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and effective Lagrangian in four dimensions
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Harmonic expansions on the internal compact coset manifold 6/H for the (%+K)-dimensional
Rarita-Schwinger fields are developed. The dimensional reduction of the -Rarita-Schwinger La-
grangian coupled to gravity in 4 + K dimensions is carried out using these expansions. The result-

ing four-dimensional effective Lagrangian describes an infinite tower of massive spin- 2 and spin- 2

fields, coupled minimally and nonminimally to gauge fields. The masses of the Dirac fields are not
given by the eigenvalues of the internal Rarita-Schwinger operator as is usually supposed.

I. INTRODUCTION

The theory of harmonic expansion on compact coset
spaces of the form 6/H for fields that occur in the
Kaluza-Klein (KK) theories has been discussed by Salam
and Strathdee' and by other authors. The harmonic
expansion for the Dirac fields and the dimensional reduc-
tion of the Dirac Lagrangian coupled to gravity were dis-
cussed in Ref. l. Awada and Toms have recently dis-
cussed the quantum effects of (4+If)-dimensional Dirac
fields. In supergravity theories, one encounters the
Rarita-Schwinger (RS) fields V~(z) rather than the Dirac
fields. Thus it would be of great interest in pondering the
problem of harmonic expansions for the RS fields and
with the help of these expansions obtain the effective La-
grangian in four dimensions. To the best of our
knowledge this has not been done so far. Most of the
work in the literature has been on the 11-dimensional su-
pergravity (d=ll supergravity) theory involving spon-
taneous compactification on suitable seven-dimensional
spaces of constant curvature. ' In this article we ad-
dress ourselves to the RS fields coupled only to gravity in
4+K dimensions. We develop harmonic expansions on
6/H where 6 is a compact Lie group and H C:6 for the
(4+K)-dimensional fields ('Il (x,y), %&(x,y)) (m=0, l,
2, 3 and p=1,2, . . . , K) and x&8 and y&6/H. The
four-dimensional spin- —, and the Dirac fields arise as
coefficients in the expansion. It is observed that the
four-dimensional RS fields are defined not just by the
fields E, (z)%'M(x,y) (a =0, 1,2, 3) but rather identified
as the field

%', (x,y)=E, 41M(x,y)+ —,I,(I" 4 )(x,y) .

This result is known in the literature in connection with
d =11 supergravity. It is shown here that this is true in
any dimension. Furthermore, it is shown that in order to
decouple the four-dimensional spin- —,

' and spin- —,
' quadra-

tic Lagrangian one must impose a gauge condition

r e (z)=o (2)

(M=0, 1,2, . . . , 3+%) imposed on, the (4+K)-
dimensional RS fields. We find that it is sufficient to im-
pose only the condition (1). It is shown below that the RS
fields in four dimensions arise as coefficients in the har-
monic expansion of

=%~+T~r~(r 0' ) .

If we require

(3)

I '4, =0 (a =0, 1,2, 3)

then the four-dimensional RS fields will belong to the
(1, 2 )e( —,', 1) representation of SO(1,3). The harmonic ex-
pansion for the spin- —, Dirac particles are in terms of
reducible representations of the group G.

The masses for the Rarita-Schwinger fields are, as is to
be expected, given by the eigenvalues of the internal Dirac
operator. It will be shown that masses of the Dirac fields
are not given by the eigenvalues of the internal Rarita-
Schwinger operator I"'PV' (y) but rather by the eigen-
values of the operator

MPP (rPg~P+ r~gPP+—rPgP~)p (y )

In the next section we discuss the harmonic expansions
for the Rarita-Schwinger fields in 4+K dimensions. In
Sec. III the dimensional reduction of the RS Lagrangian
coupled to gravity is carried out using these harmonic ex-
pansions and the Kaluza-Klein ansatz for the vielbein
fields. We find that, in addition to the four-dimensional

r q' (xy)=o
on the spin- —, fields. This gauge condition ensures that
the fields 4, do not contain the ( —,,0)$(0,—,

'
) representa-

tion of SO(1,3) and contain only the irreducible com-
ponent (1,—,)( —,, 1). This is to be contrasted with the
frequently discussed gauge condition '
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quadratic Rarita-Schwinger and Dirac Lagrangians
minimally coupled to the gauge field, there are non-
minimal coupling terms in the dimensionally reduced La-
grangian. These nonminimal "Pauli-moment" terms in-
clude a term coupling spin- —, and spin- —', fields through
the field strength F „.

for the transformation of %'; under y~y'(y, x). The in-
dex i on %'~ is to remind us that 4'~, which is a 2 +
component spinor, is decomposed into representations of
H as outlined in Ref. 1. %~; is a four-component Dirac
spinor. Similarly 4, ;(x,y ) transforms under y "
~y'"(y, x) as follows:

II. HARMONIC EXPANSIONS

+g(z)=Eg (z)VM(z) —&ag $(a ')%g(z) . (7)

%~(z) thus is a frame spinor and a coordinate vector.
Here S(a) is the matrix of the spinorial representation
and az is the matrix of the vector representation of
SO(1,3+IC). The dimensionally reduced theory exhibits
the following symmetries: (i) four-dimensional general
covariance, (ii) local SO(1,3) invariance, and, (iii) local
gauge invariance under G. gauge transformations arise
as coordinate transformations y "~y'"(y,x) in the extra
K dimensions. These transformations (y"~y'" are in-
duced by (left) translations by g H G and the associated
tangent-frame rotations' described by D p(h )

(h EH CG).
Under the reduced symmetry mentioned above,

%z (x,y ) can be separated into (P, (x,y), P (x,y ) )
(a =0, 1,2, 3,a = 1,2, .. .,IC ). Now 4 (x,y ) transforms
under (i) and (ii) as

%,(x,y)~a, (x)S(a ')Vb(x, y),
a, &SO(1,3),

while

4 (x,y )~a p(y )S(a ')%p(x,y ),
a PHSO(IC) . (9)

Since frame rotations in extra dimensions are associated
with the transformations D~P(h) on G/H, we identify
a P with D P(h ) and thus S(a ') —=&(h), where W(h) is
the matrix of the spinorial representation of H. Thus we
have

;(x,y)~D P(h)W;J(h)Ppj(x, y )

Our treatment of harmonic expansions follows closely
that of Salam and Strathdee. ' We employ the notations
contained therein. Coordinates in 4+% dimensions are
denoted by z—:(x,y"). x refer to space-time coordi-
nates and y" the E remaining coordinates. World indices
are taken from the middle of the latin alphabet and the
tangent-frame indices from the early part. Thus the index
A in the vielbein E~"(z) represents the SO(1,3+%) in-
dex. We split A =(a,a); a refers to SO(1,3) and a to
SO(IC) indices. We shall try to work with frame indices
where possible. The RS field %'~(z) transforms under
(4+IV)-dimensional general coordinate and frame rota-
tions as follows:

az~'P~(z)~, ~&(~ ')P~(z) .
Bz

Equivalently,

'P, , ;(x,y)~~,J(h)'P„(x,y) .

Note that, whereas +, transforms homogeneously under
left translations, %~ transforms as [see Eq. (6)]

'P' (x,y') =D(h) 4 (x,y)+ By

Bx

and since'

(12)

(13)

where gEh and E& is a Killing vector, it can be seen
that + does not transform homogeneously.
4, =E, 4 +E,"%'&, however, transforms homogeneous-
ly as in (11) because of the gauge field contained in E,"
through the Kaluza-Klein ansatz. +& does transform
homogeneously since E&'——0.

We now turn to the harmonic expansions for 'P, ;(x,y)
and 4;(x,y). Consider the ansatz

I /2

D;~(L '(y))P,'"~(x) (14)4, ;(x,y)= g
n

and

;(x,y)= QDg (L '(y))D P(L '(y))Pp"" (x),
n

(15)

L(y)~L(y') =gL(y)h g&G
h +II

'(y )~L '(y') =&L '(y )g

Then it follows from (14) that

(16)

where the sum on n in (14) and (15) is over all those ir-
reducible representations of G whose restriction to H con-
tains &(h), viz. , the spinorial representation of H For.
instance, take G/H =SO(8)/SO(7). Then the sum over n
in (14) and (15) includes all those irreducible representa-
tions of SO(8) that contain the 8 of SO(7). d„and d~ are
the dimensionalities of the representations (n) and M,
respectively. D;~(L '(y)) is the matrix element of the
nth representation of G. L(y ) is a representative point of
a (left) coset of G. The expansion coefficients 4,'"z(x ) and
P'-"'(x) are the four-dimensional fields which carry a
group index (n). 4,"z(x) transforms as a RS field in four

a,p

dimensions. The fields P'-"' (x) carry both an adjoint rep-
resentation and a representation n of G. Thus P'-"' (x) de-

fines, in general, a reducible representation [adGXn].
P'-"' transforms as a spin- —,

' field under local SO(1,3). Let
us now consider their transformation properties under G.
We first verify that (14) and (15) are consistent with (10)
and (11).

Under y"~y'" induced by (left) translations by g&G
(G acts transitively on G/H),
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4, ;(x,y)

dn

y y'

' 1/2

D~(L '(y'))+', "~(x)

dn
=N;J(h) Q

1/2

DJq(L -)(y))D~(g-1)q.'(p)(x) .

(17)
Thus (17) is consistent with (11) provided that 'I(,'"z(x)
transforms under 6 as

(18)

The field )I( =E '(x)%, (x) can obviously be expanded
in a similar manner. 'Pm ——E~ %'q cannot, however, be
expanded as 4, is in Eq. (14) since 4 does not transform
homogeneously under left translations.

A similar argument shows that

made use of the fact that H is fully reducible; namely,
D~~(h ) =0.

It is seen from (20) that P'-"'(x) transforms reducibly
under G. Thus the massive spin- —, fields can be classified
according to the Clebsch-Gordan {CG) decomposition
D'"'ea" of G.

It will be useful later to have an expansion for
I' 4 (x,y) (+=1,2, . . . , E) It .can be readily seen from
(19) that

(I '0 (x,y)) ~ &(h)(l" %' (x,y)), (22)

where in arriving at (22) we have made use of the relation

&(h)I ~&(h ')Dp (h ') =I (23)

and of the fully reducible nature of H. Thus the harmon-
ic expansion for I 4'~(x,y), consistent with (22), may be
written as

(P~;(x,y) —+ W;J(h)D~~(h)%'p J(x,y), (19) (I +~(x,y));= gD;~(L '(y))&~"'(x); (24)

provided that

P'-"'(x) P'-'"'(x)=D~(g)D", (g)P& (x) . (20)

Oz"'(x) are four-dimensional spinors. Qn the other hand,
it follows from (15) that

g 'Q.-g =D-~(g)Q-, (21)

where Q- are the generators of G. The indices & which
run over the dimensionality of 6 are split as
Q- =(Q,Q-) where Q are the generators of H and Q
the remaining ones. In arriving at (19) from (16), we have

In (20) D-~(g ) is the matrix of the adjoint representation
of 6 defined by

0'"'(x)= g A"'""P"" (x)
J»q P Pe

where

(26)

(I 0' (x,y));= Q I;,D ~(L '(y))&g~(L '(y))P&" '(x) .
n'

(25)

Thus we may derive the relationship between P'-"&(x ) and
Qz"'(x) in the form

(d„ /d~ ) I dp(y)Dp, (L(y))&~J(I )D,"q(L ')D ~(L '(y)) (27)

We have made use of the following result in arriving at
(27):

g f dp(y)D,";(L(y))DPL '(y))=Vx &„„5~, .
n

(28)

adG n' n
a(n, n') = l,z A' l J

Thus

Q~(x)= g (a, n'n)Xz"'" '(x),
n'

(30)

(31)

Vz is the volume of 6/H.
It is possible to give a group-theoretic interpretation to

(26). It can be shown that

adG n' nA""
&
——a(n, n')

P~VP P q p

where

adG n' n

13 q p

is a CG coefficient for the product representation
(a dGn') that contains n and

where
r

(n, n') adG n' nX~"'"—: g - Pp" (x) .
13 q p P&9

Pg Pq
(32)

Thus Xz"'" '(x) is an irreducible basis for the representa-
tion n contained in ( ad)G(I8n)'). It should be remarked
that the sum over both (n) and (n') (in the notation
above) must be over those representations of G that con-
tain W(h ) of H. For instance, in d =11, supergravity on
S =SQ(8)/SO(7) both (n') and (n) in (31) refer to those
representations of SO(8) that contain the 8 of SQ(7) and
DadDn' g D(n)
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Note that the internal Rarita-Schwinger gauge condi-
tion I a%a(x,y ) =0 implies that [see Eq. (15)]

[I D'""'(L ')D P(L ')]P"n' (x)=0
P,p

for all representations (n) of the group G. This cannot
hold in general for nontrivial P""' (x ).

P,p

The inverse vielbein can be seen to be given by

E '(x) A—(x)D-P(L(y))
EM (xy) 0 p(e& y

(47)

The matrix D-p(L(y )) (defined in 21) is related to K-"(y )

by

III. DIMENSIONAL REDUCTION K-&(y)e„P(y)=D-P{L(y)) . (48)

~Rs = — PM I VN%'P +H. c. ,2

where

PMNP PMPNPP I M NP+ Z
N MP PP MN

(33)

(34)

The RS Lagrangian in 41K dimensions coupled to
gravity is given by

The ansatz (46) for the vielbein coefficients is consistent
with the symmetry of M' '13IBx [M is four-dimensional
Einstein space with vielbein E (x) and Bx. a coset space
G /H with K-bein e "(y )].

It is also necessary to know the spin-connection coeffi-
cients. We take these as solutions to zero-torsion con-
straints. These are given in Ref. 1. We quote these below
(note some sign differences with Ref. 1):

Ba[b,c](X) ( 2 E[a Eb] ~mEnc 2 E[b c] ~mEna

2g MN (35) + —,'E[, E.]"a E„b), (49a)

1 ABVN+P (~N + 2 N[AB]~1/2)q P (36)

Due to antisymmetry of I only the spin- —, connection
is needed in (33): (49b)B )by)= By( b]= 2F b (x)D (L(y))

Ba[pr] A——, [Db (L—(y) Db (L(y)—)ma(y)]C p.

and

[IA IB] (37)
B~[P,~l

1 a
B&[p r] & C&pr + 77& (y )Cap

(49c)
(49d)

(49e)

Equation (33) may be rewritten in frame indices. Defin-
ing

where the following notations have been used:

+A =EA +MM

WRs ————qiA I VBVC+ H. c. ,
.l ABC

2

(3g)

(39)

E[a Eb) Ea Eb Eb Ea (50a)

(50b)

where

tl A I BI 2~AB I A E AIM

q" = diag(+ 1, —1, —1, . . . , —1),
1 DEVB+C (~B + 2 BB[DE]~1/2 +C BB[CD]+

~B =EB

and

(41)

(42)

(43)

EA EM ~A (44)

EA are the vielbein fields.
In order to implement the dimensional reduction

scheme, we use the Kaluza-Klein ansatz'

E, (x) A, (x)K-"(y)
EA (z) =

0 e ~(y) (45)

where

A, (x)=A (x)E, (x)

are the gauge fields for G. K "(y ) are the Killing vectors
on G/II. The coordinate dependence is as specified in the
ansaiz.

(y)=e "(y)e„(y) .

The embedding of H into SO(K) is given by
1DJ(Q )= , C-p X~j-, —

where the structure constants C-p- are defined by~Pr

(50c)

(50d)

[Q- Q-]=C--rQ- . (50e)

It remains for us to substitute (45) and (49) and the expan-
sions (14) and (15) into the Lagrangian (33) and integrate
over the extra E coordinates. The resultant four-
dimensional Lagrangian describes an infinite tower of
spin- —,

' and spin- —,
' fields which are coupled to the gauge

fields A (x ) both minimally and nonminimally. The
two main problems that arise are (a) to identify the four-
dimensional RS and Dirac fields and (b) to make sure that
the four-dimensional RS field transforms as (1,—,)+ ( —,, 1)
representation of SO(1,3).

We first separate the indices A, B,C into those that be-
long to SO(1,3) and to SO(K), respectively. The RS field
'PA can be split as

1I/A —(P„g ), P, =E, 'PM ~
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4 =E VM ——e "(y)'P& . (52)
/

Retaining only the kinetic and mass terms in the La-
grangian, we obtain, after some algebra, the following:

W,„„=——'[%.r"'V, (x)e, +%.r"&Vb(x)e,

where the right-hand side of (58) is antisymmetrized with
respect to i,j, and k; i,j,k refer to SO(7) spinor indices.
It can be easily checked that (58) does not work for gen-
eral G/H and works only for the 11-dimensional case.

Consider next the mass terms. In terms of %', and %~
we find

+q.r"'Vb(x )q, +e.r'&Vb e,

+4,I '~'Vi3(y )4, +4, r'»V p(y )0'r

+%.r i"v~(y)%, +e r»v~(y)e, ]

[—2e—."'r"W(y )0 b' 3(+—.r )T(y )(I ~q &)IDB,SS

——,
'

%, r'W(y)(r g ) —(@,r')v~(y)q'p

——,
' (v~r )]j['(y)r'4, —V~v (y)r'g,

where

+ H. c. , (53)
+4 I »vp(y)+r]+H. c. (59)

4, =E, (x )4M,

Vb(x )+c (~b + 2 Bb[de]~1 2/+)c Bb [cd]q (54a)

Here

7(y)=r v' (y) .

db ——Eb (x)B

Vb(x )+y ( db + 2 Bb [de]~1/2)+y ~

1 y5
Vp(y )%', = ( 8p+ —,Bp[rs] X (/2)%', ,

VP(y )%'r ——[(BP+ ,' BP[s,]X)/—2)%'r BP[rb]%' —] . (54e)

(54b)

(54c)

(54d)

The first four terms in Eq. (53) represent the kinetic ener-

gy while the rest represent the mass of the RS and Dirac
fields in four dimensions. It is clear from above that +,
and 0 are coupled in both the kinetic and mass terms.
Thus 4, (upon harmonic expansion) cannot be identified
as the four-dimensional RS fie1d.

However it is easy to check that it is possible to rewrite
the kinetic terms in the following form:

W, = ——'(e. +-,' q,rrr. )r'"Vb(x)(e, +-,' r, r'e, )KE 2 a 2 y a

r'4, (x,y) =0 (a =0, 1,2, 3) .

From (56) and (60) we find

I'0, = —2I 0

(60)

(61)

We can now eliminate the terms containing %~ in (59) and
express W „,in terms of 4, and %'~ only:

The mass terms contain coupling between the RS and
Dirac fields. The first term in (59) has the structure of
the mass term for the RS fields while the last term has the
structure of the mass term for the Dirac fields. The cou-
pling terms arise in (59) due to the fact that 4', (x,y) or
rather the fields 4','z'(x ) defined in (14) do not transform
according to (1,—, )e ( —,', 1) representation of SO(1,3) but
contain an admixture of ( —,,0)8 (0, —,

'
) representation.

Thus it will be necessary to impose a gauge condition on
4,'"z(x) or equivalently on 4, (x,y), so it contains only
the spin- —,

' fields:

+q.[r'Vb(x)](q i'+ ,'r rp)%~+—Hc.
Thus we define

(55) '[2V". r—"y—(y )q, '+V.(r q»+ ri'qr

+r&q ~)

'0, (x,y)=%, (x,y)+ —,I,(I %' ) (56) && V~(y)% ]+H.c. (62)

x(q i'+ ,'r ri')e~]. - (57)

Cremmer and Julia have already, in their d =11 super-
gravity study, introduced this definition for '0, and we
are here simply establishing its validity for the general
case. Note that the Dirac part of the Lagrangian is not
diagonal. Cremmer and Julia diagonalize it by introduc-
ing, in the case of d = 11 supergravity,

r

3 I tij. +k)av2

and in terms of 4, and 4, W~E is completely decou-
pled:

W„,= ——'[q. 'r"V, (x )e, '+e.rbV„(x )a

4, (x,y)= g
1/2

&;"'(L '(y ) )+,'", ' (x ), (64)

and integrating over G/H we obtain

In (62) as well as in (57) we have not bothered to apply the
gauge constraint I 4, =0. Thus Eqs. (57) and (62) are
the starting points of our harmonic expansion program.
Let us discuss, first, the dimensional reduction of the RS
Lagrangian given by

~ [q/asr~b~V (x )q/&s+2q/&sy~by ( )q/&s]RS 2 a

(63)

On substituting the harmonic expansion similar to (14)
into (63), i.e.,
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(65)

where

2& n n

/~9 y

1/2

J dp(y)D~" (L (y))[r v (y)];,D,',"'(I- ') . (66)

The integral in (66) can be further simplified by using (49)
and

where

a~(L, -') = —[D(QP)+ ~gD(Q~)]D(I. -'(y)) .

We skip the details of this calculation. The result is

5„„5M"" =2i Tr[r~D'"'(Q )+—C I" ~r],

(67)

(6&)

Qnn d D L Dgt L

x(g + —,r r );,D,",(L ')D&'(L, -'),

(72)

where I Pr is the antisymmetric combination of product
of three I 's. The trace in (68) is over the subspace of H
which is embedded in SO(E) (Ref. 1). Thus the effective
Lagrangian (65) describes an infinite tower of massive
spin- —,

' multiplets which are characterized by representa-
tion n of G that contain the spinor representation of
SO(IC). The masses are in units of Planck mass scale Mz
(typically inverse of a characteristic length scale of Bx).
The masses are given explicitly by

M(n)=2 TrH[I D "(Q )+ —,C p&I r] . (69)

The expression (69) for the masses of the four-dimensional
spin- —', fields is the same as found by Salam and Strathdee
for the Dirac spinor in Ref. 1. If the coset space G/H is
of the form SO(%+1)/SO(E'), then C~pr

——0. [Note:
a,P, y refer to the generators not belonging to SO(X) sub-
group of SO(K+ 1).] Then the masses of the four-
dimensional spin- —, fields are given by

where

rI ~p&I=r q»+rf'q& +r&~ P.

(73)

These integrals can be evaluated using the techniques of
Ref. 1. The results are

where

adGn X
Z"(n, n')

p

adG n' X
e Q

(74)

Mcxrtl1l i d ( )D(5)(L )Da
E

X(r( ni'y ) Vp(y )),JDJq'(L 1)Dyy(L (-), -

M(n ) =2 Trso(xj[I D("'(Q~)] .
IC (n, n')=

adG n N, adG n' N
aP+ ( rarP

13 J

IV. THE DIRAC LAGRANGIAN

Let us now turn to the dimensional reduction of the
spin- —, part of the Lagrangian. From (57) and (62) we
have

' [e.(r'v. (x))(q ~+ —,'r r~)e~IraC

and

where

A adG n X adG n' X
M~(n, n')

(75)

(76)

+4 (I g~r+r~gr +I rq ~)Vp(y)%'&]

+H.c. (70)

+H.c. , (71)

We substitute the harmonic expansion (15) for 4 and
also the spin connection coefficients from (49e) and in-
tegrate over G /H. After simplification the resulting
four-dimensional Lagrangian is given by

adGn&
M (n, n')=i . I „g~r)

lX l

adG n' X
x [D" (Qp) ~ Cps~&"]~

(77)

Note that n and n' are not summed over in (74) to (77)
and N is not summed over in (75) and (77). The notation
here is that Xk' ——0 unless q refers to the subgroup II in-
dex. The symbols
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adGn X
u Q

denote the Clebsch-Gordan coefficients for G. X is a rep-
resentation contained in the direct product D' G(3D".
The normalization here is such that

adG n X adG n'N
gnn' (78)

)

Using the basis function XP'"'(x) defined in Eq. (32),
the Dirac Lagrangian may be written in the form

Wo;„,= ——,
'

Vx [X~(n)[ig(x)K (n, n')

—M (n, n')]X„(n') I+H. c. (79)

Note that the mass for the Dirac field is not given by the
eigenvalues of the internal Rarita-Schwinger operator,

QMr3;„, (n, n') = (K+2)MRs(n)5"", (81)

which relates the masses of the Dirac fields to those of the
Rarita-Schwinger fields, can be obtained. MRs(n) is de-
fined in Eq. (69) and IC is the number of extra dimensions.
The sum in Eq. (81) is over all representations % con-
tained in the direct product D'" (3D".

Note that the Dirac Lagrangian in the form of Eq. (79)
is not diagonal in the group index.

I ~r V~(y ), but rather by those of the operator

(y )

When integrated over the coordinates of the coset space,
this operator gives the masses in Eq. (77). Using the
orthonormality of the Clebsch-Gordan coefficients [Eq.
(78)], the sum rule

V. COUPLINCr TERMS

The remaining terms in the dimensionally reduced Rarita-Schwinger Lagrangian couple the four-dimensional fields
4, (x ), Pz'"(x ), and A, (x ). In particular, the minimal coupling W ' terms are given by (after a lengthy calculation)

[ i%~"z(x—)l Aq (x)D&q (Q-)4 "q(x) iX&(n)—I Aq (x)D&q (Q-)K (n, n')Xq (n')] . (82)

These two terms make the derivatives in (65) and (79) covariant with respect to the gauge group G.
The remaining coupling terms are nonminimal Pauli-moment type terms. They are given by (we skip the algebraic de-

tails)

n X6nn'
~pa i = —

z ~ac &i - «"'+a,pXs+Pc+d, q+2+a,J+" 'pb, q)+&2 0~,p(+.b &'")A",
q

n
a (83)

where

n n'

CX P g'

'A, 5nn'
p g

I D L D L PPD

L P. &P fD

(84)

(85)

Ann'
X3

p
D";LD"PL 3 + —r r;D". L 'D L4' (86)

N4 ——X3+ (87)

in terms of the irreducible g„(n )'s instead of the reducible
ap S.

Note that Wp, „~; contains Pauli-moment terms for
Rarita-Schwinger fields, Dirac fields, and also a term cou-
pling Rarita-Schwinger and Dirac fields. The integrals
(84)—(87) can be evaluated using the techniques employed
earlier. When this is done the 13irac fields are expressed

VI. SUMMARY

We have implemented the harmonic expansions for the
RS fields in Kaluza-Klein theories over coset spaces and
the dimensional reduction of the RS Lagrangian using the
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Kaluza-Klein ansatz for the vielbein fields. The complete
four-dimensional effective Lagrangian for the tower of
massive spin- —,

' and spin- —, fields coupled to gauge fields
is presented. In addition to the gauge-invariant kinetic
and mass terms there arise nonminimal gauge-invariant
Pauli-moment terms. The masses for the four-
dimensional fields have been computed in terms of the ir-
reducible representation matrices of G.
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