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Quantum radiation in a one-dimensional cavity with moving boundaries
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The quantum theory of a massless free field in a one-dimensional cavity bounded by moving mir-
rors is formulated in terms of an effective Hamiltonian density which is defined over a fixed length.
This effective Hamiltonian is obtained from the original Hamiltonian by the application of a unitary
time-dependent transformation with the property that it preserves the reciprocal symmetry of the
free field. Using this formulation, the number and the spectrum of the excitations created by the ac-
tion of the moving mirror on the zero-point energy of the cavity is found in first-order perturbation
theory.

I. INTRODUCTION

Creation of particles from the vacuum caused by the
motion of boundaries has been the subject of a number of
recent studies. ' In most of these works attention has
been focused on the problem of a massless field confined
to a one-dimensional space. Classically this problem can
be solved with the help of the conformal coordinate
transformation, ' " which enables one to express the wave
amplitude in terms of the mode functions of the cavity.
From the set of classical solutions one can construct a
quantized field theory without making any reference to
the Hamiltonian formalism. ' In the present work we
discuss an alternative approach based on the Hamiltonian
concept and show that it has certain advantages over the
conformal-coordinate-transformation method. A review
of some of the difficulties associated with the quantiza-
tion of conformally equivalent systems is given in Sec. II.
In Sec. III we discuss the unitary transformation which
changes the original Hamiltonian density which is defined
over a variable length to a more complicated Hamiltonian
defined over a fixed length. This transformation
preserves the reciprocal symmetry of the problem, i.e.,
g~m, m~ f, where g an—d m are the field amplitude and
its conjugate momentum density, respectively. The effec-
tive Hamiltonian thus obtained can be expanded in terms
of the creation and annihilation operators. Two such sets
of operators connected to each other by a Bogolubov
transformation are considered in Sec. IV, where it is also
shown that by applying the Lehmann-Symanzik-
Zimmermann (LSZ) method, one can determine the num-
ber of the particles which have been created from the vac-
uum initial state. The resulting equations are solved in
first-order perturbation theory in Sec. V and expressions
for the number of created particles and the change of the
energy of the system are obtained.

II. CONFORMALLY EQUIVALENT SYSTEMS
AND THE HAMILTONIAN FORMULATION

Following the pioneering work of Moore, ' most of the
studies of the problem of radiation from moving mirrors

been based on the solution of the conformally
equivalent classical wave equation where the boundary
conditions are simple. As has been noted by some au-
thors there are certain difficulties associated with the
quantization of systems which are conformally equivalent.
Among these one can mention the following points: (a)
For a given motion of the boundary there is not a unique
conformal coordinate transformation which makes the
boundary conditions independent of the timelike coordi-
nate. This lack of uniqueness is not problematical as far
as the classical solution of the wave equation is concerned;
however, there is no reason to believe that these confor-
mally equivalent systems remain equivalent after quanti-
zation. (b) In addition to leaving the form of the wave
equation unchanged, the conformal transformation has no
effect on the classical action; however, the Hamiltonian of
the system does not remain invariant under this transfor-
mation. In general the Hamiltonian for the new wave
equation will not be related to the energy of the system,
and therefore, using such a Hamiltonian as the quantal
generator of the infinitesimal unfolding of the system in
time is not justified. That the acceptable classical Hamil-
tonians which do not represent the energy of the system
will lead to unacceptable quantum-mechanical results is a
problem which has been studied in detail in quantum par-
ticle dynamics. ' (c) The utility of the conformal
transformation is limited to the one-dimensional massless
fields. (d) For some simple motions of the mirrors the ex-
act form of the conformal coordinate transformation is
known, but for a general motion the transformation can
be found only in an approximate form. ' Let us consider
the scalar wave equation

with the boundary conditions

g(x =0, t ) =g(x =L(t ), t ) =0,

where the mirrors are located at the origin and at
x =L ( t ), and they are perfectly reflecting. Now we
change the variables from x and t to m and s, where the
new variables are defined by
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w —s=R(t —x),
w+s=R(t+x) .

(2.3)

(2 4)

at the positions of the mirrors. The equal-time commuta-
tion rel'ation between f and rr expressed as

Here R is a known function which is determined from
L (t) (Refs. 1 and 6). A simple calculation shows that Eq.
(2.1) expressed in terms of the variables w and s has a
form identical to (2.1), viz. ,

SS NM (2.5)

Using Eqs. (2.3) and (2.4) this Lagrangian density be-
comes

2h (w, s)
(2.7)

[h(w, s)] =R'[R '(w —s)]R'[R '(w+s)] . (2.8)

R' is the derivative of 8 with respect to its argument.
Equation (2.5) can also be obtained from (2.7), in fact the
action integral remains invariant under the conformal
coordinate transformation,

The wave equation (2.1) is derivable from the Lagrangian
density W,

(2.6)

[P(x, t), rt(x', t)]=i5(x —x') (3.3)

is also to be satisfied. The equations of motion (3.1), the
boundary conditions (2.2) and (3.2), and Eq. (3.3)
remain invariant under the reciprocal transformation

g(x, t)~rr(x, t), m(x, t)~ g(x, t—) . (3.4)

A(t) =L(t)/L,
and define V(t) by

(3.5)

Our aim is to try to find, by means of a unitary transfor-
mation, a new Hamiltonian from (2.10) with the following
properties.

(a) By changing the variable x to g, without changing t,
we want to make the boundary conditions (2.2) and (3.2)
only dependent on g. (b) In simplifying the boundary con-
ditions, the wave equations (3.1) become more complicat-
ed, and there are additional terms in these equations
representing the interaction between the moving mirror
and the field. (c) The transformation should preserve the
symmetry between P(x, t) and rr(x, t) as is given by (3.4).

Let 1.0 denote the initial length of the cavity and let
A, (t) be the dimensionless scale factor

S= I L dt= I W(t, x)dx dt

= I W( w, s )h (w, s )ds dw, (2.9) Bm-(x')
V(t) = Ink, I x', P(x')dx' .

0 BX
(3.6)

where the Jacobian D(x, t)/D(s, w)=h (w, s) has been
used to obtain (2.9). The Hamiltonian for Eq. (2.1) is
given by

L(t)
H=~ m xt+ „xtdx (2.10)

and represents the energy of the system. The transformed
wave equation, on the other hand is derivable from

SOH'= —, J [P (s, t)+g, )ds, (2.11)

where so is a fixed length and re, and P(s, t) are the field
and its conjugate momentum, respectively. We note that
here H' describes the unfolding of the system in the time-
like coordinate m and not in t, and unlike the wave equa-
tion or the action integral, H' cannot be derived directly
from H. Another problem is that of defining the equal-
time commutation relations for P and rtj which is needed
for quantizing H'. In the following section we start with
the quantum-mechanical Hamiltonian (2.10) and obtain
an effective Hamiltonian for the system by means of a un-

itary transformation.

From the expansion

e' p(x)e ' =p(x )+—[G,p(x)]+ i [G [G,—p]]+ .

(3.7)

e'~ r(rx)e -'~= exp —in' x
BX

rr(x )

X
=7T (3.8)

which holds for any two operators G(t) and P(x) it fol-
lows that

III. THE EFFECTIVE HAMILTONIAN
e' P(x)e ' =—exp —1nA, x

()X

From the quantal Hamiltonian (2.10), we find that both
P(x, t ) and m.(x, t ) satisfy the same wave equation,

X
(3.9)

=y„and ~.„=~„, (3.1)

rr(0, t) =rr(x =L(t),t) =0 (3.2)

and in addition to the boundary conditions (2.2) we have Using these relations we can determine the Hamiltonian
H, which is obtained from H, Eq. (2.10), by the transfor-
mation e',
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01——e' H0 —) e
which can be integrated to yield

Ag+t= a constant . (3.19)
I r

L(t)

0

8 X

X

BX A.

2
X

(3.10)
u =A.g t—=x t—,

U =lg+t =x+t,
(3.20)

(3.21)

We can transform (3.16) to its canonical form by chang-
ing from g and t variables to u and U, where

where k, =dA/dt , Be.cause of the asymmetry introduced
in the transformed field and its conjugate momenta Eqs.
(3.8) and (3.9), we apply a second transformation to the
operator g, m, and H, . If W(t ) denotes the operator

and then (3.16) becomes

~t ~t ~tt

2A,

3 ~t f=0, (3.22)

W(t)= —,
'

1nA, I
then using the expression (3.7) we find that

r r

i8' X —i' 1
e ~ —e

X1/2 A

(3.11)

(3.12)

where in this relation k, A,„and A,«are functions of
t= —,'(u —u). In Eq. (3.22) if we change u and U to the
variables x and t, and replace g(x, t) by X (t) XP(x, t)
we recover the original wave equation (2.1)

IV. THE NUMBER OPERATOR

e' —g —e (3.13}

Thus the transformation e' e' transforms g(x) to
(1/k' )P(x/A, ) and m(x) to (1/A, ' )m(x/A, ), and is a uni-
tary transformation. The effective Hamiltonian is ob-
tained from XII, Eq (3.10.), and is given by

(4.1)

In order to determine the number of the quanta created
by the excitation of the vacuum, we need to define the
creation and annihilation operators for the g field. In the
following discussion, for the sake of convenience, we as-
sume that Lz Ir, and exp——and the operators g and m in
terms of qk aIld pk',

1/2
2A

p(g, t) = g q, (t) sin(kg)
k=1

H, fg
——e H1 —i, eiW, ~ —iR'

Bt
(3.14)

2

H, ff —— 1 1 Bg +~'(g)

1((g')+ —~(g)@(g) dg .
r

(3.15)

From this effective Hamiltonian we find the wave equa-
tion for P(g, t):

r

2A, ~

, 0' 4g A~+ ~ N g+—~ Wr

r

(g, t)=. 2 g pk(t) sin(kg) .
k=1

(4.2)

~.tt=
2~ g (pk'+k'qk')
2A, t k=1

2kj
Pklj' ~

J —k
(4.3)

The reciprocity symmetry between g and m, Eq. (3.6) im-
ply the following symmetry rule between pk and qk.

The factors A,
'~ and A,

'~ in P and mare introduce. d so
that the Hamiltonian in terms of pk and qk assume the
simple form

3kt ~« 3 ~t /=0 . (3.16}
g2

(4.4)

The momentum density Ir(g, t) satisfied an equation iden-
tical to (3.16). In terms of the independent variable g, the
boundary conditions (2.2) simplify to

g(/=0, t) =P(g=L, ,t ) =0
and a similar condition for m.(g, t). Equation (3.16) is hy-
perbolic for all values of t, and the characteristic curves
are given by the differential equation

Pk ——i
2

dg ~i 1g+-
dt A, A,

(3.18)
and

and this interchange leaves the canonical commutation re-
lation unchanged. We observe that in (4.3) the total Ham-
iltonian consists of two parts, the diagonal part which is
the first sum and the off-diagonal part [the double sum in
(4.3)] and this part is responsible for changing the number
of particles. Expressing pk and qk in terms of the
creation and annihilation operators as

1/2
k

(+k ak ) (4.5)
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9'k =
1/2

1

2k «k+ak) (4.6)

1 t 1
Hott= g k akak+—

and substituting in (4.3) we find the following expression
for H, tt..

p(g, t) = 1

mk

1/2

g (bk+bk) sin(kg')
k=1

(4.9)

This operator does not commute with H, ff, and hence it is
not a constant of motion. We can also expand g(g, t) and
1r(g, t) as in (4.1) and (4.2) but without the scale factor
t(,(t), i.e.,

y ( 1)k+j J
k =1j~k j

1/2

X —. (aka —a ak
k

j J J

+akaj —akaj) . (4.7)

The number of quanta associated with this field is an
eigenvalue of the operator

k=1

and from Eqs. (4.1), (4.2), (4.9), and (4.10) it follows that
the a's and b's are related to each other by a Bogolubov
transformation,

bk ———,(A,
' +A, ' )ak+ —,(A,

' —A,
'

)ak . (4.12)

1r(f, t) =i — g (bk bk—) sin(kg'), (4.10)
k

where again bk and bk are the creation and annihilation
operators. In this case the reciprocity symmetry implies

qk~Pk a«Pk~ —9k (4.11)

akak .
k=1

(4.8) The effective Hamiltonian obtained by substituting (4.9)
and (4.10) in (3.15) is given by

2k 1+
&2

bkbk+
2

+ 4k 2
—1 (bkbk+bkbk)

1 1 g 1 1 1

+i g g ( 1)k+g
k =1j&k

1/2
kj k

('2 I 2) j (bkb bbk+bkb bk—b )—J J J J (4.13)

which is equivalent to (4.7) but has an additional term
proportional to (1/t)), —1). The number operator in this
case is

1/2 1/2
i

K(j,k)=( —1) + +
2

—. +k 1 jk k j
k —j j k

»= gbkbk (4.14) (4.17)

which is not the same as X„Eq.(4.8).
From the Hamiltonian (4.7) we can determine the equa-

tion of motion for ak.

' 1/2

G(j,k) =(—1)"+1
k2 ~ 2

1/2
k

j
. d ka„= ak+iak(t)
dt t)),(t)

(4.15)

+k(t) =—g [&V k)aj+GV k)akim

where

and the corresponding equation for ak. In Eq. (4.15) Rk
denotes the following operator:

(4.18)
We utilize the equation of motion (4.15) and its adjoint to
calculate the number of excitations of the a or b fields
created from the vacuum. We follow the method of LSZ
to calculate the expectation values of N, and Nb, but give
the details of the calculation of the number of quanta for
the a field. Only the final result will be presented for the
b field. Denoting the initial vacuum state of the system
at the time t =0 by

~
0, in ), the number of the quanta at

t =+ m is given by

(N, ) =(0 (n(N(ont)(O in)= )(tn 0 in g at(t)at(t) 0 (nl

dak g dQk
0,111 g ak +ak

dt
in, O dt+ lim O, in ak t ak t in, O . 4.19

t~O
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The last term in (4.19) is zero and therefore

(N, ) = f (O, in ~akRk+R&ak
~

in, O)dt, (4.20)

where we have substituted for dak /dt and daI, /dt from Eq. (4.15) and its adjoint. Noting that Rk is linear in aj and aj,
Eqs. (4.15) and the corresponding equation for ak form a set of linear coupled equations which can be solved to yield the
time-dependent operator

(4.22)

where

ak(t)=ak[t, ai(0) a„(0) . ;ai(0) a„(0) . . ] (4.21)

and a similar relation for ak(t) B.y substituting (4.21) in (4.20), we can determine (N, } exactly. However here we will
assume that the last term in (4.15) is small compared to [k/A(t)]ak and solve (4.15) in the first-order perturbation. If
Rk is ignored in (4.15), then the zeroth-order solution of ak(t) is given by

ak '(t) = exp[ —ik1 (t)]ak(0),

r(t)= f
For calculating ak(t) to the first order we evaluate Rk '(t) by substituting aj '(t) and aj' '(t) in (4.16):

Rk
'= g f e ' [K(j,k)e ' a ~(0) +G(j, k) e ' aj(0)]dti, A(t)=A, ,(t)

A, ti

and then solve the differential equation

a'"
a(()+R(o)(t )

dt A, t

to obtain

(4.23)

(4.24)

(4.25)

ak '(t)=e '" "'[ak(0)+ f e ' g [1(,(j,k)e ' aj(0)+G(j,k)e ' a. (0)]dti
0 A(tl J~k

' J

with a similar expression for ak'"(t). The number of excitations (N, ) to the first-order perturbation is given by

(N, }= f (O, in
~

ak' 'RI', '+Rk' 'ak"
~
in, O)dt .

The expectation value in (4.27) can be calculated by substituting (4.24) and (4.26) in (4.27) with the result that
0

(N, ) =2 g g f f, G'(j, k) cos[(k+j)(r(t)—r(t ))]dt' .

(4.26)

(4.27)

(4.28)

We can simplify (4.28) further by noting that G (j,k) de-
pends on kj and (k+j), thus if F(m ) denotes the follow-
ing integral

F(m) = f dt f cos[m(r(t') —r(t))], dt'
m g(t) t A, (t')

A, (t) A,(t')

(4.29)

Using z as the new variable we have the parametric equa-
tion for the motion of the mirror,

t= f A, (x')dz',

then F(m ) can be expressed as

F(m) = f dy cos(my)f(y),

where
then by substituting for G(j,k) in (4.28) and carrying out
one of the sums we find f(y) = f [in', (z+y)] [ink, (z)]dz . (4.34)

(N. )= g F(m) —g —,'F(2k) .
m=i k=i

' (4.30)

z=I (t)= f, (4.31)

To see under what conditions the number of quanta (N, )
is finite, i.e., the sum in (4.30) is convergent, let us consid-
er those cases where A,(t) is expressible in terms of the
variable z =I (t ):

In the next section from the properties of the Fourier
transform we obtain certain conditions on A,(t) and A,(t) so
that (N, ) converges to a finite result. But before discuss-
ing this point Iet us consider the number of quanta of the
b field which is created from the vacuum. Following ex-
actly the same method that we have used to calculate
(N, ) but using the equations of motion for the b field
obtained from the Hamiltonian (4.13) we find the analog
of Eq. (4.20):
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(%b) = f O, in g —k 1 — (bkbk bk—bk)+(bkRk(b)+Rk(b)b in, O dt .
k

The expectation value in (4.35) calculated to the first-order perturbation theory yields the following result:

(4.35)

oo 1 t
(%b ) = g —,k f dt 1 — f dt) 1 — cos2k(t —t) )

A (t) 0 A (t))

2kj A, (t)+ g g f dt —f dt) cos[(k+j)(t) —t)] .
) ~k (k+j)~ o A t o A t)

(4.36)

Again by changing the variables of integrations, we can simplify (4.36)

m —1 00

(Nb ) = g —,
' k f dy cos(2ky)g(y)+ g F(m) —g —,F(2k),

k=1 0 m=1 3m k=1
(4.37)

where

g(y)= f dt 1—
A, (t+y)

V. RESULTS AND CONCLUSIONS

(4.38)
F(m) =— 1

m2

, y =0

df 1

43'
y p I

( —1)' d" 'f+ 2r d 2p —1

d f
dJI p

+ F""'(m)( —1)'
2f

QO d (2r)
F' "'(m)= f dycos(my)

~2 )
(5.1)

Under what conditions is the number of quanta created
from the vacuum finite? Moore' in his work has shown
that when there is a discontinuity in the velocity of the
mirror, then the number of photons created is infinite;
however, if A, (t) changes continuously then the number is
finite. We will show that the (%, ) is infinite if the mir-
ror starts with a nonzero velocity at t =0, or if it has any
other form of discontinuity in the velocity, otherwise it is
finite. As is evident from (4.30), if F(m) goes to zero as
1/m for large m, then (,N, ) is logarithmically divergent.
On the other hand for F(m ) decreasing as 1/m or faster
for large m, (K, ) is finite. But F(m) is the Fourier
cosine transform of a function of y, Eq. (4.33). According
to a result in the theory of Fourier transforms, if F' "'(m)
represents the transform

(5.3)

From Eqs. (4.30) and (5.3) we conclude that (X, ) will be
finite if (df /dy )» o is zero, which in turn implies that

dz
dA(t)=0 or

dt t=0
=0 (5.4)

i.e., if the mirror starts its motion from rest with a finite
acceleration. In general if f(y) is continuous but has
discontinuous first derivative, then its Fourier transform
dies away as 1/m, therefore df(y)ldy must be a con-
tinuous function of y for (X~ ) to be finite. Even if these
conditions are met, the change in the energy of the system
may or may not be finite. The initial energy of the cavity
is just the zero-point energy of the a field,

E, = g —,'k
k=1

(5.5)

F(m)= f dy cos(my)f(y)

can be expressed as"

(5.2)
which is quadratically divergent. The final energy is
given by

oo 1
Ef——0, in %k +— in, 0

, A(oo) 2

f dt f cos[(k+j)(l (t') —I (t))], dt'+ g
k=),~k A( )(J+k)' At k)2Aoo

t

(5.6)
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We can write (Ef E—~) in terms of F(m), Eq. (4.29) as

oo

(m —1)F(m)
, 6A(oo)

oo

(1—F(2k ) —— . (5.7)
2A(oo) 2

Now if the conditions for the finiteness of (N, ) are met,
and if in addition

d
ct [—,(g(3) —g(5)) ——,', g(4) j, (5.11)

- 2

The contributions from the third- and higher-order
derivatives are negligible, since the ratio of two consecu-
tive terms in these expansions is proportional to 1/c . By
substituting the leading terms of (5.9) and (5.10) in (4.30),
(4.37), and (5.7) we find

- 2

A(oo)=A(0)=1, (5.8)
1 d k (P3)—P5))dt' (5.12)

- 2
d3A, + ~ ~ ~

dt
2 d A, 2

(2k )6 dt, o (2k )

(5.9)

i.e., the initial and the final lengths of the cavity are the
same, then Ef E; w—ill be finite.

Next let us consider this same question for the b field.
In this case we have three infinite sums, Eq. (4.37), with
the last two being equal to (N&). Thus for the conver-
gence of (Nb ) we need to have A, (0)=0, and the addition-
al requirement that (dg/dy)„0 ——0, where g(y) is defined
by (4.38). This last condition implies that X( oo ) =A,(0).

When A, ( oo )&1, then (Nb ) diverges linearly. The
number of excitations for the state of wave number k,
(Nb(k)) consists of a term which is independent of k,
and a number of other terms proportional to 1/k, 1/k,
etc. If we omit the term which is independent of k, which
in a way is similar to omitting the change in the zero-
point excitations, then the result for (Nb ) will also be fin-
ite, but not equal to (N, ). Omitting the infinities from
the results for (Nb) and Ef E;, we ca—n express these
quantities in terms of the second and higher derivatives of

Thus from Eqs. (5.3), and the functions f(y) and g(y),
Eqs. (4.34) and (4.38), we have

f g(y ) cos(2ky )dy
- 2

1 d A,

12&( oo ) dt' s=0
(g(2) —g(4) ), (5.13)

. where g(n) is the Riemann g function

ao

g(n) =
m=& Pl

(5.14)

The result given in Eq. (5.12) is in agreement with the cor-
responding result given by Moore. ' Our conclusion about
the divergence of the series for (N, ), when A, (0)&0, also
agrees with Moore's conclusion.

The present method can be used to determine the num-
ber of particles created by the moving boundaries in the
case of a massive (Klein-Gordon) field. In the nonrela-
tivistic case, i.e., the Schrodinger particles interacting with
moving walls, the same technique has been used to show
that there is no creation of particles, but the number of
particles in a given state, in general, is not a constant of
motion, and there are transitions between different energy
levels. '

and

f f(y) cos(my)dy
- 2

1 d k 1

2m dt t =0

- 2

t=O
+ ~ ~ ~

(5.10)
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