af-
fine field equations (7.4)—(7.7). In Secs. V—VII we have
fixed the gauge by introducing the zero-translation gauge
P, and Eqs. (7.4)—(7.7) are given in terms of this gauge.
The transformation laws (6.4) and (6.5) show that the
form of Eqs. (7.4), (7.5), and (7.7) are not gauge invariant.
It is remarkable, however, that Eq. (7.6) (the F=dA
equation) is gauge invariant. This follows from (6.5) and
the Riemannian curvature identity R~;JJ, ~

——0. Can Eqs.
(7.4)—(7.7) be generalized to a translationally covariant set
of equations without the need for the gauge-fixing condi-
tion? The answer to this question will be useful in search-
ing for a variational principle for the theory. We hope to
return to these and other related questions in future publi-
cations.

~Throughout this paper we will follow the convention that ten-
sorial quantities will be denoted by boldface letters, while af-
fine quantities wi11 also be denoted by boldface letters but
with carets (e.g. , u). The standard latin superscripts and sub-

scripts written to the right of the letter will be used to denote
the linear components of tensorial quantities. When an affine
quantity, say, u, is referred to coordinates it will need an ad-
ditional superscript to indicate the origin field to which it is
referred, and this superscript will be written to the left of the
letter. Thus ~uJ will denote the components of u when re-

ferred to an origin field P and a linear frame (ej ).
For an introduction to affine spaces see, for example, C. T. J.

Dodson and T. Poston, Tensor Geometry (Pitman, London,
1977).

For a general discussion of the differential geometry of general-
ized affine connections, see S. Kobayashi and K. Nomizu,
Foundations of Differential Geometry (Interscience, New
York, 1963), Vol. I; A. Lichnerowicz, Global Theory of Con
nections and IIo1onomy Groups, edited by M. Cole (Noordhoff
International, Leyden, 1976).

4The absolute derivative of an affine vector is a vector. This fol-
lows intuitively from noting that the very definition of the
derivative involves the limit of the difference of two affine
quantities, and the difference of two affine vectors is a ten-
sorial quantity.

5Definitions 2.1 and 3.1 are modeled after similar definitions in
R. K. Sachs and H. Wu, General Relativity for Mathemati
cians (Springer, New York, 1977).

The affine connection for an R gauge theory is a three-
vector-valued one-form B=BJkB~dx . Given a Newtonian
force v&&8 one may define BJk ———B'e;k. Then the affine
covariant derivative of an affine three-vector p J along a curve

xJ(t) is

Dp'/Dt=dpJ/dt+Bj (dx /dt)

=dp /dt —B'e;kJ(dx "/dt) .

Then Dp/Dt =0 ~dp/dt =vt&B.
7The vector potential AJ for a covariant constant Maxwell field

Fjk 8j A k 8k Aj in Minkowski spaceti me can be chosen as
AJ 2 FkJ x . The potential energy-momentum q &' may thus

be expressed as q9'=2qA j in this special case. Such a simple
relationship between the R potential and the vector potential
will not hold if FJk is not covariant constant (cf. Sec. V).

8The instantaneous rest frame used here is roughly equivalent to
the "instantaneous observer" in R. K. Sachs and H. Wu, Gen-
eral Relativity for Mathematicians (Ref. 5) and to the "comov-
ing inertial frame" in C. W. Misner, K. S. Thorne, and J. A.
Wheeler, Gravitation (Freeman, San Francisco, 1973).

For arbitrary o.&0 the o.-affine-vector fields discussed in Sec.
V generalize the "point fields" (ex=1) in S. Kobayashi and K.
Nomizu, Foundations ofDifferential Geometry (Ref. 3).
This definition of "electromagnetic affine connection" re-

quires the linear part of the affine connection to be Riemanni-
an. If one contemplated a theory in which the linear
geometry was more general than Riemannian, then this defi-
nition would have to be modified.
For a general discussion of the structure of A(4) gauge
theories see L. K. Norris, R. O. Fulp, and W. R. Davis, Phys.
Lett. 79A, 278 (1980).
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