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It is shown for a collinear reaction containing four particles with arbitrary spins which amplitudes
remain nonzero and how they are related to the observables. In terms of primary observables all
submatrices relating products of amplitudes to observables either vanish or turn into one-by-one sub-

matrices, except the 8; types which may turn into three-by-three submatrices, but these latter sub-

matrices are mostly avoidable when determining amplitudes. In terms of the secondary observables
the 1~ and 2; submatrices are slightly larger. Specifically, it is shown that in collinear reactions all
observables in which only one particle is polarized (no matter how) vanish. Since reactions at very

high energies are expected to be predominantly very close to being collinear, the smallness of such
observables in such reactions can be expected on general grounds but polarization effects involving
observables with more than one polarized particle can very well be very large. An iterative approxi-
mation method for the polarization analysis of reactions at very high energies is suggested. The re-
sults of this paper are also applicable to all models in which helicity conservation holds, since they
are, for all t values, formally identical with collinear reactions.

I. INTRODUCTION

This paper offers a general discussion of the polariza-
tion structure of collinear reactions, that is, reactions for
which the final-state particles emerge in the same direc-
tion as the initial particles came in at (in the c.m. system).

The motivation for such a discussion is, first, that for
any given reaction the spin structure is considerably sim-
plified in the collinear case as compared to the general
kinematic case. Collinearity reduces the number of ampli-
tudes, thus easing all the tasks polarization analysis aims
at: the testing of conservation laws, the phenomenological
determination of reaction amplitudes, the checking of
theoretical models, the searching for dynamical clues, etc.

Collinearity, however, is a very special and restricted
kinematic configuration, and so the feasibility and practi-
cal utilization may still be questioned even in the light of
the above discussed advantages. The case for the utility
of collinearity is, however, greatly strengthened by the
fact that very-high-energy reactions strongly tend to be
bunched at very small reaction angles. Thus collinearity
for such reactions is a realistic and good approximation,
in which deviations from this approximation can then be
expected to produce corrections in terms of some small
additional amplitudes which are zero in the exactly col-
linear case. Thus we can approach all high-energy polar-
ization phenomena in terms of this simpler, collinear ap-
proximation, with small correction terms to be included at
a later, more refined stage. With this argument the polar-
ization structure of collinear reactions assumes not only a
substantial but in fact a possibly central role in the study
of particle reactions at very high energies.

In addition, any theoretical model in which helicity
conservation holds, that is, in which the sum of the helici-
ties of the initial particles is equal to the sum of the helici-
ties of the final-state particles, is formally identical, at all
t values, to a collinear reaction. Thus the results of this

II. REDUCTION OF AMPLITUDES
BY COLLINEARITY

In using the optical formalism to describe collinear re-
actions, we first need to choose a quantization direction
best suited for the purpose. In the present case the choice
is obvious: the quantization axis should be the direction
of collinearity, so that we use the planar optimal frame
with P=O which coincides with the helicity frame.

In this frame the condition of collinearity can be satis-
fied exceedingly simply. This condition is [see Eq. (2.2) of
Ref. lj

az+Sbz cz+ dz (2.1)

where the s s (i =a, b, c,d) are the spins of particles a, b,
c, and d, respectively, in the reaction

paper are applicable to al1 such models also. This lends
this paper an even broader range of applicability.

The spin structure of collinear reactions has been inves-
tigated in a paper' some twelve years ago, and many of
those results remain valid and useful. In particular, the
number of amplitudes in a collinear reaction involving
particles of arbitrary spins was then determined and hence
need not be presented here. The shortcoming of that pre-
vious paper was, however, in its using a polarization for-
malism which, by today's standards, was not maximally
advantageous, and therefore when it came to specifying
which amplitudes survive in the collinear case and how
the observable-amplitude relationships simplify, only par-
tial specifications could be given for the case of the arbi-
trary spins. Thus the main improvement in the present
paper is the use of the optimal formalism which will al-
low us to specify the observable-amplitude relationship
completely and hence offer guidelines for the design of ex-
perimental programs.
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a+b~c+d (2.2)

and the z subscript denotes the component in the quanti-
zation direction. The amplitudes in the optimal formal-
ism are denoted by D(A, , l, A,L), where A, =s„, l =s„,
A=sd„and L =sb, . Thus the collinearity condition re-
quires that only those optimal amplitudes survive for
which

I +I =X+A . (2.3)

This condition holds regardless of whether the amplitudes
are or are not also constrained by symmetry conditions
due to parity conservation, time-reversal invariance,
identical-particle constraints, etc. This condition is there-
fore responsible for the reduction in the number of
nonzero amplitudes as given by Eqs. (2.3)—(2.5) of Ref. 1.

III. SIMPLIFICATION IN THE
OBSERVABLE-AMPLITUDE RELATIONS.

PRIMARY OBSERVABLES

l +L =1,+A and l +L =A, '+A (3.2)

with A,~k', but that is impossible. Thus all 1; s vanish in
the collinear case. Since the 1 s contain all those observ-
ables in which three of the four particles are unpolarized
and only one particle is polarized somehow (it does not

The relationship between the observables and the bilin-
ear combinations (products) of reaction amplitudes (called
"bicoms") for a four-particle reaction containing particles
with arbitrary spins was given in Table I of Ref. 4, and
Figs. 1 and 2 of that reference give the amplitude struc-
ture. That these results hold for any reaction regardless
of the value of the spins was shown in Ref. 5.

The above-cited table indicates that for any reaction,
there will be one type of eight-by-eight matrices, four
types of four-by-four matrices, six types of two-by-two
matrices, four types of one-by-one matrices, and finally
one type of a special kind of one-by-one matrix containing
only magnitude squares of amplitudes. These groups of
matrices are denoted by 8;, 4;, 2;, 1;, and 1M, respectively.

From the point of view of the impact of collinearity on
these submatrices, the important point to recall is that in
1~ the bicorns contain the same amplitude twice; in 1; the
bicoms contain two amplitudes which differ from each
other only in one of the four arguments; in 2; the two am-
plitudes in the bicoms differ in two arguments; in 4; in
three; and finally in 8; in all four.

Let us now look at these submatrices individually. The
, 1~ type one-by-one matrices will either survive un-
changed or vanish when we impose the col1inearity con-
straints, depending on whether the amplitude that a par-
ticular one of them contains satisfies Eq. (2.3) or not.

Turning now to the 1 s, these contain bicoms of the
form

D (I,, I;A,L)D*(A.', I;A,L) (3.1)

or similar ones where not the X index but one of the other
indices changes. If in these bicoms I+L&A, +A and!or
i+L&A, '+A, then the whole 1; vanishes. The 11 would
not vanish if we had simultaneously

matter how and in which direction), we obtain the follow-
ing completely general and important theorem.

In any four-particle reaction with particles with arbi-
trary spins, in a collinear configuration all those experi-
mental observables vanish identically in which three parti-
cles are unpolarized and the spin state of only one particle
is specified.

The importance of this theorem in particle physics at
very high energies needs to be stressed. It has often been
said that polarization phenomena are expected to play a
small and unimportant role in particle physics at very
high energies. Implicitly this statement is thought to be
equivalent to the expectation that the simple vector polar-
ization of one particle in a four-particle reaction with the
other three particles being unpolarized is very small. This
statement can be faulted on several counts. For one thing,
some experiments now indicate that at least in some
kinematic domains for some reactions, even this simple
polarization quantity is substantial even at tens of GeV
energies. Second, our theorem indicates that for small re-
action angles (where most of the events are for very-high-
energy reactions) the simple polarization quantities should
indeed be fairly small on general grounds, but this by no
means indicates that all polarization effects are negligibly
small. On the contrary, it is quite legitimate to expect
that observables involving the simultaneous polarizations
of two or more particles in the reaction could be quite
large. Until, therefore, such observables are measured, a
priori statements on the magnitude of polarization effects
are purely speculative, even if some data show that the
simple individual vector polarizations are small.

We now turn to the 2; submatrices. The two bicorns in
the first of the 2 s, as evident from Table I of Ref 4, .
need to satisfy, for the collinear case, the following four
conditions:

l+L =X+A, l+L =k'+A',
I+L =A, '+A, l+L =A, +A',

(3.3)

(3 4)

l+L =X+A, l+L'=X'+A',
I+L =A, '+A, l+L'=A, +A',
l+L'=A, +A, l+L =A, '+A',
l +L'=A, '+A, l +L =X+A',

(3.5)

(3.6)

(3.7)

(3.8)

with A.&A, ', L&L', and A&A'. An inspection of these
conditions yields the same result that we had for the 2 s,

with A,&A, ' and A&A'. It is possible to satisfy the two
conditions in Eq. (3.3) simultaneously, though it is also
possible that one or both of them are violated. Even if
both of them are satisfied, and hence that bicorn is
nonzero, the two conditions in Eq. (3.4) are at the same
time violated. Similar results hold for the other five types
of 2 s also. Thus we arrive at the conclusion that the 2 s
in the collinear case either vanish entirely or only one of
their two bicoms survive, that is, the 2; turns into a one-
by-one matrix.

We now turn to the 4 s. Looking at the first of the
four 4 s in Table I of Ref. 4, we see, as we did for the
2 s, that eight conditions must be satisfied:
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I +L =A, +A, l'+L'=1, '+A',
l'+L =A, '+A, l+L'=A, +A',
l'+L =A, +A, l +L ' =A, '+ A',

1 +I =k'+A, l'+L'=A, +A',
l+L'=A, +A, l'+L =k'+A',
I'+L'=k'+A, l +L =A, +A',
l'+ L ' =A, +A, l +L =k'+ A',

l+L'=A, '+A, - l'+L =A, +A',

(3.9)

(3.10)

(3.1 1)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

with l&l', L&L', A,&A, ', and A&A'.
An inspection of these eight pairs of conditions shows

that, for example, if Eq. (3.9) is satisfied, Eqs. (3.10) and
(3.16) are also, but the others are not. So for the 8 s, ei-
ther all bicoms vanish, or five of eight do, thus reducing
the eight-by-eight to a three-by-three matrix.

In summary, therefore, we see that if we use the pri-
mary optimal observables, that is, those in which the spin
states of all four particles are specified, then each 1M ei-
ther vanishes or remains an unchanged one-by-one matrix;
all 1 s vanish; each 2; and 4; either vanishes completely
or turns into a one-by-one matrix; and each 8; either van-
ishes completely or turns into a three-by-three matrix.

We see then that except for the 8 s, the relationship be-
tween the observables and the bicoms is entirely diagonal
(i.e., is in terms of one-by-one submatrices). Furthermore,
the "blemish" caused by the three-by-three matrices from
the 8 s is in a practical sense unimportant, since the ob-
servables in the 8 s never contain D (in the notation of
Table I of Ref. 4) and thus no index can be averaged over.
Thus the 8 s contain only observables which genuinely
and unalterably require the specification of the polariza-

namely, that each 4; either vanishes altogether or col-
lapses into a one-by-one matrix.

Finally, we turn to the 8 s. Here we obtain 16 relations
that need to be satisfied in the collinear case, namely,

tion direction of a11 four particles. Such observables are
not only very inaccessible experimentally but are also
known to be altogether avoidable even in the most ambi-
tious of all possible experimental programs, namely, in the
one determining all reaction amplitudes unambiguously.
Thus we can say that in a practical sense, in any collinear
reaction, the observable-bicorn matrix is completely diago-
nal if we use the primary observables.

IV. THE OBSERVABLE-AMPLITUDE
RELATIONS IN AN ALTERNATE VIE%'

In this brief section the results of Sec. III are justified
in another, more visualizable way. Although much
simpler than the method used in the previous section, this
method is probably more suitable as an a posteriori plausi-
bility argument than as a rigorous proof.

In the primary observables of the optimal formalism
the arguments in the observables are D, R, and I. These
three arguments correspond to various polarization quan-
tities in the three directions of the quantization direction
(D) and the two directions perpendicular to it (R and I).
Now in a collinear reaction these latter two directions are
indistinguishable, and hence two observables which go
into each other under the transformation

(4.1)

simultaneously for every argument in the observable, must
be either equal to each other or perhaps may differ in sign
only.

Using this rule, one can obtain all of the results of Sec.
III. This is left as an exercise for the reader.

V. THE OBSERVABI.E-AMPLITUDE
RELATIONSHIP. SECONDARY OBSERVABLES

For technical reasons, experimental programs of polar-
ization measurements prefer to use not the primary ob-
servables of Sec. III but secondary observables in which
the polarization state of each particle is either averaged

TABLE I. The amplitudes for 2 + 2 ~ 2 + 2 under various symmetries and for the collinear case.

For notation and explanation, see text.

No.

I
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

(+ + + +)+++-
+ + —+
+ —+ +

+ + +
(+ + ——)

+ —+-
(+ ——+)
( —++—)

+ +
( ——++)
+ ———
—+ ——

+
———+

( ————)

(+ + + +)+++-
+ + —+

= —[27

(++ ——)

+ —+-
(+ ——+)

= [87
+ —+
= [6]

+ ———
—+——
= —[127
= —[13]

( ————)

L+T
(+ + + +)+++-

= —[27

+ —+ +
= —[47

(+ + ——)

+ +
(+ ——+)

= [8]
= [7]

( ——++)
+ ———
= —[12]
——+-
= —[14]

( ————)

(+ + + +)
+ + +

= —[2]
= —[2]
= [2]

(++ ——)

+ —+-
(+ ——+)

= [8]
= [7]
= [6]

+ ———
= —[12]
= —[12]
= [12]

( ————)

L+T+E+P
(+ + + +)+++-

= —[2]
= —[27
= [2]

(+ + ——)

+ —+-
(+ ——+)

= [8]
= [71
= [6]

= —[2]
=[2]

= —[2]
= [17
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AAAA
AAAA

KAAMA

ARAR
AR lU

ARRA
ARI 6
AARR
A VARI

2
—2

2

over (i.e., the particle is unpolarized) or it is made into a
composite satisfying the null criterion. (The null criterion
requires that the sum of the coefficients of the primary
arguments forming the secondary designation vanish. ) It
is therefore useful to describe the polarization structure of
collinear reactions also in terms of secondary observables.

To do this, one needs the analog of' Table I of Ref. 4, in
terms of secondary observables. This has not appeared in
the literature before and so its structure is described in the
Appendix.

Using that structure, one can readily see that the situa-
tion for collinear reactions is as follows.

The 1M matrix in terms of secondary observables is an
X-by-X matrix where X is the number of amplitudes in
the collinear reaction.

The 1 s all vanish even in terms of the secondary ob-
servables.

The 2 s in general (see Appendix) have gaqp terms (if
we consider the 2; of type 2 p). In the collinear case this
either reduces to gz terms (where rlr is the smaller of g
and qp), or the 2; vanishes altogether. Here g=2s+1,
where s is the spin of the particle.

The 4 s, even in terms of secondary observables, will
turn into one-by-one submatrices or vanish altogether.

Finally, the 8 s are the same whether we use primary
or secondary observables and hence they will, here also, ei-
ther vanish altogether or turn into three-by-three matrices.

Thus we see that the difference between using primary
or secondary observables is in the 1~ and 2 s only. Both
change from the simple and convenient one-by-one ma-
trices into something larger (though in many practical

TABLE II. The relationship between observables and ampli-
tudes for collinear elastic pp scattering with L +P + T +I. For
notation, see text.

Re Im
[a

f
fc f fef ac ae ce* ac* ae* ce*

A. pp elastic scattering

The amplitudes for the reaction —,
' + —,

' ~—,
' + —,

' are list-

ed in Table I, under I., I. +E, I. +T, L, +E+T, and
I. +E+T+P, where I denotes Lorentz invariance, E
identical-particle constraints, T time-reversal invariance,
and P parity conservation. In each column the ampli-
tudes which survive in the special case of collinear
kinematics are enclosed in parentheses. We see that the
number of collinear amplitudes is 6 ( L ), 4 ( I- +E), 5

(1.+T), 4 (I. +E + T), and 3 (I. +E+T+8). The last
of these represents the actual reaction of pp elastic scatter-
ing.

The observable;bicorn relationship for the noncollinear
L +E+T+I' case is given in Table V of Ref. 3. We can
obtain the collinear case from that table by imposing

+ + + =0.+ — +
Using the notation of Ref. 3, namely,

(6.1)

:—C, (6.2)

we then get the observable-bicorn relationship for collinear
pp elastic scattering given in Table II.

In this case the 8; ends up containing magnitude
squares of amplitudes just as 1M does which, however,
contains simpler observables so the 8; can be ignored alto-
gether. %'e note, however, that, in accordance with our
prediction, it does collapse into a three-by-three matrix.
The 1 s vanish altogether as our general investigation re-
quires. The 2; s in this case turn into one-by-one matrices
also even in terms of the secondary observables. In gen-
eral we would expect them to turn into two-by-two ma-

cases not into something huge). This is the inevitable
price one must pay the experimental convenience of using
secondary observables.

It should be remembered that since Tab1e I of Ref. 4
and the Appendix of the present paper both deal with the
case when only Lorentz invariance is imposed on the reac-
tion, the results of Secs. III and V represent upper limits
of the complexity of collinear reactions. For collinear
which are also constrained by additional symmetries like
parity conservation, time reversal invariance, identical
particles, etc. , the above outlined structure may further
simplify. A specific example of this is given in the next
section.

VI. EXAMPLES

TABLE III. The amplitudes for pp~dm under various symmetries. Amplitudes in parentheses are those which survive in the col-
linear case. For notation, see text.

No. 10 12

0+ 0— 0+ 0—

I.+P
0+
+

0+ = —Pl = l4l
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TABLE IV. The relationship between observables and amplitudes for collinear reaction of @@~md,
with only Lorentz invariance. For notation, see text.

i
A

~ i
B

i i
C

~ i
D

i
ReCB ImCB* ReBD* ImBD* ReCD ImCD*

AAA
ADA
AAA

Ab, A

RRA
RIA
RAR+
RAI(+ )

ARE. +

ARI( )

trices, but parity conservation in this case simplifies that.
The 4 s were predicted to either vanish or turn into one-
by-one matrices. In our example they all vanish. Finally,
the 1~ is indeed an X-by-X matrix, where in this case
X=3.

The observables in Table II are given in the standard
notation of the optimal formalism. The correspondence
between this and the old notation traditional in pp scatter-
ing (P,A, CJv~, DIs, etc.) is given in Table VI of Ref. 3.

B. pp —+de.

The amplitudes for this and spinwise similar reactions
are given in Table III under I. and I. +P. The ampli-
tudes which survive in the collinear case are in
parentheses. The numbers, of collinear amplitudes are 9
(L) and 2 (L +P).

The observables-bicorn relationship for the noncollinear
case is given in Table I of Ref. 9. Using the notations of
Ref. 9 and

B,

—:C,

then we get the observables-bicorn relationships for this
reaction as presented in Table IV with only the Lorentz
invariance. Table V represents the observable-bicorn rela-
tionships with I.+P invariance.

In this case the largest submatrices are four-by-four
which collapse into one-by-one submatrices containing
only magnitudes squared of amplitudes just as 1M does,

but containing simpler observables. The 2 s turn into
one-by-one matrices and the 1 s vanish altogether. Final-
ly, the 1~ which is a three-by-three matrix reduces to a
two-by-two matrix under parity conservation.

C. md elastic scattering

The amplitudes for this reaction are given in Table VI
under I., I. +P, and I. +P+T. Again, the amplitudes
indicated in parentheses are those that survive in the col-
linear reaction. The numbers of collinear amplitudes are
3 (L), 2 (L +P), 2 (L +P+ T).

Using the following notations for the amplitudes
D(c,a),

(+ +)=A and (00)=D,

we get the observable-bicorn relationship for md —+m.d as
given in Table VII. Table VIII is the same as Table VII
but with the imposition of discrete symmetries.

For this reaction the largest submatrices are two-by-two
submatrices which collapse into one-by-one matrices in
the collinear case. The 1M becomes a three-by-three sub-
matrix. VA'th the imposition of I.+P+T 1~ further
shrinks to a two-by-two matrix as shown in Table VIIE.

TABI.E VI. The amplitudes for md elastic scattering under
various symmetries. Amplitudes in parentheses are those which
survive in the collinear case. For notation see text.

TABLE V. Observable-bicorn relationship for pp —+de. and
spinwise-similar reactions with the imposition of discrete sym-
metries.

AAA
AhA
RAR
RAI

No.

1

2
3
4
5
6

8
9

(+ +)+-
+0
0+
0—
(00)
—+

( ——)
—0

L+P
(+ +)+-

+0
0+

= —[4l
(o 0)
=P]

= —Pl

L+P+T
(+ +)+-

+0
= —Pl
= —[41

(00)
=Pl
=(I]

= —[~)
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TABLE VII. The relationship between observables and amplitudes for collinear ~d elastic scattering
with only Lorentz-invariance consideration. For notation see text.

i
A

i i
C

i i
D

i
ReAC* ImAC* ReAD* ImAD* ReCD* ImCD

A, A

A, b,

A, b,

+
0
0

R+,I+

R,I
R+,R+
R,R
R,R

[A [2 fD
f

ImAD Re AD*

A, A

A, b,

R+,I+
R+,R+

TABLE VIII. Observable-bicorn relationship with the impo-
sition of Lorentz invariance plus parity conservation and time-
reversal invariance for ~d ~~d elastic scattering.

D. mX elastic scattering

The amplitudes for the reactions of 0+ —,
' —+0+ —,

' are
given in Table IX under I., L, + T, and. I. +T+P. The
surviving amplitudes in the collinear case are again in
parentheses. The numbers of such amplitudes are 2 (L), 2
(L+T), 1 (L+T+P) Denotin. g the amplitude D( ac)

as + + = a we get the observable-bicorn relationships for
mX elastic scattering as given in Table X. With the impo-
sition of discrete symmetries Tab1e X shrinks to a single
relation as

AA =o=8 ia
/

VII. SUMMARY AND CONCLUSIONS

(+ +)+-
—+

( ——)

(+ +)+-
= —P]
( ——)

(+ +)+-
= —Pl

TABLE X. The relationship between observables and ampli-
tudes for collinear reaction of mN~mX and spinwise-similar re-
actions with only Lorentz invariance. For notation see text.

A, A

A, A

A, R

4
—4

TABLE IX. The amplitudes for mX~+X and spinwise-
similar reactions under various symmetries. . Amplitudes in
parentheses are those which survive in the collinear case.

I. +T

We see that it is easy to determine which amplitudes
will be nonzero for collinear reactions containing particles
with arbitrary spins, and how the bicoms of those ampli-
tudes will relate to experimental observables. In particu-
lar, we saw that in terms of primary observables the lM
submatrix vanishes or remains one-by-one, the 1; subma-
trices a11 vanish, the 2; and 4; submatrices either vanish or
turn into one-by-one matrices, and only the 8; submatrices
(which can actually be avoided when determining the re-
action amplitudes from the polarization data) are some-
what more involved in that they either vanish or turn into
three-by-three matrices.

In terms of secondary observables (i.e., the ones experi-
mentalists prefer to work with), the situation for the 1;,
4;, and 8 s is the same as it was for the primary observ-
ables. The 1~'s, however, combine into an X-by-1V sub-
matrix (where X is the number of amplitudes in the col-
linear reaction), and the 2 s of the type Z~p either vanish
or turn into an g&-by-gz submatrix, where g& is the small-
er of g and gp, and g=2s+1.

Since reactions at very high energies are predominantly
very close to collinear, they can be assumed to be dom-
inated by those amplitudes which are nonzero collinearly
and the other amplitudes can be expected to be small.
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TABLE XI. The relationship between secondary observables and amplitude products. The number
to the left of the parentheses is the number of submatrices of a given type for primary observables, the
parenthetical number is the size of the submatrix with secondary observables, and the number to the
right of the parentheses is the number of a giveri type for secondary observables. For further explana-
tion, see text.

Type 0+——+0+—1 1 1 1 1 1—+—~—+—2 2 2 2 0+ —, 0+ —,
1 3 1 1 1 3—+—~—+—2 2 2 2 0+ —~0+—3 3

8

43
44

2I2
213

214

223

224

234
1 i23

1i24
1 134

1234

0(8)0
0{4)0
0(8)0
0{4)o
0(8)0
0(4)0
2(2)2
o(4)o
0{4)0
0(8)0
0(4)0
4(2)2
0(4)0
4(2)2
0(4)0
4(4)1

2(8)2
4(8)2
4(8)2
4(8)2
4(8)2
8(8)2
8{8)2
8(8}2
8(8)2
8(8)2
8(8)2

16(8)2
16(8)2
16(8)2
16(8)2
16(16)1

0(8)0
0(4)0
0(8)0
0(4}0
0(16)0
0(4)0

12(2)12
0(8)0
0(4)0
o(16)0
o(8)o

24(2)12
o(8)O
8(4)2
o(8)o
8(8)1

12(8)12
24(8)12
24(8)12
24(8)12
8(16)2

48(8)12)
48(8)12
16{16}2
48(8)12
16('16)2
16(16)2
96(8)12
32(16)2
32(16)2
32(16)2
32(32)1

0(8)0
0(4)0
0(16)0
0(4)0
0(16)0
0(8)0

72(2)72
0{8)0
o(8)o
0{32)0
0(8)0

48(4)12
0(16)0

48(4)12
0(16}0

16(16)1

Type

8
4)
4~

43

4g

212

213

214

223

224

34

1&23

1 124

1 f34

1234

0+ 0—+0+ 1

0(8}0
0(4)0
o{4)0
0{4)0
o(12)o
0(2)0
0(2)0
0(6)0
0(2)o
0(6)0
0(6)0
6(1)6
0(3)0
0{3)o
0(3)0
3{3}1

0+ 1~0+ 1

0{8)0
0(4)o
0(12)o
0(4)0
0(12)0
0(6)o

18(2)18
o(6)0
o(6)o
O(18)0
0(6)0

18(3}6
0(9)0

18(3)6
0(9)0
9(9)1

0(8)0
54(4)54
0(12)0
0(12)0
0(12)0

54(6)18
54{6)18
54(6)18
0(18)0
0(18)0
0(18)0

54{9)6
54(9}6
54(9)6
0(27)0

27(27)1

162(8)162
162( 12)54
162(12)54
162( 12)54
162( 12)54
162(18)18
162( 18)18
162( 18)18
162{18)18
162(18)18
162(18)18
162(27)6
162(27)6
162(27)6
162(27)6
81(81)1

0+ 0—+0+ 2

o(8)o
Q(4)0
o(4)o
0(4)0
0(20)0
0(2)0
0(2)0
0(10)0
o(2)o
0(10)0
0(10)0

20(1)20
o(5)o
0(5)0
0(5)0
5(5)1

Type 0+ 1~0+ 2 ~+ 2
—+0+ 1

1 1 —+— 1+2 2 0+ —,-1+—,
1 3

8

4~

43
44

212

2]3
214

223

224

234

1123
1 124

1 134

1234

1M

0(8)0
0(4)o
0(12)0
0(4)0
0(20)0
0(6)0

60(2)60
0(10)0
0(6)0
0(30)0
O(10)0

60(3)20
0(15}0

30(5)6
0(15)0

15( IS)1

0(8)0
0(12)0
0(12)0'

180(4)180
0(20)0
0(18)0

180(6)60
0(30)0

180(6)60
0(30)0

90(10)18
180(9)20

0(45)0
90(15)6
90(15)6
45(45)1

0(8)0
0(8)0
0(8)0
6(4)6
0(12)0
0(8)0

12(4)6
0(12)0

12(4)6
0(12)0
6(6)2

24(4)6
0(12)0

12(6)2
12(6)2
12(1231

18(8)18
36(8)18
36(8)18
18(12)6
18(12)6
72{8)18
36(12)6
36(12)6
36{12)6
36(12)6
18(18)2
72(12)6
72(12)6
36(18)2
36(18)2
36(36)1

0(8)0
36{4)36
0{8)o
0(12)0
o(16)o

72(4)36
36(6)12
24(8)6
0(12)0
0(16)0
0(24)0

72(6)12
48(8)6
24(12)2
0(24)0

24(2431
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This suggests an iterative approximation for the polariza-
tion analysis of reactions at very high energies in which
the initial step is an analysis into the collinearly nonzero
amplitudes only, followed by an analysis in terms of all
amplitudes using the values obtained in the previ'ous step
as initial values.

We also demonstrated that although at very high ener-
gies observables involving all but one unpolarized particles
are likely to be small at many kinematic situations of
practical significance, this does not mean that all polariza-
tion effects at high energies are small and unimportant.
Large effects are still possible for observables involving
more than one polarized particle.

(A3)

such submatrices, each still eight-by-eight.

There are four different types of 4;, depending on
which of the four indices is contracted in the bicoms. The
four types are accordingly labeled 4&, 42, 43, and 44.

Consider, for example, 4&. This type is represented the
following number of times:

4 Pit. 92(92 1)93(93—1)ri4(rig 1)]— (A4)
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APPENDIX: THE STRUCTURE OF THE
RELATIONSHIP BETWEEN SECONDARY

OBSERVABLES AND AMPLITUDE PRODUCTS

In this appendix we describe the structure of the sub-
matrices linking the secondary observables to the ampli-
tude products (bicoms) for a four-particle reaction con-
taining particles with arbitrary spins. The structure for
primary observables is well known and serves as the basis
for the results here.

In primary observables all four particles have their spin
states specified. In the secondary observables one uses ei-
ther unpolarized particles or a specification of particle
spin states which satisfy the null criterion, i.e., the sum of
the coefficients of the primary spin states in each of these
specifications is zero.

The reaction we consider is

S',"(XYZ)= g "'a'"d'J,
j=l

(A5)

a result consistent with Eq. (2.34) of Ref. 2.
The submatrices of a given type can be divided into sets

(each set containing q& such submatrices). In each set we
have fixed values for the set of arguments g', U, :-, co, V,
and Q, but all values of u =u appear. We call the ma-
trices in a given set sister submatrices.

We can then deduce from this array of submatrices that
in terms of secondary observables the four-by-four ma-
trices will turn 4gl-by-4gl in size. Their structure can be
described if we denote the secondary observables by
A"'( XYZ),S',"(X YZ), . . . , S„"' &(XYZ), where A

denotes averaging over the spi.n states of the particle ap-
pearing in the superscript, and the S "s are secondary ob-
servables satisfying the null criterion mentioned earlier.
The (XYZ) after the A"' and the S "s remind us of the
fixed but arbitrary specifications of the polarization states
of the other three particles. These secondary observables
have the following form in terms of the primary observ-
ables Wj:

s l +s2~s3+s4

where s; ( i = 1, . . . , 4) is the spin of the ith particle. We
will also use the notation

The original four-by-four matrix for the primary observ-
ables, as shown in Table I of Ref. 4, is

9; =2Si+1 . (A2)

'We will consider, one by one, the submatrices 8;, 4;, 2;,
1;, and 1~.

1 1 1

1 —1

1 —1 —1

1 —1 —1 1

These remain unchanged as we go from primary to
secondary observables. Thus we continue to have

The 4gl-by-4gl matrix of the secondary observables
will then be
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~'"(XYZ)
W'"(XYZ)
W'"(XYZ)

3 "'(xYz)

M4

S',"(XYZ)

s', "(xYz)
s',"(xYz)

S',"(XYZ)

' "&")M
CX1 4

(1) (1)M (1) (1)M
4

s„"',(xYz)

S„",' i(XYZ)

s'„",(xYz)

s'„",(xYz)

(1) (vy) —1)
'cx, ' M

(g —1)
(X2

'
M4 ca~

'
M4

(A7)

The four observables bracketed together correspond to the four observables in the original four-by-four for the primary
observables. Thus the first four would be 3'"(RRR), —3'"(RII), A"'(IRI), and 3"'(IIR), if we consider the real
parts of the bicoms.

2

The remaining kinds of submatrices can be handled in a way which is analogous to the treatment of the 4 s just
presented. In particular, we have six types of 2; s depending on which two of the indices are contracted. They are 2~q,

2», 2&4, 2&3, 2&4, and 234. Let us take, for example, the 2~z type of which there are

~ 91 )2[ l3(03 1)vl4( r)4 1)]—
The matrix for the secondary observables will be composed of the sister matrices with fixed values for the set g, :-, co,

and 0, but with all possible values for u =U and U= V. We then obtain a 2g&gz-by-2g~gq matrix for the secondary ob-
servables which has the form

w"'a'"(xY)
A" A' '(XY)

~'"s"'(xY)

~ "'s',"(xY) 2

a1 CX1 2
(1) ~& (2) I2 h W

There are

~ n3(n3 —1)rid n4 1)— (A 10)

(A 1 1)

such matrices for the secondary observables of the 212 type. The corresponding results hold for the other five types of
2E s.



31 POLARIZATION PHENOMENA IN COLLINEAR REACTIONS 2995

There are four types of 1 s, denoted by 1123, 1124, 1134 and 1234 Take, for example, 1123, of which there are

n)nrn3I: n4(n4 —1)l . (A12)

For fixed values of the set = and Q, we consider the sister matrices with all possible values of u =U, U = V, and /=co.
We then get matrices for the secondary observables which are g) r)qq3-by-q)r12g3 and have the form

1

(3) (1)
CX1

A'"A"'A'"(X)
A ' "A ' )S'1 '(X)

S(1) S(2) S(3) (X) 1) (P —I) (2) (P —1) (3) (q —1)
q) —1 g —1 g3 —1

1

(3) (1)
n3

(1) (P& —1) (2) (P —1) (3) ( g3 1)
az

' ez' az'

(A13)

There are

n4(n4 1)—
such matrices of the 1)q3 type. The corresponding results hold for the other three types of 1 s.

(A14)

Finally, we look at the 1M type, of which there is only one. There are

/ 1 92 I3 94 (A15)

primary 1M matrices. The secondary matrix, of which there is only one, will then be g)g2q3g4-by-g)gzg3g4, and its form
1s

A'"A"'A '"A(4)
1

(1) (2) (3) (4)

1

(4) (1)
(X1

(1)~ ~2 (2)~ ~2

(3 )
(7/3 1 ) (4) (q4 —1 )

CX j CX1

1

(4) (1)
g4

'~

(1) (gl —1) (2) (g —1)
a&

(3) (~3 l)(4) (~ 1)
nz az

(A16)

This concludes the complete description of the structure of the submatrices for secondary observables. The results are
tabulated for some simpler reactions in Table II.

The above results hold for reactions constrained only by Lorentz invariance. When other symmetries (e.g., parity con-
servation, time-reversal invariance, or identical-particle constraints) are imposed, additional simplifications materialize.
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