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The wave function of the Bianchi type-IX universe with small anisotropy is calculated using the

Hartle-Hawking prescription.

I. INTRODUCTION

Hartle and Hawking' have recently put forward a
prescription for calculation of a wave function of the
universe. They applied it to the de Sitter model which has
only one gravitational degree of freedom, the scale factor
a(t). It should be useful to study this prescription using
semiclassical models with more degrees of freedom. Here
I investigate the wave function of the slightly anisotropic
Bianchi type-IX universe. Similar models were con-
sidered by Hawking and Luttrell> and by Wright and
Moss.> The authors of the first paper drew their con-
clusions analyzing properties of the Wheeler-DeWitt
equation rather than solving it, while the second paper
mentioned above contains the results of numerical integra-
tion of this equation (without the condition that anisotro-
py is small). I think that the explicit semiclassical calcu-
lation should be of interest: it fills the gap between these
two approaches. The price paid for the analytical expres-
sion for the wave function is the condition that the aniso-
tropy is small.

The paper starts with a brief review of the formalism.
Section III is devoted to the semiclassical approximation
to the wave function of the slightly anisotropic model
with cosmological constant. In the next section the classi-
cal radiation is added and the numerical solution of the
Wheeler-DeWitt equation is used to estimate the ratio of
the anisotropy energy density to the energy density of ra-
diation. The result is well below the present experimental
limit.

II. ALGORITHM

The wave function of a closed universe depends only on
the three-geometry h;; of a spacelike surface. All infor-
mation about time is hidden in the h;; because in closed
spacetime one cannot move a given spacelike surface back
and forth in time. One can then calculate the wave func-
tion in the manner of Feynman,

W[h;]=N fcdge"s‘@, @.1)

where S (g) is the action for a given metric g, and the in-
tegral is over a class C of four-geometries with the three-
dimensional boundary on which the induced metric is h;;.
Unfortunately, such an integral is not well defined. First,
the integrand oscillates rapidly. Second, the class C may
contain metrics of an open spacetime and in such a case
we need boundary conditions.

We can try to remedy this first problem by going to Eu-
clidean spacetime (cf. Hawking*) where (2.1) becomes

W[ hyl=N fc dge1® 2.2)

However, it does not solve the problem completely, be-
cause the Euclidean action I(g) is not positive definite.
For example, if we make the conformal transformation
guv(x)—>Q*x)g,,,(x) keeping h;; fixed then the action
contains the term — f (VQ)*d*x and if Q changes rapid-
ly the functional integral blows up. This problem may be
solved by “rotating” the conformal factor 2—i. Then
the integral can be calculated and the result analytically
continued. For details see Refs. 1 and 5.

The solution of the second problem is the cornerstone
of the Hartle and Hawking proposal: they suggest to sum
over all compact Euclidean metrics. Then the boundary-
value problemis solved because there are no boundaries.

When we sum over all compact spacetimes an addition-
al problem may appear—there may be more than one sur-
face with the same h;;, e.g., in a four-sphere there are two
spacelike surfaces with the same radii. Therefore it is
convenient to change the variables from h;; to the “K rep-
resentation” in which we use A;; =h.,-j(deth)_1/ 3 and the K
trace of the external curvature K/. The transformation
formulas are

‘P[Ej,K]z fow dh exp

—% i d3xh'/2K]\l’[h,-j] ,

(2.3)

\P[hulz:_l‘ frdKexp

4
—_ d3 hl/ZK
2mi 33 f x

Y[h;,K],

(2.4)

where h =deth;; and T" goes from —iow to +ioo at the
right of all singularities of W[A;,K]. [ is the Planck
length. For details see Ref. 1.

In quantum mechanics we have the Schrodinger equa-
tion for the wave function. Its analog here is called the
Wheeler-DeWitt equation,

__12__ (3) 172 172 _
Gijit Sty Sk R (h)h'"*42Ah Y[h;]=0, (2.5
where

Gijkl:%h —l/z(hikhj]+hi1hjk—hijhkl) . (2.6)
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Needless to say, W[4;;] cannot be calculated exactly, or at
least nobody knows how to do it. Therefore we have to
make an approximation. One possible approach is to nar-
row the class C to a certain minisuperspace. It is
equivalent to freezing all but a few gravitational degrees
of freedom. Then it is possible to use a semiclassical ap-
proximation to write ¥ as A exp(—B) where B is given by
the classical solution of the Einstein equation. Prefactor
A is harder; here we shall concentrate entirely on B. In a
minisuperspace the Wheeler-DeWitt equation becomes the
usual partial differential equation and one can try to solve
it.

III. BIANCHI TYPE IX WITH A

As we have already said, we consider the Bianchi type-
IX minisuperspace with small anisotropy. The metric of
such a model is

2
ds?=—o’N*(0dt* + Z-a’ (1)) 00, (3.1)
where
o'=cos¥ d6+sin¥sinfd¢ ,
o?=sin¥df—cos¥sin®d¢ , 3.2)

o*=d¥+cosfde ,

and constant o2=12/247? has been introduced for future
convenience. N (2) is a lapse function. A time-dependent
matrix S is traceless and diagonal. A convenient
parametrization is (here, and in what follows, we follow
Misner, Thorne, and Wheeler®)

Bu=B.+V3B_,
Byn=B.—V3B_, (3.3)
Biz= "’23+ .

Classical equations of motion can be easily found using
the Arnowitt-Deser-Misner (ADM) action principles. In
this formalism the action takes the form

1
SE:E (pydBi+p_dB_—p,da—Nirdt), (3.4)

where a=1na and the Hamiltonian % is

e 3 2 2 2
H="3— |=Pa"+P+ +P
3772 a —2a

- e%{6e "2 [1—V (B, B_)]1—2A} | .

(3.5)

The potential V(B ,,8_) is a complicated mess but for
small B, it has the simple form

V(B,,B_)=8(B,2+B_% . (3.6)

This action is to be varied with respect to N, a, B+, Pa>
p+. The equations of motion are
2

a +%[1~8(/3+2+B_2>]—A=0 . 37

.4
a

2
Bﬁ;iiz:o. (3.8)

a

Bi+3
a

For small anisotropy parameters 34 we can neglect the in-
fluence of anisotropy on the expansion rate. Then (3.7)
has the well-known solution

A

3

__ coshHt

a(t) I

, H= (3.9)

This solution can be easily “rotated” to Euclidean space,
t——i(t—mH/2):

__sinHt
=~y
This solution can be, of course, obtained by considering

the Euclidean metric from the beginning. The equation
for anisotropy becomes

a(t) (3.10)

.. . B
+3cotHtB4———=0.
Bs Be=g qnty
After substitution z =+(1—i cotHt) one gets the hyper-
geometrical equation

z2(z =B +(—++2)B:++B+=0. (3.11)
The “hypergeometrical” parameters are’
a=—1+¥, b=—1+¥, c=—7. (312

z goes from —i o to +ico and crosses the real line at +.
Therefore we need the solution of (3.11) which is regular
at |z | — o (t—0). The appropriate choice is

B+(t)=p3 ReW(cotHt) , (3.13)
where
W(z)=z"F(bb —c +1,b—a +1,z7"). (3.14)
Now we can calculate the Euclidean action
2
a . .
I=+ f dta’| — o } +B,2+B_2
1 2 2 AU'3
——?(1—834r —8B_ )+T (3.15)

along the classical path which ends at the spacelike sur-
face with a given value of K:

—1 K3 BOZ ]
= - v 1
3H? (1412)372 TS fK ayviy), (.16
where k=0K /3H and Bozz(ﬁ)2+(m)2,
[ReW'(»)]> | 8[ReW ()]
vin= 3.17
») +p)172 (14522 (3.17)

Now, we can write the wave function in the K representa-
tion
W[K,B+]=N exp(—I¥), (3.18)

where
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IX=ka®+1, k =% . (3.19)
Now we can use (2.4) to calculate ¥[a,B+],
-_ 1 ka3
¥[a,Bx]=—— frdke W[k,B:] . (3.20)

This integral can be calculated using the steepest-descent
method. (From now on H =1.) If a <1 the exponent has
two real extrema at

BoV (ko)

Ki=ixo¢m ’ (3.21)
where
172
o 1—a?
0 az

The contour of integration I' can run only through «_
and the action is

I= _%[1_(1_‘12)3/2]

5
2

Ko

—-—Sa(l—az)‘” (3.22)

+ [, dvo|.

If a > 1 we have two complex extrema and the I' can run
through both of them:

BV (+iky)

3075

where

I?Oz

and the action becomes

I.= —3[1£i(@*~11"?]

B

FiV(+iky)
*t5

3(1((12——1)1/2

+f;ﬁody Viy)|. (3.24)

One can write
V(xikg)=ReV(iky)xi ImV (iky) ,

[o dy V(y)=RelV (%) £i InIV (%) ,

=0

where IV stands for “integral of V.” The normalization
factor N is given by '

N=2= [, o dg V[h;1¥[hy],

where the integral is over all compact geometries which
belong to the class C in the past of 4;; and to the class C’
in the future of this surface. This integral can be evaluat-
ed in the semiclassical approximation. Since the solution
with =0 has the lowest energy N is the same as in the
isotropic case. Putting it all together we can write the
wave function as follows:

- (3.25)
+[, v ’ ,

(3.26)

~ImIV(&y) || - (3.27)

The integrals have to be calculated numerically. Figures 1 and 2 show ¥[a,.] as a function of a for two fixed values of

I?_=iifoilm , (3.23)
a<l:
(1—a2 B [ Vi)
‘I’[a,Bi]—expl— k 3 2 |3a(1—a?)”2
‘a>1:
Bt | ImV(ik,)
Y[a,B+]=2 — | — | =————> +RelV (k)
[a,B:] exp[ 2 |3a(a*-1)'"72 + °
(@2—1)72  Bs* | ReV(ikp)
X cos 3 ) e (@i 1) 7
Bo-
er T T T T T T
[ i
4
ot .
i N \ i
-2l 1 | 1 1 1
[ 2 3 4 5 6

FIG. 1. Wave function as a function of a with 8=0.10 in the
semiclassical approximation.

1 1 1 1 1 1
| 2 3 4 5 6
a

FIG. 2. Wave function as a function of a with 8=0.30 in the
semiclassical approximation.
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FIG. 3. Energy density of anisotropy {o(a)) in the semiclas- 3 4 5 o 6 v 8

sical approximation. . ) o )
FIG. 4. Wave function for the model with radiation with

B=0 obtained by numerical solution of the Wheeler-DeWitt
equation.

. We can also calculate the energy density of anisotropy as a function of a. Classically, o~(dB/dt)®.. One can express
B+ in terms of canonically conjugated momenta p + and then replace p4 by —id/9+. Doing this we find

L —1] @ 9?
Oo=—— |T"7""—S+—"5 :
a® (9B 9B_2 (3.28)
and
Y6VdpB, dB_
(ola))= / e (3.29)
[ Yvadp.dp_
The result of integration is rather messy:
16 | 2 p2
(ola)y=— | A>~B*—A4 +(24B —A4)
a
A sin2C + B c0s2C +[sin2C(— A4 cosB + B sinB) —c0s2C (A4 sinB + B cosB)]
[(4%2+B?)/A)(e?—1)+[cos2C(— A cosB + B sinB) +sin2C (A4 sinB + B cosB)] ’
T
where purpose I will now consider the similar model with radia-
tion.
1 ImV (iky) _ V. A
A =—2— W+RCIV(KO) , . A+y
We can start as previously, simply adding to the action
. ReV (i) term which describes classical radiation,
0
B=—|——F—""">—-ImIV(Ky) |,
2 | 3a(a?—1)172 %o N
Tn="— xr, 4.1)
2132 a
c=le =" m

3 4
where y is a constant which characterizes the density of

radiation. The Lorentzian equation for a is (/3 neglected,
(a(a)) is plotted on Fig. 3. o decreases extremely fast, in as previously)
fact the decrease is quicker than exponential. This can be
"thought of as an explanation of the isotropy of the
universe.
It would be nice to compare the energy density of aniso-
tropy with the energy density of ordinary matter. For this Solutions are

2

+4 - -L o, 4.2)
a a

a
a
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-10f- .

1 1 1 1 1

3 4 5 6 7 8
a

FIG. 5. Wave function for the model with radiation with

B=0.45 obtained by numerical solution of the Wheeler-DeWitt

equation.

if y <1/4H?,

1

—=—[14+(1—4H%)?cos2Ht]'?, a>a, ,

V2H
7_27(‘/7711 sinh2Ht —sinh?H?)'?, a <a_
a2=[1+(1—4H%)"?)/2H? ;
if y>1/4H?2,

3077

FIG. 6. Energy density of anisotropy (o(a)), obtained by
numerical integration of the Wheeler-DeWitt equation.

;11—(\/7_/H sinh2Ht —sinh®Ht)'/?, 0<t<tq=0.18H !,

a(t)= 1

——[14(4H%* — 1) 2sinhH (t —t5)]'?, t>t, .
Y

V2H

We can also find the Euclidean solutions by analytic con-
tinuation or directly—by solving the Euclidean equation.
However, two serious problems appear. First, technical:
It is very difficult to solve the equation for 5.(¢). Second,
less technical: The Euclidean solutions are not compact.
This difficulty may be circumvented by performing a
complex conformal transformation a =ia and solving for
a. But even then it is very difficult to calculate the ac-
tion, rotate it back to a real a, and find extremal points.
In such a situation we can try to use the Wheeler-DeWitt
equation, which in the present case has the form

+(Aa*—a’+y)

az _i 82 N a2
da> a? |3B,2  9B_2

+8a2<3+2+/33>}\1/:o. 4.3)

From the previous calculation we know that ¥ depends on
B+ only through B=(/3+2+B_2)1/2. Therefore we can
suppress one variable 3 and reduce the Wheeler-DeWitt
equation to
2 2
O 1O (Adt—atty)48a?R

v=0.
da? a? 3p?

(4.4)

To solve this equation we need the boundary condition,
e.g., values of

w(0,3) and 2XaB)
da

a=0

which we do not know. We cannot infer them from the
path integral since ¢ =0 is a turning point and the semi-
classical approximation is bound to be wrong. However,
if we are interested in the region a > 1 and we want to es-
timate {(o(a)) we do not have to know the boundary con-
dition exactly. {o(a)) is rather insensitive to the change
of ¥ at a =0. The results of the numerical integration are
shown in Figs. 4, 5, and 6. The oscillatory behavior is
very similar to the result of the semiclassical approxima-
tion. The amplitude of ¥ is very strongly damped for
bigger values of 8. In the region 3 <a < 10 the amplitude
of W for B=0.5 is ~10'! times smaller than the ampli-
tude for B=0.

Now we can calculate the ratio {(o(a))/p,. If at
present p, ~ 1073 g/cm?, A=3Xx 107 cm?, and a =10
cm then (o)/p,~10""® today. Certainly, it does not
contradict the present limits on the anisotropy of the
background radiation.
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V. CONCLUSIONS

It seems to me that these calculations show once again
that the Hartle-Hawking algorithm leads to the wave
function which agrees with common-sense expectation.
However, the study of more complicated models or going
beyond the semiclassical approximation requires numeri-

cal methods. If they are to be applied to the Wheeler-

DeWitt equation the problem of the initial values should
be clarified.
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