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The existence of the

solution of the

symmetry-breaking problem SU(5)—SU(3)

X SUR)XU(1)y—SU(3) X U(1)gy is shown in a nonminimal model where the 75-dimensional Higgs
field is used instead of the usual 24-dimensional one. The result is given in an explicit and simple
form. The relevance of this solution to existing theories and to problems related to proton decay is

discussed.

I. INTRODUCTION

In the minimal SU(5) model,! the 24-dimensional ad-
joint Higgs tensor was used to break the SU(5) symmetry
to the SU(3) X SU(2) XU(1)y symmetry of the standard
model. The fundamental representation together with its
complex conjugate is used to perform the next stage of
symmetry breaking to SU(3) XU(1)y symmetry. Howev-
er, recent experiments,2 combined with a theoretical
analysis of implications of these experiments on the mass
My of heavy vector bosons,” are incompatible with the
calculated value of My from SU(5) renormalization-group
equations.* At this point one may be tempted to abandon
the SU(S5) model. The other possibility is to realize that,
strictly speaking, the above argument eliminates the
minimal version of the SU(5) model. For this reason and
because of the simplicity of SU(5), it is worthwhile to ex-
plore other nonminimal versions of this model. In this
paper we study the following symmetry-breaking pattern
of the SU(5) model:

SU(5)75>SU(3)><SU(2)><U(1)Y —SU(3)xU(l)g .
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In other words, we use the 75-dimensional Higgs field in-
stead of the adjoint 24-dimensional representation used in
the minimal SU(5) model. As mentioned in Ref. 5, there
are several reasons that make such a choice attractive and,
for completeness, we repeat them here briefly.

(1) The 75-dimensional Higgs tensor plays a crucial role
in constructing hierarchical fermion masses in a model
developed by Barbieri, Nanopoulos, and Wyler.®

(2) It has been pointed out by several authors’ that the
heavy Higgs field can cause significant uncertainties in
evaluations of My. This effect is small for the minimal
model but may be significant for other tensors.

(3) This representation is also used in some supersym-
metric SU(5) models.® The analysis of its symmetry pat-
tern may thus also be useful for these theories.
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(4) Despite the fact that progress has been made>°~1! in

understanding and solving the symmetry-breaking prob-
lem in gauge theories, explicit solutions are known only in
some simpler cases. This paper provides another explicit
example to this list.

The paper is organized as follows. In Sec. II we intro-
duce a form of the potential. This form is considerably
simplified in comparison with its form for the same ten-
sor but for a general SU(n) group. This is due to some
nontrivial relations between invariants which we use. In
Sec. III we present briefly the derivation of the first stage
of symmetry breaking. This has already been shown in
Ref. 5. However, in this analysis we also include cubic
terms in the potential. The analysis is considerably sim-
plified owing to the relations between invariants men-
tioned above. In Sec. IV we present results obtained after
the second stage of symmetry breaking. In the end we
draw conclusions.

II. HIGGS POTENTIAL

We introduce the following SU(5) multiplets: a funda-
mental covariant 5-dimensional field H® E=1,...,5,
its complex-conjugate partner ﬁp, F=1,...,5, and a 75-
dimensional multiplet tbég, A,B,C,D=1,...,5. This
tensor is antisymmetric in upper and lower indices
separately, and all traces vanish. In other words,

O = —dpl = — 0B =pBL @2.1)

We have to construct the most general polynomial in
these fields up to the fourth order. We can decompose it
into three terms,

V(®,H,H)=Vis+Vp+Vs, (2.2)

where V55 depends only on ®, Vs only on H and H, and
V,» contains the interactions between them.
In order to construct V5, we have to know SU(5) in-
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variants up to the fourth order in this tensor. The basis

for these invariants was previously introduced!®!! for the

general SU(n) case and we list it here: the quadratic in-
variant

I1?Y=080 , (2.3)
the cubic invariants

P =B oUNDEE | 2.4)

1“’—@5{‘{4) BoEL | (2.5)

and six quartic invariants

1(4)=I<2>2=(¢AB¢CD)2’ 1“”—Hc HE

1Y =HAEHSS, 1Y 2B P | (2.6)
I4 —G GBA’ I GAB7
where
HE=Dir @)
2.7

AB AF 3 EB
Gép=Ppr Prc
However, nontrivial relations between these invariants can

be derived in special cases. One of these is the SU(S)
~ group. For this group, the following relations hold:!?

I 4ard —o, (2.8)
4IP— 1 1\ 61 | (2.9)
8 — I _21'(® 4 81 (2.10)
165" = — 516 —21t" 3215 @.11)

For their derivation we refer to the Appendix. This
means that we can use a smaller set of invariants. We
choose

I(Z), I(3)=I(13)’ Ig”’ 1(14), 1(24) . (2.12)

Now we are able to write the potential (2.2) explicitly:

Vs= ——‘;—ﬁAHA+%(I7AHA)2 , (2.13)
Vn=aH HADEOPE + BH 4 @EH PRHT (2.14)
V7s=—ﬁ—<b podh+ 5 (@EeGR)
b, AB 4,CD 4. EF ;#,GH
+ —2—(1)611 D5 PcpPEF
b,
+2q> B oL DEL, <1>EB+? A2 p P DED (2.15)

III. BREAKING OF SU(5) TO SU(3) XSU(2) X U(1)y

This particular part of the problem was solved in Ref. 5
with no cubic terms included. We present here the solu-
tion of a more general problem with cubic terms included
and with simplifications due to Egs. (2.8)—(2.11). We in-
troduce the decomposition of the tensor @ to its irreduci-
ble constituents under SU(3) X SU(2) X U(1)y:

75=(1,1,0)+(8,1,0)+(8,3,0)
+[(3,2,—$)+(6,2,— 3)+(3,1,
together with the following explicit form of its subtensors:
DB | (1,1,0=DL[(855 — 85 )+3(80d—8 )
— (874 — 88 +88—88a)1 ,
¢é§1(8,1,0)=—§[(28$—8‘;)¢ —(28% —ad)@"
+ (266 —84) B2 — (285 —82)3F] ,
o8 l(8,3,0)=(¢;s+$gg+6c5+ yd) ,

—%)4ce, ((3.1)

3.2)
DB | (3.2, _5/6= — 3 [(82—280)Bf — (8§ —253)DF

+ (85 —285)D¢ — (85 —282)@71,
Zp (3,2,—5/6)=(a’:g+&>?g) )
‘bég |<§,1,—5/3)=(E)g£) ’
where we have used the conventional index splitting

A4,B,C,D—(a,a),(3,b),(y,c),(8,d) ,
(3.3)
a’B)yy6= 1,2,3, a,b,C,d=4,5 .

The quantities in (3.2) are related to the original tensor by
Oy =) — 1570, <1>‘z_<1>cf, =07,
D=0 — 15208 — 1850+ +8%0, (3.4)

=0 — 5 (835 — 68655

We shall solve this problem by using the methods of
Refs. 10 and 11. Our approach essentially consists in in-
troducing the decomposition (3.2) into Eq. (2.15) for the
potential. For the purpose of the problem, it is sufficient
to retain terms up to the second order in subtensors. It is
useful to separate the vacuum expectation value in the
singlet variable

P=5+0, (®)=s. (3.5)

In the SU(3) X SU(2) X U(1l)y -invariant point, all sub-
tensors vanish except the singlet. In the new decomposi-
tion of the potential, the terms linear in 6 produce the
equation for stationary points and quadratic terms in the
fluctuations provide stability criteria as well as squares of
boson masses. To obtain these results, one has to perform
straightforward but lengthy calculations. We can howev-
er use the results derived previously!! for the general
SU(n) case and specify them for n=35. Compared with
this general case, the solution is simpler owing to a small-
er number of subtensors and a smaller number of invari-
ants. More specifically, four of nine subtensors in Ref. 11
do not appear in the problem considered here. In the no-
tation of Ref. 11, these are X, X,, X5, and X5. It is now
straightforward to apply the results from Ref. 11, in par-
ticular to use Eqgs. (37)-—(40), together with the tables
from Appendix B of the same reference. Of course, the
use of the expressions given there can be avoided by per-
forming the calculations mentioned above.
We obtain the condition for the stationary point,
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p?=2(108a +60b, +56b,)s>+ cs (3.6)

and the value of the potential at this point,

V=— 12(108a+60b1+56b2)+32§ st 3.7

Boson masses squared, i.e., stability conditions, read as
follows:

(m1,1,0))*=%s? |108a +60b,+56b2+2§ >0,

(mg,1,0)°=%s? 24b,+8b2+2§ >0,

(m(s,30)7=— 352 24b, +8b,+105 | >0,

(3.8)

(Mg _s/e)'=—"73s 24b1+10b2+2'§“ >0,

(ms,1,_s/5)’=—Fs7 | =24b; +2b, =25 | >0,

(m(3,2,_5/6))2=0 (“Goldstone bosons™) .

We find a relation between masses
24(mg,1,0) P +(mpz g _s/3)?=100mg, _s/5) . (3.9)
If cubic coupling vanish owing to some discrete symme-
try, we have another relation
2
m(8,3,0)2=m(8,1’0) . (310)

For completeness, we add the value for the mass My? of

the vector gauge bosons,
My?=48g%?, (3.11)

where g is the SU(5) coupling constant.

IV. BREAKING OF SU(3) X SU(2) X U(l)y
TO SUB) X U(1) o

We introduce the five-dimensional multiplet
H* A4=1,...,5.
We recall the decomposition
HA=H"+H*,
. (4.1)
Hy=H,+H,,
or ‘
5=(3,1,—3)+(1,2,5),
5=(3,1,3)+(1,2,— ).

Each subtensor of tensors & and H decomposes‘further
under SU(3) X U(l)g. These decompositions are as fol-
lows: Subtensors of ®:

§=S or (1,1,00=(1,0),
D5=>F or (8,1,0)=(8,0),

~ 1 ~ — -
*F=—=ea®” or 3,1,-1)=3,—7), @42

€15=—€54=1, €44=6€55=0,
By =0% V285,002,

or '
(8,3,0)=(8,1)+(8,0)+(8,—1) ,

where

N a
5 a4 oy
%, =7

+v

Bt
PI=X@Y'* or (3,2,——2—):(3,_4)4_(3,_%),

a4 Fas Fa Fas
=(Dy4=q)'y$’ (I)—y=q)y4 s

where
X =®f, Y*=0F;
=3 037,
or
(6,2, —3)=(6,—$)+(6,— 1),
where

F.af Faff
% -3

5 :f’liﬁ'y:a);f >

subtensors of H:
H*=H® or (3,1,—+)=(3,—1),
' (4.3)
1
H°=5:x+5§72x5 or (1,2,3)=(1,1)+(1,0) .

Let us separate the vacuum expectation values in the
singlet variables

¢=S+9, <¢)=S ’
4.4)
Xs=v+E+in, (Xs)=v.
Again we have to repeat the whole procedure. We obtain

two conditions for the stationary point, one in 6 and the
other in §&. These read explicitly as

2
p?=2521108a +60b, +56b2+4§+% —;’— ] , (4.5
V=73A?4+48ys?;
v is an abbreviation for
vy=3a+p.
The value of the potential V at this point is
Vo= — [ 12(108a +60b1+56b2)+32§ s4

Av* 2,,.2 0"
+ 16 +12v%ys“ .

We can now find masses of the multiplets which are
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left after the breaking. These are two (1,0) fields which
are mixtures of & and 6:

1 1

=———>—(§+R,0), E=———(E+R.0),
TT TRy RO = A R
. (4.6)
\/—l }\'UZ 2 2
s 4V 2yvs | 4 *3
5 12 1/2
+ | | 2ps2 2T | qogy222 ,
3 2
4.7
where P is an abbreviation for
P=108a +60b, +56b2+2§ . 4.8)
Masses of these particles are given by
2
mT,§2=%+%Ps2
2 172
! ap2 A? 2,2,,2
t5 | |3Ps - +128v°s“y . 4.9
The positivity of m, ;2 is ensured by
AP
2 _ AL
V<5 - (4.10)

We see that one of those masses is heavy of the order O (s)
and the other light of the order O(v). The latter is the
usual Salam-Weinberg Higgs boson.

There are “Goldstone bosons”

n=Imx?,
X=H*, (4.11)
xt=H],

with quantum numbers of the Salam-Weinberg vector bo-
sons Z% W, and W. There are states which are mixtures
of (3, —+) from ® and H. These mixtures are given by

1 a '
Yo S (XY,
@.12)

a___ % |ge_ 1y

Y% is a “Goldstone particle,”

and

(4.13)

2 2 v?
my —‘—‘—B 16s +“1—E .

The resulting stability condition is

B<0.

Because of this mixing, the mass of the Y gauge boson is

(4.14)

shifted by an amount of order O (v), in full analogy to the
minimal model. Other states do not mix and have the fol-
lowing masses, i.e., stability conditions.

(8,0) from (8,1,0):

2
m2=—%s2[24b1+8b2+2§+%3(? >0;
(8,0), (8,1), and (8,— 1) from (8,3,0):
. 2
m?=— 252 24b1+8b2+1o~c—+ﬁ[3 >0;
A s 8 |s
6,—%)
2
m?= 452 24b1+10b2+2§+€— L I
(6’_—;,')

[ 2
m?=—%s2 24b1+10b2+2§+,—‘6[3[§ >0;
(gy'—'%)

[ 2
m2=_3g2 —24b,+2b2—2§+%/3 f >0.

We see that it is possible to perform the desired break-
ing. Again as in the minimal model, the physical require-
ment My << My becomes v <<s. We comment on other
properties of this symmetry-breaking pattern and its
analogies to and differences from the minimal model.!
Salam-Weinberg singlet states from ® and H mix. How-
ever, this is a simpler picture than in the minimal model
where an additional Salam-Weinberg singlet state exists in
the (1,3,0) subtensor of the adjoint Higgs and a more com-
plicated mixing scheme arises. This is also the reason that
the conditions (4.5) for the stationary point are simpler
than the analogous conditions for the minimal model. In
other words, we have two uncoupled equations, while the
minimal model requires three coupled equations. Our
next comment refers to the Salam-Weinberg “Goldstone”
bosons 1 and X which, in contrast to the minimal model,
do not mix with the states from ®. As a consequence'’
the Salam-Weinberg relation

MW =M200S9 (4.15)

is unchanged contrary to the minimal model where
corrections of the order O(v%/s?) have to be included.
Let us now consider the states with the (3,— <) quantum
numbers from H and ®. These mix completely analo-
gously as in the minimal case and produce one “Gold-
stone” boson which can be “eaten up” to give mass to the
Y vector boson and produce just one massive Higgs state.
We end this section with Figs. 1—3, which may serve as a
guide through the various subtensors mentioned in the pa-
per. We have shown that the 75-dimensional Higgs field
can be used to break the SU(5) symmetry to the standard

. model. In this analysis we have included the cubic term

and also used nontrivial relations between invariants to
simplify the potential. In fact, the potential contains only
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SU5) —> SURIxSU2IxUMM — SUI3)xUM)

(31-173) ______(3-1/3)
T HE H*
1.21/2) X

H* (1,0)
:(,/./7

FIG. 1. Splitting of the fundamental representation H4
under the chain of subgroups SU(5) — SU(@3) X SUR) X
U(1)y—SU(3) X U(1)g. The name used in the text is indicated
under the subgroups content of the subtensor.

one more parameter than the potential for the adjoint rep-
resentation.

As mentioned in Sec. II, investigation of nonminimal
models may be useful in avoiding the conflict of the
minimal model with experiment. In fact, there are several
possibilities of saving the SU(5) model mentioned in the
literature.

(a) Introduction of heavy Higgs fields different from
the adjoint tensor may be associated with uncertainties in
evaluations of My from renormalization-group equations.
For example, in the model by Barbieri, Nanopoulos, and
Wyler,® there is an uncertainty by a factor of 6 in the
evaluation of My. For the 45-dimensional scalar, a factor
of 2.8 was calculated by Cook, Mahanthappa, and Sher’
(see also Ref. 14).

(b) If we combine 75 and 45 scalars, an important ef-
fect may arise from the fact that there is no obvious con-
nection between Kobayashi-Maskawa mixing angles and
mixing angles relevant to proton decay (see, e.g., Ref. 14).

(c) Another effect may arise from introduction of non-
renormalizable terms in the potential.'®

SU(5) -> SUBKXSURIxUM) — SUBIxU(1)
110 19
/
/(810 _____ 89
1y
//,// ( 7{*7)
/ rd
W 130) -7 (L0
24 v _ - -
\\’\ ~ (=1)
\t\ (3-4/3)
\ \ Pid

<7 (Br/3)

S B=13)
S \( 347/ 3}

\32-5/6) .-
\!3‘ 2““5/ 6} /

FIG. 2. Splitting of the adjoint representation T4 under the
chain of subgroups SU(5)—SU(3)xSU(2)xU(1)y—SU(3)
XU(1)g. This tensor is not used in this paper, but we mention
it for comparison of this work with the minimal model.

SuUl5)  —  SUIBIxSUI2)xU(1) — SU3)xU(1)
wo (10
// 9 A
| 8.1.0) (8.0
! o “
/ ! é, "
I/// _ (8 1) —
'/ (830) -~ _(80) "
/ b < -
/I[l // éxg ~ ~. (81_7} Q,
o/ -
i b g
i 13473
"/ _ X
n (3.2:5/6) - (3+4/3) -
iy - - B ) ¢:‘ \\\ e 9
453_” /__ (3.2+5/6) -~ ~ (3-1/3)
J: "N s Y=
"W ~B#/3)
AN 7
\ \ _ o
\\‘\\\\\ (6= ~4/3) —
‘:\ \\(6.2-5/6) = T 6r4r3) ,:
A 4 S -7 pt ]
\\ \ 62+5/6¢” “~ (B-1/3) _ :
X T
\ S 641/3) 77
\ 77
‘\ \(31:5/3) 3-5/3)
P ¢ =p
\ cd
\31#5/3) (3+:5/3)
¢f“ éfdp

FIG. 3. Splitting of the 75-dimensional tensor ®¢5 under the
chain of subgroups SU(5)—SU(3)xSU(2)xU(1 )y—SU(3)g
XU(1)g. The name used in the text is indicated under the sub-
groups content of the subtensor.

(d) There are also proposals which do not change the
Higgs sector, but change the fermion sector'® instead.

We also hope that this analysis may be helpful in
developing the hierarchical mass model as proposed in
Ref. 6, in analyzing supersymmetric grand unified
theories, and in developing a nonminimal SU(5) model.
For this last case we have to break the symmetry down to
SU(3) X U(l)g. One has several possibilities of which the
simplest one is to take a 5-dimensional tensor plus its
complex conjugate or the 45-dimensional representation
instead and again its complex conjugate. Both possibili-
ties are of interest. The latter choice may be more desir-
able because of its success with fermion masses;!” howev-
er, in this paper we have presented the simpler version. It
turns out that this step is simpler than in the minimal
model, as explained in Sec. IV. For completeness, we
have calculated the relative volume of the domain (2.8) to
be (1.77%£0.07) %, corresponding to the physical standard
minimum.

After completion of this work we received a paper by
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Abud, Ansatze, Eckert, and Ruegg,'® which is in part
overlapping and in part complementary to the first part of
this paper treating the potential with the 75-dimensional
scalar. '
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APPENDIX: RELATIONS BETWEEN INVARIANTS

We indicate here the derivation of relations between in-
variants used in the text. We start from the symmetric

part of the product of two 75°s:
(75X 75);=1+4+24+75+(175+h.c.)
+200+ 1024+ 1176 . (A1)

There is one 75 in this decomposition. 'That implies that
the 75 components of H and G have to be linearly depen-
dent:

HEE— traces +MGEE—GHE)— traces =0.
The constant can be found by inserting, for example, into

this equation the singlet component of form (3.2). That
gives

A=4. (A2)
This property implies dependence of cubic invariants (2.8)
and two relations between quartic invariants (2.9) and
(2.10).

The last relation we can get by considering the bilinear
tensor

K=&k e e pop, . (A3)
We evaluate the square

KiKy
combining € symbols in two different ways. This leads to
the relation (2.11). We stress that these relations are a

special property of SU(5). Other cases have been sys-
tematically investigated elsewhere.!?
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