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Deformation effects in the Skyrmion-Skyrmion interaction
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In the framework of the Skyrme model we calculate the Skyrmion-Skyrmion interaction allowing for de-

formations in the chiral field. Significant changes in the potentials compared to the ones with the pure
hedgehog Ansatz appear. This strongly suggests that no convincing calculation of the static X-N potential as
constructed from the Skyrmion-Skyrmion interaction has been done up to now. Our results therefore indi-

cate that a reliable N-N potential can only be gained by more elaborate methods such as, e.g. , lattice calcu-

lations.

Tr(B„UB"U ) ——Tr [B„U,B„U], (1)

where the quaternion field U(r) incorporates the underlying
mesonic degrees of freedom, the scalar field cr and the iso-
triplet m. The quadratic term in Eq. (1) gives the common
current-algebra results, f =93 MeV being the pion decay
constant. The quartic term in the Lagrangian (1) stabilizes
the soliton; the value of e =0.00552 follows from the
Goldberger-Treiman relation to give g~ =1.25. The most
general Ansatz for U(r) is given by

U(r) eir ~ n(r)i)(r)

where n(r) is some unit vector and 8(r) is the chiral field
related to the cr and m degrees of freedom. In the case of
the simple hedgehog, n=r/lrl and 8(r) =e(lrl), i.e., the
isospin points radially in space and the chiral field depends
on one variable, the distance r. Decomposing the quatern-
ion field U(r) in the form

U(r) =(2 (r)+i r b(r) (3)

Following an old idea of Skyrme, ' baryons emerge as
chiral solitons in a nonlinear meson field theory. Including
the Wess-Zumino term in the nonlinear o- model, Witten'
has shown the connection between Skyrme's model and
QCD in the large-Nc expansion (Nc is the number of
colors). Witten proved that Skyrme's suggestion of identi-
fying the integrated topological current 8'„with the baryon
number is indeed correct. So topology is the main in-
gredient to stabilize the soliton. Static properties of the
low-lying baryons4 as wel1 as the Skyrmion-Skyrmion in-
teraction' have been worked out in detail. One of the main
assumptions in these calculations is the hedgehog shape of
the underlying chiral field due to the principal of maximal
symmetry.

Our main concern in this Rapid Communication is to in-
vestigate whether the Skyrmion-Skyrmion interaction is cru-
cially dependent on deformations of the chiral field 8. In
the work of Jackson, Jackson, and Pasquier, 5 no deforma-
tions except scale changes were allowed; here we want to go
one step further. This can also be motivated from many-
Skyrmion systems where cylindrically symmetric solutions
considerably lower the energy per particle as compared to
the spherical case.

The underlying Lagrangian of the Skyrme model' is

the energy functional E (a, b) is2

3 2

E = X [(B,~)'+ (B,b)']
i=1

B = J d x a ( 2 + a 2) e,J„B;bx B~b Bkb (5)

Equation (5) will serve as a check for the numerical accura-
cy in the determination of the static Skyrmion-Skyrmion po-
tential from the field energy given by Eq. (4).

As shown by Jackson et al. ,
' there are three independent

sets of potentials in the spherically symmetric case, accord-
ing to the relative spin/isospin rotations of the two solitons.
Here we are interested in the change of these potentials if
one allows for nonspherical deformations of the chiral field.
Any of these rotations being specified by three Euler angles
(a, P, y), the potentials v~, vs, vc are defined by

vp(R [a])= V(R.a =0, P = 0, y = 0),

vs(R [a])= V(R a=90', P=0, y = 0),

vc(R;[a]) = V(R a = 0, P = 180', y = 0) .

(6)

Let us mention that the connection between these so-called
potentials and the N-N potential is by no means trivial. The
definitions (6) correspond to somehow classical quantities,
namely, energies [see Eq. (9)] of classical field configura-
tions with baryon number 2, when the energies of two
noninteracting solitons have been subtracted. It should be
kept in mind that the quartic term of Eq. (1) mocks up
quantum effects, so the meaning of "classical" is already
uncertain. 8

Since there is no proof that the overlap of two spherically
symmetric solitons minimizes the energy functional (4)
(note that even for B = 1 it has not yet been proven that
the hedgehog Ansatz minimizes the energy) we investigate

+4e2 X [(B,.b)2(B b)2 —(B,b B. b)2
i j= 1

+ 2(B;a )2(B,b) —2B;a Bja B;b B~b], (4)

where the functions a and b contain the complete geometri-
cal information about the Skyrmion-Skyrmion potential.
One can also express the baryon number B in terms of the
a's and b's; we have7
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the Skyrmion-Skyrmion potential with a slightly more com-
plicated Ansatz.

A generalization of the spherically symmetrical Ansatz is
by no means evident. Certainly, Eq. (2) should be the
starting point, but it gives no hint concerning the location of
each soliton. Therefore, we cannot define their distance re-
liably. Usually, the position of the single solitons is defined
by the value —1 of the quarternion field U(r). Although
this is not very satisfactory for multisoliton configurations
and might even be doubtful, there is almost no alternative,

I

iv ~ r+8(r+ ) is 8 8(r )Ujrj=e + + e (7)

with r + = r +/Ir y I and r + = (x + R/2, y, z). The chiral field
is given by

e.g. , analyzing the baryon density in Eq. (5). So we restrict-
ed ourselves onto a subspace of Ansiitze for the field U(r),
which allows us to define properly the distance R and rela-
tive spin/isospin rotations of two Skyrmions. %e make an
Ansatz of the form

e(r+) = C(R) z 8 ='(XIr+ I)+ [1—C(R) le '(air+1[1+A (R)g (x, p)l), la]=0,

8(r+)=8 ='(XIr+I[1+h(R)g(x, p)[l+s(R)cos'(0+So)]]), [n]&0

(7a)

(7b)

Although this seems to correspond only to a minor change
of the spherically symmetrical Ansatz, it will already give sig-
nificant effects.

p and 5 are the polar coordinates in the y-z plane. Note
that we still keep up the hedgehog shape ~ r but we allow
for deformations in the chiral field 8(r). Let us now dis-
cuss in some detail the Ansatze (7a), (7b). For the case of
no rotations, i.e., [a]=0, we know that the product Ansatz
U

= = U~ ='U2 =' works well for large separations R; for
small separations we know the exact solution to baryon
number B = 2. Calculating ~q (R) for both Ansa'tze, we gain
an accurate two-body potential by matching both solutions
at R =0.3 fm (see also Ref. 7). This matching is described
by the function c(R) in (7a); h (R) gives the strength of
the deformation; g (x, p) (the two solitons are aligned along
the x axis) is a superposition of two Gaussian functions in
the x and p directions, giving the geometrical deformation
of the chiral field. c(R), h (R), and the two parameters in
g(x, p) have to be fitted for each separation R so as to
minimize the energy. In the case of a spin/is&spin rotation,
the 8 = 2 solution always gives a higher energy than the
product of two 8 =1 solutions. So the matching procedure
described above can be avoided. For the case [o.]&0 there

t

is no cylindrical symmetry in the problem as there is for the
unrotated potential v~(R), so that an additional angular
dependence enters. s(R) and @o have to be fitted for each
separation R. The parametrization of the 8 dependence was
done in such a way as to minimize the number of adjustable
parameters. Anyway, all our results are almost independent
of the choice of So. The parameter X describes global scale
changes as discussed in Ref. 5. It turns out to be unimpor-
tant in the unrotated case because all the gain in field ener-
gy is lost due to the fact that the relative distance of the
Skyrmions is thereby increased.

Let us now discuss our results. Figure 1 shows the
results for the unrotated case [u]=0. The dashed-dotted
curve corresponds to the Ansatz (7a) with c = h =0, A. = 1
(product Ansatz of two B = 1 hedgehogs without deforma-
tions), the dashed curve gives the result for c = h. = 1, h -0
(undeformed B =2 hedgehog). Minimizing the field energy
with respect to the set of parameters discussed above
amounts to the potential shown by the solid curve of Fig. 1.
Significant changes in the geometrical shape of the con-
figuration U(r) can be inferred from the fact that the
strength parameter h (R) is typically of the order of 0.5.
The shape parameters in g (x, p) [see Eq. (7a)] depend very
weakly on the separation R. Summarizing, the deformation
effects turn out to be of great importance for relative dis-
tances 0.4~ R ~ 2.0 fm. They have a maximum at r = 0.6
fm where the field energy is lowered by 250 MeV. Figure 2
shows equipotential lines of the chiral field for a separation
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FIG. 1. Different approximations of v& (R) are compared. The
dashed curve corresponds to A. =1, c =1, h =0 in Eq. (7a), the
dashed-dotted curve to X=1, c =h =0. Optimal parameters using
the full Ansatz (7a) produce the solid curve.

FIG. 2. Contour lines of the deformed chiral field 8(x, p). The
solitons are located on the x axis with a separation of 0.6 fm.
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TABLE I. Skyrmion-Skyrmion potentials vz and u& as defined in Eq. (6). h =0 and A. =1 give the unde-
formed case. Optimum stands for the variational procedure according to Eq. (7) giving the energy minimum.
R is the relative separation of the two solitons.

R (fm) h=0, x=1
, (MeV)

I

Optimum h=0, ~=1
vc (MeV)

Optimum

0.0
0.1

0.2
0.3
0.4
0.5
0.6
0.8
1.0
1.2
1.4

1131
1105
1027
912
773
626
487
259
118
44
12

1057
1023
925
787
645
513
398
207

97
24

4

769
746
680
585
473
359
253

93
6

—29
—34

586
577
554
513
436
306
193
49

—15
—34
—37

of 0.6 fm. Each individual Skyrmion is squeezed in the
overlap region and elongated on its other side.

Not such drastic changes can be seen for the rotated po-
tentials v~ and v~. In Table I we compare the undeformed
potentials [A. = 1, h =0 in (7b)] with the minimum of the
variational procedure using the full Ansatz (7b). vs is
lowered by at most 130 MeV around 8 =0.4 fm. For
separations larger than 1 fm the effect can almost be ig-
nored. Similar trends hold for v~ except for very small A
where the global scale changes now significantly reduce the
potential by about 180 MeV.

In summary, our calculations demonstrate the necessity of
improved field configurations U(r) to determine the N N-
potential constructed from the Skyrme model more reliably.
All potentials calculated with the deformed chiral field differ
significantly from the ones using the spherical hedgehog An-
satz. This can explain the missing attraction in the central
potential as calculated in Ref. 5. Similar observations have
been made in Ref. 9. An answer to this question can only
be given after a thorough investigation of all independent
combinations of Euler angles. Furthermore, additional in-
formation about the p-vector and ~-tensor contributions can
be gained from such an analysis.

Some doubts remain regarding how near our results are to
the true minimum of the field energy E(U(a, b)). There-
fore, we avoided a quantitative discussion at this stage of
our investigation. In the case of v~ and v~ we strongly be-
lieve that the assumption of a radially pointing isospin vec-
tor n(r) =r should be given up. But there are no hints as

to how a more general Ansatz for n(r) is to be chosen.
Recent lattice calculations' of the Skyrmion-Skyrmion in-

teraction (unrotated case [n] = 0) seem to indicate that for
strong overlap of the solitons the definition of the separa-
tion by the points U(r) = —l breaks down. Therefore the
trial function U(r) minimizing the energy functional E(U)
might even look quite different from our result. But these
lattice calculations suffer from two facts. Firstly, the rotated
potentials require a huge amount of computer time due to
the lack of cylindrical symmetry and, secondly, no convinc-
ing definition of the locations of the Skyrmions has been of-
fered up to now.

Last but not least, we wish to mention that all existing
calculations strictly rely on field energies gained from pure
classical considerations. To extract a reliable N-N potential
out of the Skyrme model, different approaches might be
inevitable, such as a phase-shift analyses of the Skyrmion-
Skyrmion scattering process, which is by no means trivial to
calculate. This can clarify the very important question of
whether the potential is really local and velocity independent
as assumed in present calculations. It is uncertain that a
static potential as extracted by different authors can survive
such an investigation.
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