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We study composite operators in lattice gauge theory that reduce to operators of the form

pl DD . ll in the continuum limit; such operators arise in perturbative analyses of quantum chro-
modynamics. Using our results and the data of a numerical simulation one could normalize ex-
clusive processes and predict moments of deep-inelastic scattering structure functions. To initiate
the program we construct and renormalize lattice operators to the one-loop level. We are en-

couraged that the hadronic matrix elements of the simpler operators are within reach of numerical
simulations.

I. INTRODUCTION

Lattice gauge theories have been used to calculate very
basic quantities such as hadron masses and meson decay
constants. ' However, there is a wide range of interesting
quantities for which a combination of perturbation theory
and numerical simulation can provide complete predic-
tions of quantum chromodynamics. In particular, the
definition and renormalization of extended operators of
the form QI UU g will enable us to extract matrix ele-

ments of QI DD tb, relevant to the moments of struc-
ture functions in deep-inelastic scattering '" and the mo-
ments of the distribution amplitudes defined for wide-
angle exclusive processes. ' These matrix elements are
the nonperturbative constants appearing in the operator-
product expansion, and a knowledge of them will deter-
mine the normalization as well as the x; dependence of
the structure functions and of the distribution amplitudes.

Although the predictions of QCD are in excellent quali-
tative agreement with existing experimental data, it has
been difficult to obtain quantitative predictions of QCD.
The lowest moments of the structure functions and the
distribution amplitudes determine the normalization of
high-energy scattering processes, while in general the rate
for such processes is a convolution of a nonperturbative
function and a parton-scattering amplitude. A theoretical
prediction of these functions would provide many testable
predictions of QCD both now and in the future as we
probe yet higher energies and is clearly of great
phenomenological importance. Since all of the nonpertur-
bative information can be extracted from hadronic matrix
elements, we propose to evaluate them using lattice gauge
theory.

We will present explicit results for twist-two qtI opera-
tors, but our techniques can be extended to three-quark
operators, gluon operators, and higher twist in a straight-
forward way. Such an extension, and subsequent lattice-
gauge-theory calculations, would go far to resolve many
issues in perturbative QCD. The three-quark analysis
would provide the overall normalization and provide the
basis for full predictions of baryonic exclusive processes.

The calculation of the gluon structure functions would en-
able us to make predictions of very-high-energy
hadronic-scattering processes, as we probe the gluon sea
of protons or antiprotons. Indeed, since the gluon struc-
ture functions are so difficult to extract from experimen-
tal data, this may be the only way to make clear predic-
tions in future hadron colliders. Evaluation of higher-
twist matrix elements will unravel the importance of these
contributions, which currently hamper our ability to
determine AQCD from the moments of deep-inelastic
scattering. ' In addition, such a calculation of higher-
twist contributions will extend the predictive power of
perturbative QCD to lower energies, where the coupling
constant runs more dramatically.

We analyze the flavor-nonsinglet twist-two operators in
lattice gauge theory to the one-loop level in weak-coupling
perturbation theory. Our use of perturbation theory will
be justified a posteriori inasmuch as typical corrections are
O(a, ), which is 10%%uo even when g =1. Owing to their
high dimensions, the operators have a nonzero naive de-
gree of divergence. In the continuum, these power-law
divergences vanish as a consequence of Lorentz (or Eu-
clidean) invariance, but since the lattice explicitly breaks
this invariance, any straightforward transcription to the
lattice will have these divergences.

In Sec. II we remind the reader of the origin and impor-
tance of local operators in the analysis of deep-inelastic
scattering and wide-angle exclusive processes. The rela-
tionship between the two sets of operators is reiterated.
Section III contains our formalism for construction of the
operators when space-time is approximated by a lattice.
We discover that the breaking of Poincare invariance
leads to power-law divergences in our "naive" formula-
tion, so we remove them by constructing counterterms.
We also calculate the finite ren'ormalization which con-
verts the lattice cutoff to a continuum cutoff for the ma-
trix elements of these operators. Since we use Wilson fer-
mions, the chiral symmetry is also broken, which requires
additional counterterms. The numerical values of the
coefficients of the counterterms are given in Sec. IV with
some interpretation. Finally we discuss future directions
and applications of this kind of approach in Sec. V.
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II. COMPOSITE OPERATORS IN PERTURBATIVE QCD

The tensor operators that we wish to study arise in the
perturbative analysis of the light-cone structure of scatter-
ing amplitudes. All this material is well explained in
many places. ' We would especially like to cite Ref..4 for
deep-inelastic scattering and Ref. 5 for wide-angle ex-
clusive processes. Nevertheless we provide a brief reca-
pitulation that emphasizes the point of view appropriate
to this paper.

Tensor operators appear most immediately in the
operator-product expansion, ' which asserts that

A(-,'z)B( ——,'z)=QC„(z')z"Oz"' . . z""O„'"' . . .„
(2.1)

in the weak sense of matrix elements. The coefficient
function C„(z ) is a c-number containing all the singulari-
ties as z ~0; the sensitivity to initial and final states re-
sides in the local operators 0'n'. We limit our discussion
to the dominant operators, which are those with smallest
twist—:(dimension —spin). In deep-inelastic scattering the
operators A and B of Eq. (2.1) are weak or electromagnet-
ic currents, and in wide-angle exclusive processes they are
fermion fields. Nevertheless, similar 0'"' are relevant to
both phenomena. " If one considers the flavor-nonsinglet
sector, the former requires

(2.2)

where g and g have suitable flavor indices; the latter also
requires

'I n ~k+i 1"k

The operators have been chosen in this form because they
are gauge invariant, and because they transform irreduci-
bly under the Poincare group. The Dirac matrix I de-
pends on the currents for deep-inelastic scattering and on
the spin and parity of the specific meson in exclusive pro-
cesses.

The moments of the structure functions of deep-
inelastic scattering are very simply related to matrix ele-
ments of the operators 0'n'. For matrix elements aver-
aged over polarizations define A'"'(p) by

(Il,p io„'"', . . .„ia,p)' '

(

=2" + 'A '"'(p )(p~, p&
—traces ) . (2.4)

Note that the hadronic matrix element depends on one' s
renormalization and regularization prescriptions, as indi-
cated by p. The nth moment of the nonsinglet structure
function is given by '

M„(Q)=fx" 'fNsdx =A'"'(p, )C„(glp,g(p))

=A'"'(g)C„(g(g)) . (2.5)

(n) (n, 2k)
[n/2]o„.. .„=g b,"„o„"
Jc =0

(2.6)

where to the one-loop level the bP' are the coefficients of
the Gegenbauer polynomial' C„' ' which is a conse-
quence of conformal symmetry. " For a typical exclusive
process like AB —+CD, one can dissect the exclusive am-
plitude into a convolution '

~aa ca= C DTa (2.7)

In Eq. (2.7) the distribution amplitude P is the probability
amplitude for finding approximately collinear partons in-
side a hadron, and TH is the hard scattering amplitude for
scattering these partons. TH is entirely perturbative; all
the details of the hadronic structure are lumped into P,
which for mesons can be expressed in terms of the 0'n'.

The last equality follows because the moments must be in-

dependent of the renormalization point, so we can set
p=Q. The generic structure function fNs is either of
2xF ~ F2, or xF3, where the F; are the standard
functions. The coefficient function C is given in leading
order by the free-field value, so it is related to the charges
in the currents. The next order in the running coupling
g(Q) is given in Ref. 4.

Under renormalization the 0'"' ' mix with one another;
this was not an issue for deep-inelastic scattering because
the relevant matrix element vanishes for k&0, however
for exclusive processes the mixing is important. The
operators that diagonalize the anomalous-dimension ma-
trix ' are

( Q )
x ( 1 —x ) + 2 ( 2n +3 ) C ( 3 /z)

( 2 1 )A
~" ~

( g )
o (2+n)(1+n)

(2.8)

where x is the fractional longitudinal momentum of the
quark and the A'"'(p) for a spin-zero meson M are de-
fined by

(o~o„'"' . . . „~Mp)~~'

=2"+ 'A '"'(p. )(p„, p„—traces), (2.9)

in analogy with Eq. (2.4). As in Eq. (2.5) we have noted
that the dependence on the momentum transfer Q is that

I

of a cutoff matrix element. For spin-one mesons with hel-
icity 0 the same operators apply, but there can be n + 1

tensors built from the momentum and the polarization
vector, and one must be careful to pick the correct com-
bination of components to extract the correct A (see
Ref. 5).

Because of the results in Eqs. (2.5) and (2.8) our aim is
to formulate a procedure for calculating 2'"' and 3'").
This will have two steps. First, we must define operators
in lattice gauge theory that correspond to the ones in Eqs.
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(2.2) and (2.3). Second, the lattice cutoff I/a must be re-
lated to the cutoff p or Q in the continuum theory. We
will see that the first step, which seems trivial, is actually
quite difficult, and that the second step, which seems
mysterious, is actually quite simple.

III. LATTICE ANAL'YSIS OF TENSOR OPERATORS

Before we proceed with the specific details of our
analysis, we should discuss the problem in general terms.
The continuum matrix elements fhIat we want to
evaluate are of the form (0

~ 0&, . . .
& ~ p )'&' and

(p ~

0&"'. . .„~p)'~'. Under the conditions discussed in

the previous section, the matrix elements take the form
(0'"')=A(p&, p& —traces) since there is only one
tensor of spin n that one can build from a single four-
vector. One can determine the form factor A by analyz-
ing any convenient component; we choose to examine the
components with all p; identical. This choice makes sym-
metrization easy and anticipates Monte Carlo calculations
in the meson rest frame, where only the p; =0 component
will be nonzero. For higher n the polarization vector of
spin-one mesons cornplicates the decomposition of the
matrix element, and requires the study of other com-
ponents even in the rest frame.

In the continuum the 0'"', chosen to be symmetric and
traceless, transform irreducibly under the Lorentz group;
similarly the 0'"' are related to the Gegenbauer polynomi-
als at leading order because those combinations transform
irreducibly under the conformal group. " The natural
operators in a lattice theory are those which transform ir-
reducibly under the point group of the lattice, yet we are
obliged to consider 0'"' and O'"'. The representations of
different spin "share" the representations of the point
group, as exhibited for a hypercubic lattice by Mandula,
Zweig, and Cxoevarts. ' Thus, for example, 0' ' mixes
with a O' '. The lattice spacing appears explicitly by
dimensional analysis, and it signals the power-law diver-
gences alluded to in the Introduction. Of course 0' ' also
mixes with BOO' ', even in the continuum, but the solu-
tion of this mixing problem yields the bk"' of Eq. (2.4). It
is not our goal to solve the problem of the mixing of 0'"'
and a '" '0' ' in the sense of Eq. (2.4); rather, we wish
to construct operators that have a sensible continuum lim-
it when quantum effects have been included.

To construct operators on the lattice with an appropri-
ate continuum limit to 0(g ) we need to renormalize the
operators to the one-loop level in weak-coupling perturba-
tion theory; i.e., we need to absorb the effects of momen-
tum scales far greater than any physical scale into a redef-
inition of the operator. The large momentum scales have
two effects. Most importantly they produce violations of
Lorentz invariance which allow power-law divergences
and also ruin the decomposition of the matrix element
into one tensor and one form factor. We calculate the
counterterms which are necessary to restore Lorentz in-
variance to 0(g ). The other effect of large momentum
scales is to produce an overall multiplicative renormaliza-
tion which also occurs in the continuum analysis. The ul-
traviolet logarithm is the same as in the continuum but

the finite parts differ. We compute this finite difference
because it provides a relationship between the lattice spac-
ing a and the physical cutoff Q, which we will call the
"scale change. " Moreover it has been numerically impor-
tant in previous calculations. '

A fair question at this stage is how one might avoid the
power-law divergences. This can only be done if all
Lorentz indices are kept distinct, which is only possible
for n (3. This approach would force one to give the had-
rons nonzero momentum in spacelike directions in a nu-
merical lattice computation. Although that is possible, it
degrades the statistics' and requires yet larger lattices.
Nevertheless, we do provide in Sec. IV the scale changes

0'tI, 0'tI~, and 0'tIrs. Finally, we point out that
hybrid approach with some indices equal and some dis-
tinct suffers from the problems of both extreme ap-
proaches.

A. Construction of "naive" operators

The first issue that one must address in defining the
tensor operators is the finite difference prescription for
the derivatives. Although this is to some extent arbitrary,
there are reasons to consider the "symmetric difference
operator. " Define translation operators t& and t z=t~
by their action on any function:

t„f(x)=f(x +aIt, )t&,

(3.1)

t &f(x)=f(x —ap)t

where a is the lattice spacing and p is a unit vector along
the p axis. We write t& and t

& on the right-hand side of
Eq. (3.1) to indicate the possibility. of an implied function
further to the right. Then the symmetric-difference
prescription replaces Bz by

5q=(2a) '(tp f p) . — (3.2)

This difference operator has several virtues. It is simple
enough that the nonlocality is kept to a minimum, which
will be of practical importance in nonperturbative calcula-
tions using finite lattices. —i5& is Hermitian, so we can
deal with real quantities. Most importantly, it is odd
under parity, which means that operators with even (odd)
n will only mix with others with even (odd) n Note th.at
from Eq. (3.2) our lattice '-'Laplaeian" is

5 =(2a) (tp +t p
—2)

as opposed to the lattice "Laplacian" that naturally arises
in scalar field theory, i.e., a (t&+t z

—2}.
We can also define covariant translation and difference

operators associated with those defined above. To be
specific we have

Tp = t„U„(x—age ) = U„(x)t~,
(3.3)

T „:—t ~U ~( +xp)a=U q(x)t

where U„(x} is the gauge-group matrix defined on the
link from x to x+ap, and U &(x):—U&(x —aP, ). Then
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the covariant symmetric difference operator that replaces
Dp 1s

Ap
——(2a) '(Tp —T p) . (3.4)

Since the covariant derivatives in Eq. (2.4) require

D =D —5 we extend this notation to our discrete opera-
tors. t" (t ") is given precisely by tp (t „) in Eq. (3.1)
except that it should be worked to the left rather than to
the right. Similarly, the covariant translation operator Fp
(F p) is given precisely by Eq. (3.3), again except that the
translation operators should be worked to the left.

The translation operators simplify not only the deriva-
tion of Feynman rules for the tensor operators, but also
the brute force expansion of them in terms of the gauge-
group matrices U. The former exercise is done in Appen-
dix A, and an example of the latter is done here. In both
cases the identities

f(x)(Tp —T p+Fp T„—)g(x)

=(1 +t p)[f( x)(F p
—T „)g(x)]

=(1+t „)[f(x)(T„F„)g(—x)] (3.5)

are useful, mainly because in momentum space

+ IP fOtg

t+p ——e

where p'" is the total momentum of all the fields on
which t+& acts. Deep-inelastic scattering requires for-

-(n)
O~~ . . . p

[n /2]" g b 2k'5p, . . . 5»„gi Pp,Zp „k=0

(3.6)

. . Zp g.

Equations (3.6) have i " instead of i", as in Eqs. (2.2) and
(2.3), to account for the passage from Minkowski to Eu-
clidean space. To illustrate the kind of object that Eq.
(3.6) defines in terms of the lattice fields, let us exhibit the
completely diagonal component (po ——p~

——p2—=p) of 0' '.
We have

0„'=(2ai) (1+tp) fail (Fp T„)~1(—
—trace . (3.7)

The "trace" is obtained from the continuum operator by
precisely the same prescription as the other term. Using
Eq. (3.3) and writing the trace explicitly yields

ward matrix elements, which project out p' '=0 and the
simplest procedure to extract (0

~

0'"' ~p) from Monte
Carlo data projects out p'"=0; hence t+& is equivalent to
unity in practical applications.

The unrenormalized operators corresponding to 0'"'
and 0'"' are obtained by substituting 8—+5 and D~A:

( )0„~ . . .p
=i "Pil p bp

(2ai) 0„''(x)=(1+tp) [fail pU„Up/(x)+H c 2/iI p.g(—.x —ap)]
4——, g I(1+tj) [pi I pU~Uig(x)+H. c. 2/iI „g—(x —aj)]

+(1+tp)(1+ti)[y~'I J(U, Up+ Up UJ )y(x)

Pi I pUI U p—Q(x —ags) QiI pU„U—~Q(x —aj)+H. c.]I . (3.8)

Here we have omitted the position arguments of U and g
because they are determined by local gauge invariance.
Equation (3.8) is an indication that 0' ' is quadratically
divergent. Surely it would be naive to expect the right-
hand side to be 0(a ) to all orders in g.

B. Construction of renormalized operators

To renormalize the lattice operators one may compute
any matrix element of the 0'"' which reveals the full
divergent structure; we choose to evaluate (p

~

0'"'
~ p )

with external quark states. Upon calculating the one-loop
corrections to the operator we expect that the 0" will
mix with another operator with the same quantum num-
bers, and we will be able to remove the divergences by
considering operators of the same or smaller mass dimen-
sion. Therefore we need to analyze the properties of the
0'"' under the symmetries of the lattice action, so that we
may anticipate and understand the pattern of the mixing.

For the purposes of classification the useful symmetries

I

are charge conjugation, parity, and hypercubic invari-
ance. ' The 0'"' have C=+( —1)";the ( —1)"arises from
the n Z's and the —(+) sign corresponds to bp ——yp
(ypy5). Finally, the diagonal components of each 0'"'
fall into one of two representations of the hypercubic
symmetry group. Those with an odd number of indices
belong to the irreducible four-vector representation exem-
plified by pp. Note, however, that all odd powers of pp
fall into this representation. The 0'"' with an even num-
ber of indices belong to a reducible representation consist-
ing of a direct sum of a three-dimensional representation
and the identity. For example, p& "for p=l, . . . , 4 be-
long to this representation with the scalar part being

This means that operators with an even (odd)
number of spatial indices mix only with others that also
have an even (odd) number.

Using these observations the mixing of the 0'"' with

other operators is then straightforward. 0 =/I pg is(0)
I(i) P

obvious~i multiplicatively renormalizable. 0„=tg( I pb, p——„' I'.b. )g also mixes with no other operators because the
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TABLE I. Coefficients of the counterterms for 0' ' with CFu, /4~ factored out. The power-law
divergences wi11 be removed when these counterterms are subtracted from the naive operator, as indicat-
ed in Eq. (4.1). The index a is summed.

i 'gy„y5Z„Z„Q trace terms
Operator r =

2
1

i 'gy„Z„Z„Q tr—ace terms
1Operator r =
2

a 'iAIy'A'
a 'i -'~„lyly

'fa'p ysZ 0

+2.58

+4.83

+1.58

+0.76

+3.49

+1.17

a -'~ Ay„4
a 'i 'gZ g
a '5 P(r„P

+2. 13
—3.09
—2.23

+0.60
—2.49
—1.43

removal of the Euclidean trace term corresponds to the re-
moval of the hypercubic scalar. For 0' ' however, the sit-
uation changes radically; (fy&y5b, „—traces) mixes with
a fyzysg, a 'fo&„b,"y&f, and a '5„gy&g as well as
with the usual operators 5z gy&y5$, gy&y&A P, etc. For
the higher operators 0' ' and 0'"' we discover no new
features to 0(g ), just combinations of the above effects.
As seen above, the mixing is reasonably intricate for 0'"',
n )2, and we must treat each operator individually.
Nevertheless, using the hypercubic symmetry and charge
conjugation one can understand the entries of Tables I, II,
and III.

To construct operators whose matrix elements have an
appropriate continuum limit we must identify the coeffi-
cients of the power-law divergences and of the terms
which violate Lorentz invariance and subtract them ex-
plicitly from the naive operators. To the one-loop level
the anomalous dimensions of the operators are the same

I

in the lattice theory as in the continuum, so apart from
the power-law divergences the only terms which violate
Lorentz invariance are finite constants. The corrections
from subtracting off these terms will have a small numeri-
cal impact on the results from a Monte Carlo calculation;
we do not tabulate these coefficients. Once the power-law
singularities have been removed, the final step is to deter-
mine the scale change from Q to a. The details of this
analysis will be presented in Sec. III C.

C. Calculations

The actual calculation involves the evaluation of the
Feynman diagrams of Fig. 2 using the Feynman rules of
Fig. 1. Expressions for both are given in the Appendix;
here we discuss the structure of the diagrams. Our results
are based on Wilson's form of the action

S=g g Tr[1 —U„(x)U„(x +ay) U &(x +aP+av) U „(x+av)]
X,P, V

——,a gg(x)[(r y„)U&(x)g(x—+aP)+(r+y&)U &(x)g(x —ap)]+(4r+ma)gg(x)g(x),
X,P X

fixed to the Feynman gauge. Expressions for the vertices and propagators for this action and a discussion on the gauge
fixing can both be found, for example, in Ref. 15.

The lowest-order diagram is just the zero-gluon vertex with p = —p:

1(a)=iI &QIa '[sin(p&, a)+sin(p„a)]I .
1=1

(3.10)

TABLE II. Coefficierits of the counterterms for 0' ' with CFO., /4m factored out. The power-law divergences will be removed
when these counterterms are subtracted from the naive operator, as indicated in Eq. (4.1). The index o. is summed.

i I/lyly 5Zpxpx„l/J trace term—s
Operator r =

2

i gy„Z„Z„Z„Q trace terms—
Operator r = T

1

no a term.

a Vy„y,Z„P-

a VyysZP
a 'i '5„5 grr„y5$

a 'i 5„gy;Z„g
a 'i ~5 Py5Z f

—5.24
—0.99
—0.014
-0.00
+2.35

+0.63

—5.01
—1 ~ 26
-0.00
+0.08

+ 1.78

+0.43

a 'Py„A„g
a VyZP

a 'i 'pzZQ
a 'i ~fZZf
a 'i 5„6„$$
a 'i 25 5 5 $$

+9.05
—6.28
—l.80

+ 1.29
—1 ~ 17
—1.57
—0.67
—1.34
—1.28

+4.38
—5.72
—1 ~ 80

+ 1.05
—0.89
—1.26
—0.55
—0.65
—0.37



2944 ANDREAS S. KRONFELD AND DOUGLAS M. PHOTIADIS 31

TABLE III. Coefficients of the counterterms for 0' ' with Czo.', /4m factored out. The power-law divergences wi11 be removed
when these counterterms are subtracted from the naive operator, as indicated in Eq. {4.1). The index a is summed. In the third hne
from the bottom we have exhibited only the counterterm with 6O since matrix elements of those with 5& 2 3 vanish in the meson rest
frame.

i py„y5Z„Z„Z„Z„Q t—race terms
1

Operator r =
2

i py„b „Z~B„Z~Q trac—e terms
Operator r =IJ.

' A'py &0

a 'i '5+y, p
a-V a„, y,Z 0

a 'i 'g3 „y,b,„Z„Q
a i 'Py„Y ZP
a 'i 'fy Zy, Z„Q
a i '5„5„py„1
a i '5 tPy„y, g
a i '55gyyzg
a 'i 5„5„5„gy5$
a 'i '5 5 5„gy5$
a 'i '5„gy5Z„Z„Q

a 'i 5 gy5Z Z„g
'i '5o5oqvo ysZ q

a 'i po.„Z Z~Z„p
a 'i po„Z Z~. p

+16.65
—6.32

+0.11
—2. 15
—0.62

+0.64
—16.92

+0.06
—0.20
—1.17

+1.19

+ 1.90
—0.74

+0.91
—0.97
—0.41
—0.20

+ 11.12
—3.32

+0.56
—1.57
—0.61

+0.46
—12.84

+0.05
—0. 14
—0.72

+0.77

+ 1.41
—0.64

+0.77
—0.74
—0.31
—0.17

' ti'yyti'

a 'i

a 5 Po„1(

a i 'gy Ah„g

a 'i '5„5gy g
a 'i '5~5~$Z~Q

a 'i '5'tpZ 1(

a 'i '55$ZQ
a 'i 'gZ~Z„Z~f

a 'i '5opop Z Zop

+ 10.09
+5.53

+2.07
—2.57
—0.61

+0.63
—16.58

+2.46
—0.03
—0.47
—0.85
—0.04
—1.08
—0. 18

+ 1.46

+5.94
'+4. 30

+1.95
—2.01
—0.55

+0.42
—14.02

+2.01
—0.08
—0.21
—0.63
—0.09
—0.83
—0. 16

+1.17

Here we have suppressed any indication of symmetrization and tracelessness, but these operations are to be understood.
External difference operators 5, will appear as factors a sin[(p —p)~] so they will not effect the loop integrals. In the
following equations, we have abbreviated sin(p„a ) by s(p„) and cos(p„a ) by c(p& ) for brevity.

The one-loop diagrams are given by the following:

2(a) = '[s((q+ —,
'

&p) )+s((q+ —,~p) )]j;
G(q+ —,

'
Ap)G(q —, bp)D( —,

' (p+p) ——q)1=1
(3.11)

n CFg Np~, (p,p, q ) r —1

2(b) =Ig, , Q Ia '[s((q+ —,&p)„)+s((q——,
' &p)„)]j'.=i G(q+ , &p)D( —,'(p+p—) q) 1=1—

[a '[s(p„, )+s(p, )]j; (3.12)

2(c) has the same form as 2(b) but with G(q ——,bp ) in the denominator;

n C~g Nq„„(p,p, q) r 1—
2(d)= jg +[a '[s(p„, )+s(p„,)]j

r&s D q 1=&

s —1

X + Ia '[s(p, )+s(p„,)]j + Ia '[s((p+q)„, )+s((p+q), )]j
1=r+1 1 =s+1

7l—
2

'I „+Ia '[s(P„, )+. (P„,a)]jf CFg'
2 P P1 P1

(3.13)
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(a)

p, k

(b)

P

P

p, k g,
a b

P
4

FIG. 1. Zero-, one-, and two-gluon vertices for the operators.

In these formulas
4

G(p) = gs'(p;)+ [—,
' r'D(p)]' (3.14)

and
4

D (p) =4+s'( ,
'
p; )— (3.15)

for the N's with G containing all terms proportional to
I &, U containing all terms proportional to the unit ma-

P
2

(a) (b)

(c)

I

2

arise from propagators, and N„, N&&, and N&& &
arise

from the y-matrix structure of the numerator and differ
in general depending on whether the y& is present or not.
It is convenient to define generically

(3.16)

trix, and X containing all terms proportional to o.„.The
detailed formulas for the N are in the Appendix. As in
the continuum, the integrands for the two sets of opera-
tors are the same, up to a factor of y5, when r =m =0.

The continuum expressions for the diagrams can be ob-
tained from the Appendix by setting r =0 and replacing
a 's(k) —+k. The result is standard and straightforward.

The leading power-law divergence can be quickly dis-
cerned by setting the external momenta equal to zero.
Both the continuum and lattice expressions appear to
diverge, but in the continuum, with dimensional or Pauli-
Villars regularization assumed, the divergence vanishes.
Quadratic and higher divergences from the explicit terms
must have the factor A 5&,&, and hence will be canceled

l J
by a trace term. The lattice's hypercubic invariance al-
lows structures such as a 5„„.cos(p„a), which will riot

j J J
be canceled by the traces.

To discover what coefficient to associate to each opera-
tor counterterm, one must extract from the Feynman in-
tegral factors analogous to Eq. (3.10), possibly with fac-
tors sin(p —p)a, and different Dirac matrices. This is ac-
complished by performing a Taylor expansion in
a '(sinpa+sinpa) and a 'sin(p —p)a around p =@=0.
Once this is done, the remaining integrals are pure num-
bers that can be computed numerically. ' At this stage
the symmetry of the integrands under q+-+ —q will pick
out the correct operator to conform to our above general
considerations. Since the opportunity for human error in
Taylor-expanding expressions like Eqs. (Al 1), (A12), and
(A13) is overwhelming, we used REDUCE to perform this
task. Furthermore, when we seek a term that has only 6's
(5's) we can set p =p (p = —p) to simplify the integrands.
Thus only a few terms warrant a completely general treat-
ment.

Terms of the Taylor expansion beyond the nth are
suppressed by genuine factors of the lattice spacing, and
hence should be negligible. The nth term itself requires
somewhat special care. In the massless limit it is infrared
divergent, but this divergence is exactly that of continuum
QCD, because the lattice theory is constructed to have the
same infrared structure as the continuum. Therefore, the
difference between the lattice integrand and the continu-
um integrand, regulated by the Pauli-Villars method with
Apv =a, will be finite, so it poses no numerical difficul-
ty.

This quantity is actually precisely what we need to
determine the relationship between the lattice spacing a
and the physical scale Q appearing in Sec. II. To see this
consider the lattice and Pauli-Villars expressions separate-
ly; imagine that the infrared singularity is handled by di-
mensional regularization or a small gluon mass v. Then
we can write

F)„'(a,~)=CF [y„ln(~ a )+c,„],
4m

F'pv'(Q, ~)=CF [—y„ln(Q /~ )+cpv] .

(3.17)

FIG. 2. One-loop Feynman diagrams for this calculation.
Since the infrared structure of the integrands is the same,
the anomalous dimensions, y„, are the same. The
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correspondence between Q and a is obtained by demand-
ing that the two expressions be the same. Thus,

TABLE IV. Scale changes for the completely diagonal opera-
tors with power-law divergences removed and I „=y„y, .

1
Qpv = exp

a
clat cpv

(3.18)
PV 1r=—

2

Clat CPV gpva Clat CPV Qpva

These manipulations are precisely those that Refs. 15 and
16 used to calculate the ratio A /A'" (MS denotes the
modified minimal-subtraction scheme). Furthermore, it is
easy to calculate Qpv/QMs so we also can relate a to
QMs.

This completes the formulation of the twist-two com-
posite operators. The approach and pitfalls apply to the
extension to higher-twist, three-quark, and gluon opera-
tors. We now turn to the numerical results of the calcula-
tions described here.

IV. RESULTS AND INTERPRETATION

0
1

2
3
4

0.0
2.67
4.17
5.23
6.07

MS

gn

0.0
2.67
4.17
5.23
6.07

+12.5
—2.2
—18.1

—30.7
—45.8

l MS

+12.5
—1.3
—16.9
—29.4
—44. 3

1.5
8.8

18.8
43.5

QMsa

1.3
7.6

16.5
38.6

+15.8
—0.8
—14.8
—29.0
—43.3

Clat CMS

+15.8
+0. 1

—13.6
—27.7
—41.9

1.2
5.9

16.0
35.6

~MS

1.0
5.1

14.1

31.5

Since the details of the divergent structure changes as n

increases, we define the renormalized operators Oz" '

through the following schematic equation:

Og"' ——OU"' —Cs gf; (a, )0;,
4m.

(4 1)

where the 0; are the operators with the same quantum
numbers as the naive operator OU

' and smaller intrinsic
mass dimension. The functions f; are just constants at
the one-loop level, but to higher orders they have an ex-
pansion in o, The counterterms 0; appear in Tables I,
II, and III with the one-loop results for the coefficients f;
for values of the chiral parameter that have been used in
Monte Carlo simulations: r = —, (see Refs. 2 and 20) and
r = 1 (see Ref. 1).

In practice a calculation of a hadronic matrix element
would entail calculating the matrix element for the un-
renormalized operators, given by Eq. (3.6), and the coun-
terterm operators separately, and then recombining them
using the appropriate table, with Eq. (4.1) as a guide. We
remind any potential user of these tables that the numbers
are sensitive to the choice of the action in the numerical
simulation. In particular, an action that would yield dif-
ferent expressions for the propagators and vertices in our
diagrams will, in general, require different numbers. On
the other hand, changes in the mass or, equivalently, the
hopping parameter should not matter. Our results assume
that the quark mass is zero; it is proper to think of the re-
normalized, physical mass, which is certainly small for
the three light flavors. The bare mass is usually large in a
numerical simulation based on Wilson fermions, but this
is mainly because it must cancel the radiative corrections,
which have terms proportional to ro;,a '. We imagine
summing all the radiative mass corrections, leading to the
cancellation, and hence to the massless form of the quark
propagator.

Unfortunately there is not much we can say that will il-
luminate the numerical results. A glance at Tables I, II,
and III indicates that the r = —, results are generally larger
than those for r = 1. This is probably the influence of the
unwanted species at the edge of the Brillouin zone which
the action's chiral term seeks to remove. However, as

TABLE V. Scale changes for the completely diagonal opera-
tors with power-law divergences removed and I „=y„.

PV

0.0
2.67
4.17
5.23
6.07

1r 2

Clat CPV

+ 18.3
+0.3
—17.6
—30. 1

—45.7

Qpva

1.0
8.3

17.7
43.1

Clat CPV

+20.6
+1.6
—14.0
—28.6
—43.2

Qpva

0.7
5.3

15.3
35.2

0
1

2
3
4

MS

0.0
2.67
4.17
5.23
6.07

1r 2

MS

+18.3
+1.1
—16.4
—28.7
—44.2

~Msa

0.8
7.2

15.5
38.2

MS

+20.6
+2.5
—12.8
—27.2
—41.7

0.6
4.6

13.5
31.2

there are a few exceptions to this rule, we are reluctant to
draw any deep conclusions. .

Tables IV, V, VI, and VII contain the results for
c~„—c„„„defined as in Eq. (3.17), for the Pauli-Villars
and MS schemes. The operators with Lorentz indices
identical are in Tables IV and V, and the operators with
Lorentz indices distinct are in Tables IV and V. Accord-
ing to Eq. (3.18) these effect the scale changes, which are
also tabulated; note that for given n the scale changes ac-
tually apply to O'"'. The hadronic matrix element gives
the nonperturbative normalization of the structure func-
tions or the distribution amplitudes at the specific value
of Q given by these scale changes. The renormalization
group extends the prediction to all (sufficiently large)
values of Q, as expressed by the formulas of Sec. II. The
scale changes become progressively larger for increasing
n In Fey. nman gauge this is due to the piece of the tad-
pole diagrams which is purely an artifact of the lattice. '

Combining the operator and self-energy tadpole contribu-
tions yields the value
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2.67
4.17
5.23

Clat —CPU

—16.7
—33.4
—48.3

Qpva

20.4
54.8

100.8

Clat C PU

—18.0
—34.9
—50.0

Qpva

29.3
66.0

118.5

2.67
4.17
5.23

Clat C—

—15~ 8
—32.2
—46.9

QMsa

19.4
47.8
88.6

Cl„—C—

—17.1

—33.7
—48.6

24.7
57.3

104.2

CF (n —1)X 12.322 .
4n.

For large n one can reliably estimate the scale changes by
calculating only all tadpole and self-energy contributions;
for 0' ', neglecting the other diagrams contributes less
than 5% of c~„—c,», .

%'ith our results in hand it is appropriate to discuss the
prospects of extracting meaningful predictions from a nu-
merical simulation. The essential problem is the delicacy
of the cancellation between the terms in Eq. (4.1), which
will be quite large if the lattice spacing is small enough.
Consider, for example, a properly renormalized 0' ' and
the most severe counterterm associated with it, QI f. The
ratio

(0 ~)g 4m (yZ DD q) r47T a

(4.2)

depends on l, which is a measure of the valence-quark
separation; the number 2.5 is the coefficient of the opera-
tor from Table II. Clearly one wants the right-hand side
of Eq. (4.2) to be small enough so that the signal of the re-
normalized operators will not be lost in the noise of the
counterterms, which means that one wants I/a as small as
possible.

TABLE VII. Scale changes for operators with all Lorentz in-
dices distinct and I „=y„.

PV

2.67
4.17
5.23

Clat CPU

—16.5
—33.2
—48. 1

Qpva

22.1

53.5
99.4

Clat CPU

—17.1

—34.4
—49.6

Qpva

24.7
61.8

114.3

2.67
4.17
5.23

Cl„—CMs

—15.6
—32.0
—46.8

QMsa

18.7
46.6
87.4

»t Ms

—16.2
—33.2
—48.3

QMS

20.9
53.7

100.5

TABLE VI. Scale changes for operators with a11 Lorentz in-
dices distinct and I"„=y„y,.

1r=—
2

One needs, therefore, some physical estimate of I to in-
dicate how small a can be. In a bag picture of the hadron,
1 could be as large as the size of the hadron, I -m ' —1

fm, in which case the ratio of Eq. (4.2) is about 2 or 3, if
a-(1.0 GeV) '. Hence 0' ' is quite tractable under
these circumstances. For gy&y5DDDQ the worst diver-
gence is also quadratic, so we can reach similar con-

clusions, but for gy&DDDQ there is a cubic divergence, so
that the relevant ratio is 25 for a-(1.0 GeV) ' and 12
for a-(0.8 GeV) ' in the bag picture. These estimates
are likely to be too large; one might imagine the hadron to
be a small valence core surrounded by a cloud of pions, so
that 1 could be, say, five times smaller, which me'ans that
for fixed a ratios like Eq. (4.2) would be smaller, or, alter-
natively, that a smaller a could be tolerated. Unless this
core picture is correct, there seems to be little hope of
computing matrix elements of 0'"' for n &4, because the
power-law divergences would require ridiculously large
lattice spacings.

The effect of higher-order corrections can also be a seri-
ous problem. Apart from renormalizing a„ the main ef-
fect of the corrections is to modify the coefficients of the
power-law divergences; order-a, corrections to the f; in
Eq. (4.1). For 0' ' and 0'"', in addition to this effect,
new operators of the form a "gl Jig, with at least one of
the indices of I'„, contracted with a Dirac matrix or a D,
will appear. These higher-order corrections are
suppressed not by a, , but only by ga, . In order to com-
pute the mixing of such terms it is necessary to compute
the one-loop corrections to (0

~

0'"'
~ qqg ), which involves

more than 20 new Feynman diagrams. However, because
of the high dimension of such operators, the errors intro-
duced by neglecting these terms are less than the errors
due to higher-order corrections to the f; of more severely
divergent counterterms.

Assuming the coefficients of a, in the f; to be 0(1)
and the bag picture, we can estimate the size of the
higher-order corrections For .0' ' they are -30% for
a —1(GeV) ' and -20% for a-(0.8 GeV) '. Just as
before, the operator gy&y5DDDQ is no worse, but for
gy&DDDQ even choosing a -(0.8 GeV), the errors due
to higher-order corrections are about twice as big as the
renormalized matrix element. The core picture, however,
would indicate much less significant higher-order correc-
tions; in this model even 0' ' is probably still feasible.

The above estimates, which indicate which operators
might be fruitfully calculated in lattice simulations, de-
pend strongly on assumptions for the valence quark
separation, l, and above we have only speculated. Howev-
er, it is natural that numerical work would focus first on
small n, for which the operators are simple. This would
provide some intuition on the size of the hadronic matrix
elements and, hence, the size of I. For example, a calcula-
tion of 0' ' is possible even in the most pessimistic
scenario and can use existing Monte Carlo data. This cal-
culation and Eq. (4.2) will give an estimate of I which
will answer more definitively the practical value of ex-
tending the computation to higher n.

The large contribution of the higher-order corrections is
not due to a breakdown in perturbation theory, but is due
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to the. large nonperturbative quantities, estimated here by
some power of l/a, that multiplies them; the one-loop ap-
proximations to the f; are probably close to their true
values. A calculation of the order-a, corrections to the
coefficients of the most troublesome divergences would
decrease the errors by a factor of almost 10. This would
involve a very lengthy analytic calculation; an alternative
approach would be to compute the matrix elements for
several different lattice spacings and tune the f; to elim-
inate the power law divergences starting from our one-
loop results.

V. CONCLUSIONS

It is possible to construct operators on the lattice whose
matrix elements enable us to extract the normalization
both of the moments in deep-inelastic scattering, and of
exclusive processes. The lattice operators we have con-
structed reduce, in the continuum limit, to particular
components of the continuum tensor operators. In gen-
eral one must renormalize the operators corresponding to
the various components differently in the lattice theory, so
that they lead to the same results in weak coupling. A
Monte Carlo simulation of the different components
would check the nonperturbative validity of this by com-
paring the appropriate hadronic form factors. Although
naive lattice operators contain power-law divergences,
they can be removed using perturbation theory. Due to
the high dimensions of the operators, the power-law diver-
gences become more severe for operators with more co-
variant derivatives, and the number of these divergences
grows rapidly because of the lack of Lorentz invariance
and chiral symmetry. For these reasons, extendirig our
analysis to higher moments is impractical. The number
of divergent counterterms can be reduced by evaluating
components with some distinct Lorentz indices, but then
the numerical calculation is more difficult.

There are two problems one would encounter in
evaluating the desired matrix elements in a Monte Carlo
simulation: the need for good statistics and the numerical
effects of higher-order corrections, as discussed in Sec. IV.
Both of these problems can be reduced by increasing the
size of the lattice spacing, which makes the effect of the
power-law divergences less severe. However, we also need
the lattice spacing to be small enough so that we are in the
scaling region and so that the neglected errors of O(ma)
are not too big.

The problems with the divergences arise because we are
trying to extract the structure of the hadrons on scales
comparable to the lattice spacing. As a result the renor-
malized operators differ from the naive ones by terms of
O(al"/a"). Present lattice actions are not especially well
suited to the study of such structure, but by adding non-
renormalizable interactions to the action, one can improve
the short-distance behavior of the theory. By doing a cal-
culation quite similar to ours one should certainly find
coefficients, f; of Eq. (4.1), smaller for th'e improved ac-
tion. Of even more importance, improving the action to
extend the scaling region to larger values of a would allow
one to decrease the ratio l/a, which would temper the im-
pact of the power law divergences dramatically.

A Monte Carlo simulation of the matrix elements of
O' ', 0'", 0' ', and, marginally, 0' ' is possible with the
present technology of lattice simulations. This will pro-
vide many new theoretical predictions which can be im-
mediately compared with experiment. Even 50% agree-
ment with the higher moments of deep-inelastic scattering
would be an impressive result of lattice gauge theory. The
evaluation of the matrix elements relevant for the meson
distribution amplitudes will provide, in conjunction with
perturbative analyses, many full predictions of QCD.

Our method can be extended in a straightforward way
to predict other quantities of current interest. Three
quark operators determine the distribution amplitudes of
baryons and in this case, even the leading operator is very
interesting, because it determines the normalization of
high-energy scattering processes. For mesons the leading
matrix element is proportional to the decay constant, but
for baryons there is no theoretical prediction of this
overall normalization. Furthermore, since the leading
three-quark operator has no covariant derivatives, it has
no power-law divergences, which means that all aspects of
the calculation are rather simple. Higher three-quark
operators will be more intricate, just like the qq operators.
Higher-twist contributions in the continuum analysis can
also be constructed in our approach, and they suffer
power-law mixing in the same way as the operators we
consider, although the appropriate counterterms could be
computed exactly as in the leading-twist case. Even a
rough Monte Carlo calculation of the matrix elements of
properly defined higher-twist operators would give a
strong indication of the value of Q where they become
numerically important, and an accurate simulation would
allow us to push the theoretical predictions of perturba-
tive QCD to smaller values of Q where deviations from
scaling should be dramatic enough to really confront ex-
periments.
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APPENDIX: FEYNMAN RULES AND NUMERATORS
OF THE DIAGRAMS

In this appendix we derive Feynman rules for the
operators of Eq. (3.5), and we present explicit formulas
for the numerators of the diagrams.

Consider first ON"'= i "t/rl Z. —ZP. Let us establish
the following conventions for fermions:

g(x)= f f(p)e'~, f(x)= f p(p)e'~"
P P

and for gauge fields:



31 PHENOMENOLOGY ON THE LATTICE: COMPOSITE. . . 2949

U„(x)=exp[igaA„(x)]

=1+igaA„(x)+ ,
' —[igaA„(x)]

ik (x.+age/2)
k P

U „(x)=exp[igaA „(x)],
(A2)

A q(x) = —Ap(x —ap, )

ik (x —ap/2)~
~

~

Notice that the Fourier transform of Az reflects its natur-
al position as the midpoint of its link. Also, since coordi-
nate space is an infinite volume lattice, momentum space
is a box, so the integration measure is

T T

f =f +8 ——pp 8 —+pp . (A3)
(2~)4 „a " a

Finally, for the sake of brevity we would like to write

s(p):—sin(pa), c(p) =cos(pa) . (A4)

In the continuum a term with k covariant derivatives
gives vertices with up to k gluons; on the lattice each co-
variant difference operator gives vertices with arbitrary
numbers of gluons. Since we only work to O(g ) we will
only give vertices with zero, one, and two gluons, which
are shown in Fig. 1.

The zero-gluon vertex, Fig. 1(a), is obtained by replac-
ing all Z's by 5's. In momentum space (2i) '5=a 's(p),
hence

1(a)=a "I 51Q[s(p„, ) s(P„,—)] .
l=1

(A5)

/

For the one-gluon vertex, Fig. 1(b), one uses, say, the first
identity of Eq. (3.5) and replaces one of the (F„T„)'—s
by tga[A„(x)t „—A „(x)t „].Then one can easily show
in momentum space that

T

n r —1 n

1(b)=ga" 'I X'J g 5p„+[s((p+k)„,) s(p„, )]2—c( —,'p„"')c[—,'(p p)~ ) +—[s[p„,]—s((p+k)„,)]
r=1 l=l l=r+1

(A6)

The origin of each factor should not be too obscure; in particular, the factor 2c( —,'pz")c[ —,
'

(p —P)& ] comes from the
gauge fields. The two-gluon vertex has two distinct contributions. One is analogous to the two-gluon vertex in the con-
tinuum and corresponds to O(g) contributions from two b, 's. The other is analogous to the "seagull" quark-gluon vertex
and corresponds to the O(g ) contribution from one h. It substitutes , (iga) [A—„(x)t„A„(x—)t „]for (F„T„). —
Together they yield

r

n r —1

l(c)=g a" I IA, ', A, I; g 5 „5„+[s((p+k+l)„,) —s(P„,)]2c(—,'p„'")c(—,'(p —p+l)„)
r(s l=1

s —1

x / [ ((p+l)„,) —((p+k)„,)]2 ( —,'p„"') ( —,'(p —p —k)„)
l=r+1

X g [s(p„,) —s((p+k =l)„,)]
l =s+1

n r —1

g'a" —'I'I~, ~'I,j y 5 „„5„„/[s((p+k+l)„,) —s(p„, )]s(—,'(p —p)„)c(—,'p„"")
r=1 l=l

x g [s(p„, ) s((p+ k+ l )„—, )] (A7)
l=r+1

External 5 operators in a generic term of 0'"' merely entail factors a 's(p',"), where
p' =p+p,p+p+k, p+p+k+l, . . . . Since p' ' is, of course, independent of loop momenta, it can be reinstated after
the study of one-loop corrections and the removal of power-law singularities.

As in Eq. (3.16) we write X=6+U+2 for the numerators with G containing all terms proportional to I „, U con-
taining all terms proportional to the unit matrix, and X containing all terms proportional to o„,. Also define the follow-
ing combinations of momenta (p = —P, i.e., p is outgoing):

~p =p pk =q+ , (p—+p), —

l+=q+ ,'(p p), l =q —,'(p—p)———
and for any four-vectors r;, q; the following lattice scalars:

4 4 4
C(q) = gc(q;), q = +sin ( —,q;), s(r) s(q)= gs(r;)s(.q;),

i=1 i=1 1 =1
4 4

s(r).s(q)t~ = gs(r;)s(q; )c(Ap;), s(r) s(q)k = gs(r; )s(q; )c(k; ) .
i=1

(A9)
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Then the numerators for Fig. 2(a) with I"„=y~y5 in the operator are

iG„=(—,
' [C(k)+C(hp)][s(l„+ )y s(l )+s(l„)y s(l+) —y„s(l ).s(l+)]

Is(I~+)[y s(l )t, +y s(l )t ]+(I+~I )]+y [c(k )+c(hp )]s(l ) s(l+))y5

+r I +2(l+) [s(k&)y.s(I )—s(I& )y s(hp) —yes(k) s(l )]

+2(1 ) [s(k~)y.s(l+)+s(l„+ )y s(hp) —y„s(k) s(l+)]

+ —,'[C(k) —C(hp)][s(l„+)y.s(l )+s(l )y s(l+) y„s—(l ) s(l+)]

+2y„(l+)2(l ) [C(k)+C(hp) —2 c(kp) 2c(h—p~)] Iy

2r y„(1+) (I ) [C(k)—C(hp)]y (A10)

and

U& ——+r I s(I& )s—(l+)'s(hp) —s(I&+ )s(l ) s( hp)+s(hpz)s(I+) s(I )'

+[C(k)+C(hp)][s(I„)(1+) —s(l„+ )(I )']Iy'

r'I 4(l+—)'(I )'s(hp„)+ [C(k) C(hp )]—[s(l„)(l+)' s(l„+ )(I—)'] I y',

imp r(tTi[s(I——~+)s(lt )s(kj)+s(lp )s(l+)s(kj) s(hp~)s(l—;+)s(IJ )]

+o„j[s(lj )s(l+).s(hp) —s(IJ+)s(l ) s(hp) s(kj)s(l —).s(l+)]

+2[s(l, ).(I )'+s(lj )(I+)']tr„,Ic(k, ).+c(hp, )+c(k„)+c(hp„) —,
' [C(k)+—C(hp)]I)y'

+r I4tr„js(kj)(l ) (I+) +tr„j(l~+(1 ) +lj (I+) )[C(k)—C(hp)]Iy

(A11)

(A12)

A„=s(k„)+s(hp„)+s(q„+—,
' p„——,

' p„),
(A13)

The numerators for the case y&y5 —+y& are simply related
to these expressions. We can obtain them by making the
transformations: I+~I, (I+) ~(1 ), (I ) ~—(I+),
hp~k, k —& —hp, leave off the factor of y, and multiply
U by —1.

The expressions for Fig. 2(b) are much simpler. At the
risk of saddling the reader with too many definitions we
will make two more:

iG„,= —,
' [I'„s(I„+)+I ~(l+ ) 5„„I s(l+)—]B,

+r 1"pA (I+)

Up„——+r[ ,'s(Ip )3—„—(I+) 5p+„](y5,1),

(A14)

(A15)

iX„,=+r[ —,
' o„;s(l+)2 —(I+) o~Q ](y5, 1) . (A16)

Figure 2(c) is the same as Fig. 2(b) except that hp~ hp, —
y5~ —y5, and that X is multiplied by —1.

Finally, the part of the tadpole diagram that arises
from the contraction of two h's has U= X=0 and

B„=c(k„)+c(hp„)+c(q„+—', p„——,'p„)+1 . i G„„t„=I~5 t„[2c(—,hp )c(k„)] (A17)

Notice that Az transforms like s(p„) and thus will appear
as a four-vector while S„contains only cosines and will
thus appear as a factor multiplying a four-vector. Let the
upper (1ower) sign correspond to 1 „=y&y5 (y&):

The other part is an artifact of the 1attice and is so simp1e
that we have exhibited it in Eq. (3.13).
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