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Evaluation of the derivative quartic terms of the meson chiral Lagrangian
from forward dispersion relations
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Using the forward dispersion relations for mm scattering, we show that the coefficients of the derivative
quartic terms in the chiral Lagrangian are positive. The Skyrme term is mainly given by the p-meson con-
tribution to the I = 1 total cross section and gives a proton mass of 1.27 GeV. The non-Skyrme term is
found of comparable strength from the I=0 S-wave mn data.

The standard minimal SU(3) x SU(3) nonlinear effective
Lagrangian for the pseudoscalar-meson octet is known to
reproduce all the current-algebra results for processes in-
volving soft mesons in an elegant manner. ' For hard-
meson processes, one expects on general grounds deviations
from the current-algebra prediction as found in KI4 form
factors, 3 q 3~ decay rates, 4 and the S-wave I= 0 m m

scattering length. Thus correction terms must be present
to account for the experimental data.

There are two interrelated approaches to account for the
correction terms. The first one consists in using current-
algebra results as low-energy theorems which are supple-
mented by the use of the unitarity and analyticity to calcu-
late the correction terms. ~ This is a nonperturbative ap-
proach, and good agreement with experimental data is ob-
tained. The second method involves the introduction of
terms involving higher powers of field derivatives to the
minimal Lagrangian; the strength of these terms are new
parameters which must be determined either from indepen-
dent experiments or from the matrix elements given by the
first method. 6 Because the effective-Lagrangian method is a
power-series expansion of the matrix element in terms of
the invariant variables, it can only account for the singulari-
ties induced by the unitarity condition in a perturbative
way. 6

In the region where the power-series expansion is valid
(e.g. , below the unitarity cut), the effective-Lagrangian
method should give good results, as it was recently shown
that the inclusion of the symmetry-breaking terms with
derivative coupling is needed7 to account for f~/f and the
E/3 Callan-Treiman relation. (It has also recently been
sho~n that the derivative quartic terms are needed to ac-
count for the possible discrepancy with data for K 3m
rate. Unfortunately, this is not the whole story because the
calculated K 2n and K 3m are purely real, awhile the
physical K 2~ amplitude has a phase of 40-45' which
cannot be neglected. This illustrates some difficulty of us-
ing the effective Lagrangian above the unitarity cut. 5) From
this standpoint we see that similar terms in higher powers of
derivatives (quartic terms, etc.) must also be present for
pion-pion scattering. A possible source for these terms may
be found in the coupling of the pseudoscalar meson with
heavy particles (vector, scalar mesons p, a. . . .), which in
the limit of low-external momenta can be eliminated from
the theory, leaving a meson Lagrangian with higher powers
of field derivatives. For example, in the o- model, by ex-
panding the o propagator in powers of k2/m 2 (k2 being a

typical external momentum), one finds that the k' term cor-
responds to the minimal Lagrangian and the k4 terms gives
rise to derivative quartic terms of the form (8„4&ri„C&)',etc.

Our interest in these derivative higher-order Lagrangians
is kindled by a recent revival of the Skyrme model, ' started
by Witten" and others, '2 who extended Skyrme's idea and
showed that the nucleon may be described as a topologically
stable soliton of the chiral Lagrangian. The presence of
higher powers of field derivatives in the chiral Lagrangian is
required for a stable soliton configuration with its mass re-
lated to the strength of these terms. ' If we consider only
terms quartic in the field derivative, then in the chiral-
symmetry limit there are only two quartic terms, one of
them being the term originally used by Skyrme in his soli-
ton solution. At low energy these terms give rise to an
energy-dependent 7rm scattering amplitude, which in the
forward direction can be determined directly from the
dispersion relation. The purpose of this Rapid Communica-
tion is to evaluate the strength of the quartic terms using
the forward dispersion relation for mm scattering. In this
way, we can see immediately that the coefficients of the two
quartic terms are positive as a consequence of the positivity
of the cross section. Our results show that the Skyrme term
depends essentially on the P-wave sr~ data while the non-
Skyrme term depends mainly on the I=O S-wave data in
the low-energy region. We find

I f»'
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where I/e' and y/e2 are the strength of the Skyrme term
and the other term, respectively, and the S-wave I=0 mm

data has been -parametrized in terms of a possible broad "cr
resonance. " Before proceeding to the derivation of Eq. (I),
we should mention that in previous works the quartic coeffi-
cients were expressed in terms of the D-wave I=O and
I =2 scattering lengths' or the deviation from the current-
algebra prediction of the P-wave scattering length. '2 These
quantities are unfortunately extremely difficult to measure
due to the smallness of the P- and D-wave phase shifts at
the threshold (the only reliable measurements of the
scattering lengths available at present is that of the I=0 S-
wave phase shift from the k~4 data). We avoid this problem
by using the effective Lagrangian to obtain the low-energy
forward mm scattering amplitude and then compare it with
that obtained from the dispersion relation at a point below
the unitarity cut (in terms of the measured S- and P wave-
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m m data up to 1 GeV). The effective Lagrangian for
meson-meson interactions is given by

=Wo +W0

where Wo is the standard minimal term. In the chiral-
symmetry limit (massless pion), there are only two chiral-
invariant quartic terms and the quartic term W~ is given in
the most general form as

Tr( [B„MM,B„MM]~) + y~ [Tr(B„MB„M) ]~
32e' " ' " 8e'

(2)

in standard notation. M is the meson coupling matrix of
the exponential form in the nonlinear realization of chiral

I

symmetry and is given by
t 'I

2 i+M= exp f = m

is the octet pseudoscalar-meson field operator:

e=g ' ', i=1, . . . , 8
( 2

We are interested in evaluating the coefficients e and y
in W0. The first term in Eq. (2) is denoted as the Skyrme
term and the other term is called the non-Skyrme term.
The contribution to the ~m scattering amplitude from these
quartic terms is obtained directly from all tree graphs gen-
erated by Wg. Let Tot4,q(s, t' u ) be the invariant scattering
amplitude for the process ~, + m q n-, + m-q, then the parts
obtained from WQ for vr +~o m + m and ~ m o ~o~ elas-
tic scatterings are given by

T~~Q (s, t, u) = [(s—2m ) + (u —2m ) —2(t —2m~~) ]+~ (t —2m )1f p 4 (3a)

Tg (s, t, u) = [(s—2m ) + (t —2m ) + (u —2m ~)~]
e2 4

(3b)

~ ~+0 2
geo' e'f 4

~ ~oo 4y
e~f (4)

Note that by taking the derivative of the amplitudes, we get
rid also of the contribution from the derivative quadratic
terms in the chiral-invariant Lagrangian or similar terms
from the chiral-symmetry-breaking (3, 3) + (3, 3) mass
term, which are therefore not needed in our analysis. The
two processes mom ~ m ~ and m + m o m + mo are even
under s u crossing (even in co). Using the Froissart
bound, we can thus write a once-subtracted dispersion rela-
tion for T(co) We have.

( ) T (0) Qj ~
Im TQQ(Ql ) dQJ

00 ~ 00 + J g p( g p)
(5)

and a similar expression for T+0(co).
Using the optical theorem and taking the derivative of (5)

and comparing it with (4), we obtain

js(s —4m ~)o.,"„(s)ds
e' m "4m ' (s —2m ')' (6a)

where s, t, u are the usual Mandelstam variables. Note that
for n +n 0 elastic scattering, in the forward direction (t = 0)
the non-Skyrme term does not contribute to the energy-
dependent quartic term while the Skyrme term does not
contribute to m ~ ~ ~ scattering. Hence by considering
the amplitude in the forward direction ( t = 0) and taking
the derivative with respect to

a)~= (s —2m ) (s+ u =4m~, t=0)
we can isolate the Skyrme and non-Skyrme terms. We get

and similarly

y
e2

f 4 " Qs(s —4m ~)a," (s)ds
2' " 4m (s —2m ')' (6b)

From the positivity of the cross section we see that y and e
must be positive-. Also, obvious lower bounds for e~ and y
can be obtained using only the measured cross sections in
the available energy range. Furthermore, to get e~ and y
from Eqs. (6), it is useful to note that because of the extra
power in the energy denominator, the high-energy contribu-
tion is strongly suppressed so that most of the contribution
to e and y comes from the low-energy dispersion integral.

~+~o
cT) t involves contributions from the I= 1 and I= 2 chan-

nels while o-„," receives contributions from the I= 0 and
I= 2 channels. (We neglect the D -wave I = 0 contribu-
tion. ) At low energy, from the arm data or from the
current-algebra result, a-„=, is found negligible. Therefore,
the Skyrme term receives mostly contribution from the p-
meson resonance, and the non-Skyrme terms get the main
contribution from the large I= 0 S-wave scattering which
could be interpreted as a possible broad scalar resonance
(which however does not show up in the phase-shift
analysis). We use the parametrization for the partial-wave
amplitudes,

(8I
t e stn t

p(s)
which agrees with the experimental data and which gives5

the correct Weinberg S- and P-wave amplitudes at

s = ~™„'[p ( s ) = ( s —4m'') 'i'/ s'i'],

(L/12) (s —4m„~)
1 —a(s —~m„~)+ (L/12) (s —4m„)[h(s) —h(m /2) —ip(s)]

(L/g) (s —m„'/2)
1 + bQ(s —m ~/2) + (L/2) [s —(m ~/2) ] [h (s) —h (m ~/2) —

ip (s) ]

y, (s —4m„')
se —s+ y)(s —4m ') [h(s) —ip(s)]
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where

s —4m„Js+ps —4m '
Ii s = — "

ln
'ir s 2

and L = (47r f„2) '. For a = 0.0357m 2, the P-wave
phase shift passes through 90' at m~=775 MeV and yields
an experimental total width of 15S MeV. Similarly the S-
wave 1=0 phase shift can be fitted with ho= —0.04m= —m 2, which agrees with the experimental data up to
700 MeV.

Putting the imaginary part of f/(s) as given by Eqs. (7)
and (8) into Eqs. (6a) and (6b), we find

generated by quarks at the one-loop level. ' Our approach,
on the other hand, shows the importance of nonperturbative
effects associated with soft-gluon radiative corrections taken
into account in the form of p and o- resonances.

In conclusion, in this simple analysis we have showed that
the strengths of the quartic terms are quite large and must
be taken into account in a computation of the proton mass.
This is beyond the scope of this paper and will be discussed
elsewhere.

Note added. Using Derrick's argument of scaling and
some inequalities, it was recently shown by K. Fujii, S. Ot-
suki, and F. Toyoda [Kyushu University Report No.
KYUSHU 84-HE-7 (unpublished)) that no stable soliton
solution exists if

and

e2 2
m~

mp
2

y=
m~

(9)

where we have neglected the contributions from the unitari-
ty correction, i.e. , the function i'i (s), which are small here.
Note that the above results [Eq. (9)] can be obtained direct-
ly from the p and a. contribution at the tree level to the ~~
scattering amplitudes which satisfy the low-energy theorem.

Our result clearly shows that the Skyrme and non-Skyrme
terms are suppressed by a power of the mass of the heavy
field (of the order k2/m~' relative to the minimal terms).

The value for e2 we obtain is comparable to that of
Donoghue, Golowich, and Holstein. ' If we ignore the
non-Skyrme term then we get a proton mass of 1.27 GeV
(Ref. 14). For the non-Skyrme term we get however a
value for y much larger than that of Donoghue et al. '

There have been some recent attempts to compute the
coefficients of these quartic terms as an effective potential

Comparing this with the result of Eq. '(9) (y —-0.7), we see
that there is no soliton solution with only the quartic deriva-
tives in the effective Langrangian. We give here a simple
proof of this result. Using Eq. (10) of Ref. 13, after a trivi-
al rearranging of the contribution of the quartic terms to the
energy integral, we have

r

( 1 3 )
sin4F + 2F'2 sin2F

«4r -2r

'y F2 sin F &0
r

which violates the positivity for y ~ T.
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