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Gravitational radiation from cosmic strings
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Gravitational radiation from oscillating loops of string is studied both analytically and numerical-
ly. The total radiated power is found to be P =yGp, where p is the mass density of the string and
y is a numerical coefficient —100. The intensity and the spectrum of the stochastic gravitational-
wave background produced by the loops are calculated. Gravitational radiation from asymmetric
loops carries not only energy, but also momentum; the loop recoils and accelerates like a rocket.
The momentum radiation rate from loops is calculated and it is shown that cosmological loops
formed with sufficiently small initial velocities are slowed down by dynamical friction and do not
rocket away.

I. INTRODUCTION AND SUMMARY

In recent years there has been considerable interest in
cosmological effects of strings which could be produced at
a phase transition in the early universe. Superheavy
strings can generate cosmologically interesting density
fluctuations and can also produce a number of distinctive
observational effects. For a review of strings and their
cosmological implications see Refs. 1—3.

In the string scenario of galaxy formation, galaxies and
clusters condense around oscillating closed loops, while
the loops gradually decay by gravitational radiation.
Loops oscillate at relativistic speeds, the typical frequency
being f-L ', where L is the length of the loop. The
gravitational radiation rate can be estimated from the
quadrupole formula:

-GMLf -G (1.1)
dt

where p-M/L is the mass per unit length of string and
we use the system of units in which fi=c =1. The life-
time of the loop is r-M/Gp -L /Gp, .

The quadrupole gravitational radiation formula applies
only to slowly moving sources, and thus its validity for
the radiation from loops is dubious. The motion of a loop
of mass M is periodic with a period T=L/2=M/2p, ,
and it can be shown ' that at one moment during the
period certain points of the loop actually reach the veloci-
ty of light. This gives rise to substantial radiation power
at frequencies much greater than T ', and one could
worry that the radiation rate from the loops may even be
divergent.

The main purpose of this paper is to calculate the grav-
itational radiation rate from oscillating loops using the ex-
act loop trajectories found by Kibble and Turok. ' Al-
though the asymptotic behavior at high frequencies can be
studied analytically, the total radiation rate can only be
obtained by a computer calculation. Our result can be

written as

dE/dt =yop2, (1 2)

where y is a numerical coefficient which takes different
values for different loop trajectories, but is typically
—100. The large value of y is partly due to the contribu-
tion of high frequencies. We find that the angular distri-
bution of the radiation diverges in the directions corre-
sponding to the superluminal motion of the loop. Howev-
er, the divergence is integrable and the total power is fi-
nite.

Gravitational waves emitted by individual loops add up
to a stochastic gravitational radiation background. s This
prediction of the string scenario is particularly interesting
in view of the recent observations of the millisecond pul-
sar. 9 A convenient measure of the gravitational radiation
intensity is

Qg(f) =
Pc

(1.3)

Here, pg is the energy density of the gravitational waves,
p, =2&(10 h g cm is the critical density and h is the
Hubble constant in units of 100 km sec ' Mpc '. Ag(f)
gives the energy density of gravitational waves in units of
pc per logarithmic frequency interval. Long-wavelength
gravitational radiation would create noise in pulsar tim-
ing, and the present observational bound -on the energy
density in waves of period —1 yr is

Ag(1 yr ') (10
The accuracy of the results grows rapidly with the time of
observation, and Qg —10 will probably become detect-
able within several years.

An order-of-magnitude estimate of the gravitational
background from strings has been found in Refs. 8, 9, and
3. Here, we will do a more careful calculation, taking
proper account of the facts that each loop contributes to
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I
dp/«I =y GV' (1.7)

with yp 10. In the cosmological context, the loops are
formed with mildly relativistic velocities. The "gravita-
tional rocket" effect becomes important when the loop is
sufficiently slowed down by the expansion. We will show
that loops formed with sufficiently small initial velocities
are decelerated to subsonic speeds by dynamical friction
and do not rocket away (a similar conclusion has been
reached by Hogan and Rees ).

the gravitational radiation in a wide range of frequencies
and that these frequencies change with time as the loop
shrinks. Our final result is very simple:

Qg(f) -45a ~ P(GJM/y)' Qr, (1.5)

where Q& ——2)& 10 h is the microwave radiation densi-
ty in units of p, and a ~ P is a numerical coefficient —1

defined in Sec. III. The precise value of this coefficient is
presently unknown, but it can be found by a numerical
simulation of the evolution of strings. y in Eq. (1.5) is the
average value of y for various loop configurations. In-
terestingly enough, the result is insensitive to the details of
the spectrum emitted by individual loops and depends
only on the overall power given by y. The string scenario
of galaxy formation requires ' Gp —10, and with

y —100 Eq. (1.5) gives

Qg(f)-10 (1.6)

Equation (1.5) applies for f&&10 (Gp) ' yr ', which
includes the frequency range of interest g-1 yr '). The
result (1.6) is consistent with the observational upper
bound (1A) and should be within the experimental capa-
bilities of detection in a not too distant future.

Asymmetric loop configurations radiate not only ener-

gy, but also momentum. As a result, a loop initially at
rest will accelerate like a rocket. We have found the
momentum radiation rate for a few loop trajectories; the
resu1t is

a(o+L ) =a(cr), b(o+L ) =b(o ) . (2.7)

It is clear from Eq. (2.5) that the motion of the loop must
also be periodic in time with the same period. In fact, the
actual period is twice shorter, T=L/2, since it is easily
seen that

x(o+L/2, t+.L/2) =x(o, t) . (2.g)

The periodic functions a and b can be expanded in
Fourier series; then the constraints (2.6) give nonlinear
algebraic equations for the coefficients. Exact solutions
can easily be obtained in which only a few lowest frequen-
cies are present. A simple family of solutions involving
only two frequencies has been found by Kibble and
Turok: '

L ~ 1 ~x= (ei[(1—a)sino + —,asin3o +sino+]
4m.

—e2[(1—a )coso + —,
' acos3o +cosPcoso+ ]

—eiI2[a(1 —a)]' coso +sin/cosa+ I ) .

(2.9)

and thus the parameter cr varies from 0 to L=M/p
around the loop. We shall call L the invariant length of
the loop. (The actual length varies with time, but usually
remains of the order of L.)

The general solution of Eq. (2.1) is

x(o, t) = —,[a(o —t)+b(o.+t)], (2.5)

and Eqs. (2.2) give the following constraints for the other-
wise arbitrary functions a and b:

(2 6)

For a closed loop these functions should be periodic:

II. GRAVITATIONAL RADIATION
FROM LOOPS

~ ~

X—X =0~

XX=0, X +X =1
(2.1)

(2.2)

where dots and primes stand for derivatives with respect
to t and cr, respectively. The energy-momentum tensor of
a string can be found by varying the string action with
respect to the metric or by considering the energy-
momentum tensor for a straight string and performing
Lorentz boosts. The result is

T""(x,t)=p Jdo(x"x" x'"x' )5' '(x ——x(cr, t)),
where we take x =t. The total energy of a closed loop is

(2.3)

(2.4)

The string trajectory in space-time can be described by
a vector function x(o., t), where o is a parameter along the
string. The equations of motion for a string can be writ-
ten as (see, e.g., Refs. 7 and 3)

Here, o+ (2m/L)(o+t), e;——are unit vectors in the direc-
tions of the Cartesian axes, a and P are constant parame-
ters, 0 & a & 1, —m & P & m. In these solutions, the points
of the loop at o =L /4, 3L/4 reach the velocity of light at
t=(n + —,

' )L/2, where n is an integer. We shall use the
loop trajectories (2.9) for the calculation of gravitational
radiation from loops.

The choice of the two-parameter family of solutions
(2.9) may seem arbitrary. However, it can be argued that
it gives a fair representation of the loop configurations
produced in the early universe. The reason is that high-
frequency waves on strings are damped in the course of
expansion, and so truncating the Fourier series after the
first few terms is justified. Turok has shown that a large
fraction of the parameter space in the family (2.9) is occu-
pied by loops which never self-intersect and thus cannot
decay by breaking into smaller and smaller loops. The
dominant decay mechanism for such loops is the gravita-
tional radiation.

The gravitational radiation rate can be found using the
following general equation
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dp„
dQ

GCOn
[T„*,(co„,k) T"'(co„,k) ——,

l
T„"(~„,k)

l ] .

(2.10)

where I and I+ are defined in Eqs. (2.14),

a= 1 —sin sin 0
2

is the Fourier transform of the string energy-momentum
tensor (2.3)." The total power of the radiation is

dE/dt =gP„. (2.12)

Let us first consider the loop trajectories (2.9) with
a=O. Rotating the coordinate frame by an angle P/2
around the direction of ei and performing simple tri-
gonometric transformations we bring (2.9) to the form

L . 2~cr 2~t + 2~o 2' tI= e1sin cos +ezcos cos cos
2

'
L L 2 L L

Here, dP„/dQ is the intensity of radiation at angular fre-
quency c0„=4m.n/L per unit solid angle in the direction of
k

I

k
l

=~. and

T&„(co„,k)= —f dte " fd x e ' *T& '(x, t) (2.11)pv n~

dP„/dQ=8rrGp n [J„'(na)] (2.16)

where we have used the relation J„+&(z) —J„ i(z)
=2J„'(z). The asymptotic behavior of J„'(na) at large n is

cosP=a 'cos8,
and cos8=k ei (8 is the angle between k and the x axis).
The components To; and Toc can be found using the con-
servation laws, m„To; ———kJTJ, co„Too——k'k T~.

Using the asymptotic expansions for the Bessel func-
tions, it is easily seen that in the high-frequency limit
(n »1) the components of T„(co„,k) are peaked in the
directions of 0=0 and 0=+. This is not surprising if we
note that the high-frequency contributions come from the
vicinity of the points on the loop that reach the velocity of
light and that the luminal velocity at those points is along
the x axis. For n »1 and sin 8«1, Eqs. (2.10) and
(2.15) give

2m cr . 2mt+e3sin sin sin
2 L L (2.13)

J„'(na) =0.41n

for 1 «n «n„where
(2.17)

:——2( —1)"I, (2.14)

f Jz~„+&~(2na sino ) do =~J„+&(na) =2( —1)"I+,
where J„(z) are Bessel functions. The resulting expres-
sions for T„(u„,k) are

T» p(I+ +I +2I cos2P),——

T22 pcos (I+ +I 2Icos2f3)—
T33 ——tan —Tzz,2

2

T&2
——2p sin2P cos+I,

2

T13= 23 =0

(2.15)

The motion of the loop described by this equation can be
easily visualized. At t =0, the loop has the shape of an
ellipse in the xy plane. It rotates and turns into a double
line along the z axis at t =L/4. At this moment the ends
of the double line are moving in the x direction with the
velocity of light. At t=L/2 the loop returns to the ellip-
tical shape and goes through the cycle again. The degen-
erate cases /=0 and P=~ correspond to a circular loop
and to a rotating double line, respectively.

We can now substitute Eqs. (2.13) and (2.3) in Eq. (2.11)
for T& (m„,k). The t and cr integrations can be done
analytically if we restrict k to be in xy or xz plane. Al-
though the calculation for other values of k still has to be
done numerically, this analytic exercise is very useful for
the understanding of the high-frequency behavior of
dP„/dQ. For k in the xy plane we use the relations

t cos2nt exp —iz cost =sr —1 "Jz„z

f J2„(2na sino)cos2o do. = —m J„&(na)J„+&(na)

n, =3[2(1—a)] =3 sin8sin—
2

(2.18)

For n »n„, J„'(na) decreases like exp( n/n„). —The to-
tal intensity of the radiation at angle 8« 1 is

dP /d 0=gdP„ /d 0—Gp n„'r ~ 8 (2.19)

The case when k is in the xz plane can be analyzed
similarly. The results are still given by Eqs. (2.16) and
(2.19), but now a =[1—cos (P/2)sin 8]'i and
n, =3

l
sin8 cos(P/2)

l

From Eq. (2.19) we see that the angular distribution of
the radiation diverges like 0 ' as 0~0. However, this
singularity is integrable and the total power,
P= f (dP/dQ)dQ„ is finite. We can also use Eqs. (2.16)
and (2.18) to find the asymptotic behavior of

P„=f (dP„/dQ)dQ (2.20)

at large n. We can write P„-0.7Gp n ~ 50„~60„„
where 68„~—3/n ' sin(P/2) and b,8, -3/n ' cos(P/2)
are the angular widths of the peak of dP„/dQ, in xy and
xz directions, respectively. This gives

P„—10Gp (sing) 'n (2.21)

Equation (2.21) applies only for n »(sing) and is not
valid for /=0 and m. These are the singular cases in
which the total power diverges.

We have done a computer calculation of the total power
dE/dt for several values of P. We first calculated P„ for
n = 1,2, ... until the asymptotic regime (2.21) was reached
and then estimated the remainder of the series using Eq.
(2.21). Figure 1 shows P„as a function of n for some
values of P. The closer P gets to 0 or vr, the longer it takes
to reach the asymptotic region. The total radiation power
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FIG. 1. The spectral power P„ for several loops of Eq. (2.9)
with a=0.

can be written as

dE/dt =yGp (2.22)

where y is a numerical coefficient. Figure 2 shows y as a
function of P. For values of P close to 0 or m we had to
stop the calculation before the asymptotic region was
reached and could only find upper and lower bounds for
the remainder of the series. These are shown by error bars
in the figure.

The family of the loop trajectories (2.13) is degenerate
in that all loops collapse to a double line at t=L/4.
Cosmologically, the most interesting loops are those
which never intersect themselves. We have calculated nu-
merically the gravitational radiation power for several
nonintersecting loops, with similar results. For example,
the lower and upper bounds for y for the loop (2.9) with
a=0.5 and /=0 are 32.4 and 64.4, respectively. The

n
lower bound is g, 'P„, where n, is the value of n at
which the calculation was stopped. (In this particular

FIG. 2. Total radiated power as a function of P for loops of
Eq. (2.9) with a=O. Error bars show the uncertainty in the
value of y in cases where the asymptotic regime (2.21) has not
been reached.

=g J . kdQ. (2.23)

The loops described by Eq. (2.9) have mirror symmetry
and do not radiate momentum. %'e have calculated
dE/dt and dP/dt for a few asymmetric loop trajectories
belonging to the family

case n, =30. Pursuing the calculation to substantially
greater values of n would take an enormous amount of
computer time. ) We cannot improve this estimate, since
we do not know the asymptotic behavior for a&0. The
upper bound is based on estimating the remainder of the
series using the average slope (=—1.17) of P„at n n, -
The graph of P„ for this loop is shown in Fig. 3. (The os-
cillations of P„at n &15 suggest that the asymptotic
form of P„may not be a simple power law. ) For all loops
we considered the values of y are rather large, typically
between 50 and 100.

The rate at which the loops radiate momentum can be
found from

x(o, t) = (et[(1—a)sintr ——,
' a sin3o. +sino+] —e2[(1—a)coscr + —,

' a cos3tr +cosP coso+]
7r

+e3I[a(1—a)]' sin2o —sinPcoso+J) . (2.24)

Here, a and P are constant parameters, 0 & a & 1,
n&P&n. Th—e shape of the loop with a=0.5 and

P=m/2 is shown in Fig. 4 at t =0 and t=L/4. The re-
sults for the gravitational radiation from loops with
a =0.5 and a few values of P are shown in Table I, where

p p &s defined as

i
dP/dt

i =y~Gp~ . (2.25)

For these solutions the series (2.12) and (2.23) are rapidly
converging (P„ocn ) and the errors are small.
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TABLE I. Energy and momentum radiation by asymmetric
loops (2.24) for a =0.5 aud several values of P.

I 0.0

5.0

0.25
0.50
0.75

47.5
54.0
47.0

pp

6.4
12.0
5.0

I.O

0.5

4 6 8 IO $0 30 40 50 60

III. STOCHASTIC GRAVITATIONAL BACKGROUND
/

The gravitational radiation background is produced by
loops of different shapes and sizes; some of them may still
be around, but most of them have already decayed. Loops
are formed by intercommuting of intersecting strings. It
is usually assumed' that loops formed at cosmic time t
have initial length

0.2

I.p-at
and the rate of loop formation is

(3.1)

FIG. 3. The spectral power P„ for nonintersecting loop of
Eq. (2.9) with a=0.5 and /=0. The average slope used to esti-

mate the remainder of the series is shown by a solid line.

dn Idt —1st (3.2)

Here, dnldt is the number of loops formed per unit
volume per unit time, and a and p are numerical coeffi-
cients which can be determined by a computer simulation
of the evolution of strings. If the intercommuting proba-
bility for intersecting strings is —1 (and the numerical
analysis by Shellard' suggests that it is), then one expects
that u- f3-1. We shall assume that a substantial fraction
of the loops are of non-self-intersecting variety. The life-
time of such loops is r=L ply Gp. Each loop emits gravi-
tational waves at a discrete set of frequencies
f„=2nIL(t), where L(t)=Lp yGpt. (N—ote that for
strings of cosmological interest yGp-10 &&1.) The
frequencies grow as the length of the loop decreases. Ra-
diation emitted by the loops is red-shifted by the cosmo-
logical expansion, so that the present frequency of the ra-
diation can be much smaller than the original one.

Let us calculate the intensity of the radiation in the fre-
quency range from f to f+df at present. If the radiation
is emitted at time t, it should have the initial frequency

f (t) =fa(tp)la(t), (3.3)

where a (t) is the scale factor and tp is the present cosmic
time. Loops radiating at this frequency have the initial
lengths

L„=2n /f (t) +y 6pt (3.4)

with dL„=2n [a(t)/a(tp)]df/f . Using Eqs. (3.1) and
(3.2) we can find the number density of such loops at
time t:

3
a(L„/a) dL„

dn„(t)=rr P a t
(3.5)

Loops of initial length L„were formed at t-L„/a, and
so Eq. (3.5) applies only for

I.„&at . (3.6)

FIG. 4. The xy projections of the asymmetric loop (2.24) (a)
at t =0 and {b)at t =L /4.

The present energy density of the radiation in the frequen-
cy interval df is
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dps =QP„f dt dn„(t)[a(t)la(to)] (3.7)

The lower limit of the time integration is determined from
the condition (3.6). The spectral power P„ is, of course,
different for loops of different configurations, and here
we have assumed some kind of averaging over configura-
tions.

Let us first consider the contribution to (3.7) of the
gravitational waves emitted during the radiation era,
t &t~q, where teq

——4X10 (Qh ) sec is the time of
equal rnatter and radiation densities and Q is the present
density of the universe in units of p, . Then a(t) ot' /.
Introducing a new variable

yGp-10, Qh -0.25, and n, —100 we have
f, -2.5)&10 yr ', and the values of f»f, include
the frequency range of cosmological interest, f & 1 yr
For f-f, Eq. (3.12) is still valid in the order-of-
magnitude sense. We note that Eq. (3.12) is in good
agreement with order-of-magnitude estimates in Refs. 2,
3, 8, and 9. The qualitative shape of the spectrum at
f«f, has been discussed in Refs. 8 and 9. The upper
bound of the spectrum (3.12) is at f,„—Qz(t, qt/)
where t/ is the time at which the friction of strings due to
their interaction with particles becomes unimportant. '
For superheavy strings with Gp-10, t~-10 sec,
and f,„—10 sec

2n a (t) na (t) dtX= dX =—
ft a(t, )

' fa(t, ) t'

and using the relation
' 4

3 a(t)
Py=

32mGt2 a(to)

(3.8)

(3.9)

IV. GRAVITATIONAL ROCKET EFFECT

In this section we shall discuss how the motion of the
loops is affected by the gravitational radiation recoil (or
gravitational rocket effect). For simplicity we shall con-
sider loops formed during the matter-dominated era,
t & t,q, when a (t) cc t . The equation of motion for a
loop of length L is

where pr is the present energy density of thermal radia-
tion, we can rewrite (3.7) as v+2vl3t=ypGpn/L, (4.1)

dpg
—— a Ppz QP„f dx(x +yGp)

64776 3/2 d
X

Here,

x„=2na (t,q)/[a (to)ft, q)

=7.5&&10 Qh nlf(yr ') .

(3.10) (4.2)

(For time periods smaller than r=L/yGp we can treat L
as a constant. ) The rocket term becomes important at

t„—(u;/y Gp) /L . (4.3)

where n is the direction of the recoil. The velocity of the
loop at formation (t-L/a) is mildly relativistic, u; &1.
The solution of Eq. (4.1) with this initial condition is

v=v;(L/at) +(3yt Gp/5L)nt .

The lower limit of integration corresponds to t t q and
the upper limit comes from the condition (3.6).

For n «N=1. 3&&10 yGp(Qh ) 'f(yr ') the integral
in Eq. (3.10) equals 2/3(yGp) and for n »N it is
2 3/( Gyp)

/ (Nln) / . Hence, we can write

QP„f dx(x +y Gp)
n

dl/dt-Gp L . (4.4)

(Here and below we set a- 1.) By the end of its life the
loop reaches the velocity u-yz/y-0. 1.

We note that angular rnornentum radiation can prevent
the loop from accumulating a large velocity. On dimen-
sional grounds, one expects that the angular momentum
radiation rate is

= —', (yGp) / yGp —g P„[1—(Nln) ]
n=X

(3.1 1)

If this torque causes the loop to rotate as a solid body,
then the corresponding angular acceleration is
8-(2m. )2GpL 2. The time it takes for the loop to rotate
by an angle -~/2 is

(f )
~ 3/2P(G / )1/2Q

9
(3.12)

Here, Qz ——pz/p, and Qg(f) is defined in Eq. (1.3).
To complete the calculation, one has to consider the

contribution of t & t,q to the integral (3.7). After a
straightforward calculation one finds that for f»f, this
contribution is much smaller than (3.12). With

Obviously, the last term in Eq. (3.11) is negligible for suf-
ficiently large N. We can introduce n, , the value of n at
which the series (2.12) can be truncated without substan-
tially affecting the result. For the loop trajectories (2.13)
truncating the series at n, —100 gives an accuracy of
-20%. For f»f„—10 (yGp) 'Qh n, yr ' Eq.
(3.10) gives

v = 2v/3t v/t, +yzGpn/L, — — (4.5)

(Gp) / L/2~,
and the velocity accumulated during this time is
u —( Gp )

'/ . Note, however, that this conclusion is
reached assuming that the loop rotates like a solid, which
is far from obvious. Besides, even if it does, the rotation
axis may not be at right angles to the direction of recoil,
and then the loop will accelerate along the axis of rota-
tion.

Another effect which can counteract the gravitational
rocket force is the dynamical friction (or gravitational
drag) due to small-angle scattering of particles. ' With
dynamical friction taken into account, the equation of
motion for a loop is
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where

t, -U /4rrG Mp-3U t /2GpL (4.6)

Friction dominates first if tf & t„which gives

U, &y, "4-(Gl )'"-O.1, (4.9)

(4.7)

Hence, the time scale of the frictional slow down is

tI-U; L/2GP . (4 &)

for v & U„ t, -const for U & U„and v, is the velocity of
sound. When U is sufficiently large, the dominant term on
the right-hand side of (4.5) is the first term describing the
deceleration of the loop due to expansion. The subsequent
behavior of the loop depends on the initial velocity U;

which determines which of the two remaining terms in
(4.5) first becomes dominant. If the rocket term dom-
inates first, dynamical friction never becomes important:
the velocity grows and friction decreases like U . If fric-
tion dominates first, the rocket effect is never important,
since friction grows like U as velocity decreases, while
the rocket term remains constant. In this case, to estimate
the timescale on which the loop is decelerated to a subson-
ic velocity we solve Eq. (4.5) without the last term and
with t, from Eq. (4.6):

2/3 1/3
L '

2Gp t
U 1—

U
3 I

where we have used the values Gp -10,yz —10.
The most interesting loops for cosmological applica-

tions are those which formed at t &t,q but decayed at) teq A similar analysis shows that such loops are de-
celerated to subsonic speeds if they have
U; & (GlJL /t, q

)' . For loops on the galactic scale,
1.—10 sec and Gp-10, this gives U; (0.1. The velo-
city distribution of loops at formation can be determined
by a computer simulation of the evolution of strings. It is
quite possible that a substantial fraction of all loops have
v; (0.1 and will not rocket away. They will accrete
matter giving rise to compact galactic nuclei and quasars,
as discussed in Refs. 13 and 14.
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