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We calculate light-quark mass differences in the framework of the Laplace-transform QCD sum

rules using an improved parametrization of the hadronic spectral functions. Our results are

(tn, —m„}
~
|o,v ——185+15 MeV and (md —m„)

~
1 o,v=4+1 MeV. Using an earlier determination of

the quark-mass sums based on similar techniques, these results lead to: m„(1 GeV) =6+1 MeV,

md(1 GeV) =10+I MeV, and m, (1 GeV) =192+15 MeV. Next, we estimate the difference of the

light-quark vacuum condensates in the framework of the Laplace-transform QCD sum rules. Our

results are g(0}'„=—{0—3.5}X10 GeV and g(0}"„=—(0—2.4)X 10 GeV", where /{0};are the

renormalization-group-invariant quantities li(0};=—(mJ —m;) (pjpi p;f; ).—These values imply a

small flavor symmetry breaking in the QCD nonperturbative vacuum, i.e. , (ss)/(uu ) =0.9+0.1

and 1 —(dd ) /( uu ) =(0—6) X 10

I. INTRODUCTION

In recent years considerable progress has been made in
obtaining improved and reliable estimates of the absolute
values of light-quark masses, ' or of certain linear com-
binations of them, using the powerful technique of the
Laplace-transform QCD sum rules. For instance,
when this method is applied to the two-point functions in-
volving the axial-vector divergences one obtains informa-
tion on (I„+md) and (m„+m, ), where m(Q ) are the
running quark masses in the modified minimal-
subtraction (MS) scheme. ' The optimal scale at which
these masses are estimated lies typically around 1 GeV, in
order to avoid potentially dangerous contributions from
high-dimensional operators below this scale and in order
for the truncated QCD expression to match the falloff of
the hadronic continuum parametrization above this scale.
One is then left with a window where a prediction can be
made, its accuracy depending mostly on the size of the
omitted terms in the operator-product expansion and on
the accuracy of the hadronic parametrization. For in-
stance, invoking positivity of the spectral function, lower
bounds for (m„+md) and (m„+m, ) have been ob-
tained ' by saturating the hadronic side of the Laplace-
transform sum rules with the lowest pseudoscalar-meson
poles, i.e., the pion and the kaon, respectively, and per-
forming a QCD calculation at the two-loop level includ-

ing the leading nonperturbative corrections. These bounds
may be improved in principle by adding more hadronic
information, e.g., the contributions from the ~ and K ra-
dial excitations. Since the quark masses depend linearly
on the pseudoscalar-meson decay constants, and these are
not directly measurable for the radial excitations, the re-
sults are quite model dependent as emphasized in Ref. 1.
However, as shown recently, " this model dependency vir-
tually disappears if the correct threshold behavior of the
hadronic spectral function is properly taken into account.

As a bonus, the confidence window for the extraction of
quark-mass values becomes wider. The results from this
improved calculation are"

(I„+md) ~ ~ G,v ——16+2 MeV,

(%& +ms )
~ ~ G v= 199+27 MeV . (2)

In the first part of this paper, we reexamine the esti-
mate of light-quark mass differences (I,—m„) and
(md —m„) in 'the framework of the Laplace-transform
QCD sum rules for the second derivative of the two-point
function

g(q )=i f d x e't"(0
~

T(B"V„(x)c}"V„(0))~0),

with V& being either the strangeness-changing or the iso-
vector current. In Ref. 6 lower bounds for these flavor-
breaking combinations were obtained by using a parame-
trization of the J=O, I= —,

' Em. phase shifts together with

the Omnes representation for the scalar Kt3 form factor,
in the strangeness-changing case, and 6(980) pole satura-
tion of the J=O, I=1 channel, in the isovector' case. The
function P"(q ) and its Laplace transform were calculated
in QCD at the two-loop level and including the leading
nonperturbative contributions up to dimension six. Our
approach in the hadronic sector is different and follows
that of Ref. 11, i.e., we write a hadronic representation for
Imp(t) in terms of the lowest-lying state plus radial exci-
tations and impose the correct threshold behavior on the
spectral function. Our results from the lowest-resonance
saturation are in very good agreement with the bounds ob-
tained in Ref. 6. By virtue of the threshold-behavior con-
straint, though, we find that the quark mass differences
are remarkably insensitive to the choice of couplings of
the radial excitations and thus we are able to transform
the bounds into absolute estimates. That this threshold
constraint plays a key role in making quark-mass predic-
tions essentially independent of the hadronic model was

I
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already known from the analysis of Ref. 11. However, in
the present case the impact of this constraint is far more
dramatic. The reason is that in the pseudoscalar case the
lowest states have zero widths and the threshold-behavior
constraint affects only the radial excitations, while here it
already affects the parent K and 5 resonances which lie
above threshold.

By combining our results for the quark mass differ-
ences with Eqs. (1) and (2) we are able to make predictions
for all three light-quark masses; these are in good agree-
ment with current-algebra ratios.

Next, we discuss the issue of the magnitude of flavor
SU(2) and SU(3) symmetry breaking in the QCD nonper-
turbative vacuum. Laplace-transform QCD sum rules
have been used to estimate the renormalization-group-
invariant quantities ' '

$5(0);=—(m;+m~)(g;g;+QJQJ ), (4)

(6)

where

q'D5(q') =05(q') —e5(0),

and p(q ) satisfies an unsubtracted dispersion relation.
Information on flavor SU(3) symmetry breaking in the
QCD nonperturbative vacuum may be obtained, in princi-
ple, from the ratio

R„„= „" =— ' " (1+(ss)/(uu)),$5(0)» I mg+m»

$5(0)"„2m„+md
(8)

where we have assumed SU(2) vacuum symmetry, i.e.,
(uu)=(dd). Upon using the canonical value for the
quark-mass ratio, which is accurately known from current
algebra, ' one finds from (8)

(ss) =0.16Rgg —1 .
(uu )

(9)

Equation (9) shows that unless Rzz could be calculated
very accurately this method will provide a poor deter-
mination of (ss ) /( uu ) . In fact, Laplace-transform
QCD sum-rule estimates of $5(0)J give' '

where i,j stand for up, down or up, strange quark flavors,
and Eq. (4) follows from the well-known Ward identity in
the soft-meson limit. ' The two-point function $5(q ) is
defined by

$5(q )=i I d x e'q"(0
~

T(B"A„(x)r)'A (0)) ~0), (5)

where A„(x) carries charged-pion or kaon quantum num-
bers. In this case, the QCD sum rules are written for the
related function

45(0)"
I pcwc=2f p =3 4&&10 GeV (13)

These large deviations from PCAC, though, do not
necessarily translate into a large SU(3) vacuum symmetry
breaking as Eqs. (10) and (11) imply, through Eq. (9), that

("~ =0.44+0.48,
(uu )

(14)

a result of little conclusive value.
A more sensible analysis could be performed by exam-

ining P5; together with the two-point function Eq. (3).
The Ward identity analogous to (4) is now

p(0); = —(mj —m;)(QJQJ p;p;—),
and by defining the ratio

f(0)'„
+VA =

5(0)»

one has

(ss) 1+Rv~
(uu ) 1 —Rvg

(15)

(16)

II. HADRONIC PARAMETRIZATION OF Im@(t)'„

Starting from Eq. (3), with V& (x ) being the
strangeness-changing vector current, and assuming domi-
nance of the K~ intermediate state it is straightforward to
show that the threshold behavior of the spectral function
is given by

(18)

which could provide a more accurate estimate than Eq.
(9). Also, by considering the ratio between g(0)„and
$5(0)„one could accurately estimate the size of SU(2)
vacuum symmetry breaking.

In this paper we estimate P(0); in the framework of
Laplace-transform QCD sum rules using our improved
parametrization of the hadronic spectral functions
Imp(q );, together with a QCD representation at the
two-loop level including the leading nonperturbative con-
tributions up to dimension six. All QCD calculations are
a straightforward extension of those performed in Ref. 3
for the case of axial-vector currents and their divergences.
We also include a standard model of the QCD perturba-
tive continuum in order for g(0)I to achieve stability in
the Laplace-transform variable M. By combining our re-
sults for f(0$ with the recent estimates of $5(0$, we are
able to predict the ratios (ss)/(uu) and (dd)/(uu )
with reasonable accuracy.

$5(0)'» = (3+1)&( 10 GeV

$5(0)» = (3.2+0. 1)X 10 GeV

(10) where to ——(pK+p ), t( ——(pK —p„), and d(t) is the
form factor of the vector divergence in Xt5 decay, ' i.e.,

indicating unexpectedly large deviations from the naive
PCAC (partial conservation of axial-vector current) pre-
dictions

( (p')
/

'&"V„/& (p))= [(pK' p')f (t)+tf (t)]—
2

d(t) .1

2A(0)»
I pcA( =2fK pK -6.3&&10 ' GeV (12) (19)
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In Eq. (18) the factor of 3 arises from summing over all
possible Km charged modes. At t =p~ the form factor
d(t) is known from current algebra in the soft-pion lim-

it, viz. ,

Using the value A,o
——0.019+0.004 from the best-statistics

Kt3 experiment' one finds d(t0)=0. 30—0.31 GeV, for
f+(0)=0.97 (see Refs. 17 and 18). In the following we
adopt the value

d(to) =0.30+0.01 GeV (22)

Phase-shift analyses ' ' of the Km. s-wave, I = —, sys-
tem show clear indication of a resonance, the tr (1350)
meson with a width I,=300 MeV, followed by its first
radial excitation, the Ic (1800) with a similar width. We
can then write in a first approximation the following sc-

dominated spectral function satisfying the threshold con-
straint (18):1, 3 l(t —to)(t —tl )]'—Im1((t)'„=

327T2

(M„'—t, )'+M. 'I „'
X

(M ' —t)'+M 'r.'

i
d(to)

/

(23)

Formally, Eq. (23) may be derived by assuming partial
conservation of the vector current (PCVC), i.e.,

r)"V„(x)=V'2M, F,P,(x),
but only in the very restricted sense of using it as a defini-
tion of the ~-meson field; in other words, no phenomeno-
logical consequences of PCVC are being claimed. Notice
also that by virtue of the threshold constraint the model-
dependent ~-decay constant F„drops out in the end. The
spectral function (23) is illustrated in Fig. 1 (solid curve).
It is worth stressing that at smaH and intermediate values
of t, Img(t)„ is not a pure Breit-Wigner form as it is
modulated by the threshold factors which act as a super-

I

K
d(Px )=Pre f

which is the Callan- Treiman-Mathur-Okubo-Pandit
(CTMOP) relation. Corrections to this result are known
to be small and under control from chiral perturbation
theory' as well as from extended PCAC. ' Using the
most recent value' fI; /f = 1.22+0.01 one has
d (px ) =0.297+0.002 GeV . One can also estimate d (t)
at the exact threshold by extrapolating the linear
parametrization valid in the decay region, ' i.e.,

d (t) =(px p')f+—(0) I+&0, . (21)
IMm

0
0. 5 2.0

t &eeV'1

FIG. 1. The hadronic spectral function {I /~) ltnl(j{ t)'„. Solid
curve corresponds to single-~ dominance, Eq. (23), and the
dashed curve includes radial excitations according to Eqs.
(25)—(27) with f3=1.5.

J dt e '~ —Img(t)'„.M' (24)

Substituting Eq. (23) into Eq. (24), we find the result
shown in Fig. 2 (solid curve) which is in very good quali-
tative and quantitative agreement with Ref. 6.

By including the ~ radial-excitation contributions one
should obtain, in principle, a more realistic parametriza-
tion of the spectral function. Once again, this can be for-
mally achieved by generalizing the PCVC assumption, i.e.,

a~V„(x)=v'Z g F„M. 'y. (x),
n=0

in the same restricted sense as before. The problem is,
though, that while F,(n =0) can still be made to drop out
(superficially) from the final expression for Imp(t) one is
left with the a priori unknown ratios F, /F„ for n ) 1. It

fl

has been rewarding, however, to discover that the thresh-
old constraint (18) is so strong that the Laplace transform
of the improved spectral function, in the relevant region
M=1 GeV, is remarkably insensitive to the choice of
F„ /F„provided these ratios fall off with n in such a wayK~

that the radial excitations do not become more important
than the ground state. A falloff of these ratios is expected
on general grounds as they control the height of the reso-
nance peaks in the spectral function at the poles. For in-
stance, if one were to choose F, =F then using the ex-
tended version of (23), i.e.,

imposed smooth background.
At this point it will be instructive to compute the La-

place transform of Eq. (23) in order to compare it with
the one obtained in Ref. 6 from a parametrization and ex-
trapolation of the Kn, J=O, and I = —,

'
phase shifts to-

gether with an Omnes representation for the scalar form
factor. The quantity of interest is I (M )'„defined by

I(M )' =MF(M—)'

[(t —to)(t —t& )]
2F„MK—Im&(t)'„= ~ d (t0)32~' ' (M ' t )'+M 'I '—

K 0 +
FK M

(25), (M ' —t)'+M 'r ' '

one would find ( I „=I )Imp(M„)/Immit (M„)=2,
which is unreasonable if the radial excitations are to
represent a correction. In order to illustrate all of this
with a concrete example we choose the framework of the

I

dual model, " but stress that any other ansatz having ra-
dial excitations of decreasing importance and satisfying
Eq. (18) should be equally acceptable.

The dual model fixes the mass spectrum as well as the
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20—

I(M =1)'„. This result is important because it is precise-
ly in this region where the QCD expression for I(M ),
proportional to (m, —m„), begins to become insensitive
to high-dimensional nonperturbative contributions.

~15
C)

0

c 10

III. HADRONIC PARAMETRIZATION OF Imp{ t)„

Identifying V& in Eq. (3) with the isovector current and
saturating the spectral sum with the gm intermediate state
(J =0+, I=1) one easily finds the following threshold
behavior:

0.5 1.5
M (Gev )

2.0 2.5 3.0

1 „2 [(t —to}(t—tt }]—1m'( t)"„~
&~&p 32'7T

[d(t ) [',
FIG. 2. The Laplace transform of (1/rr)1m'({t)'„, Eq. (24).

Solid curve corresponds to a single-~-dominated spectral func-
tion and the broken curve is for a complete spectral function
with P=2.

(28)

where to (pz+p——), t& (pz I——J, ) a—nd the (isospin-
violating} scalar form factor

d(t)=(no~ u3
~
r)}, (29)

ratios F /F„, viz. ,
is related to the E+ Xmas-s difference of hadronic
(nonelectromagnetic) origin or tadpole, i.e.,

M„=M„+(2M& )n, (26)
(Vx+ Vxo 4.d —.2

K K (30)
where a'= 1/(2M& ) is the (universal) Regge slope, and

F M„'
(n ) 1) .M„' n!1-(P—n)

(27)

Notice that according to (26), with M =1.35—1.40
GeV and o.'=0.85 GeV, one predicts M~ =1.7—1.8 GeV,
in reasonable agreement with the experimental value
M„=1.85 GeV. We recall that Eq. (27) is inferred from
the general structure of the dual-model vertex function
(a ratio of 1 functions); in this case the IrXn. vertex. The
free parameter P controls the asymptotic behavior of the
scalar form factor in the spacelike. region, i.e.,
d(t)~t ~(t~ —ao), and thus we expect from quark
counting rules that p) 1, although in the end the exact
value of p will not be important. Notice that p= 1 strict-
ly means no radial excitations, i.e., single-sc dominance. It
is also worth noticing that since the ~ meson is not expect-
ed to become a Nambu-Goldstone boson, F„must vanish
in the chiral-symmetry limit. In fact, various current-
algebra estimates' yield F„=O.lf, and Eq. (27) ensures
the correct vanishing of F„ for all n ) 1. Using Eqs. (26)
and (27) in Eq. (25) we find, for p= 1.5, the spectral func-
tion illustrated in Fig. 1 (dashed curve). An increase in
the value of p weakens the strength of the resonance peak
at the «-pole position at the expense of an increase of the
«' contribution. For instance, for p=2 the spectral func-
tion at t =M~ =3 GeV becomes about six times bigger
than for p= 1 and the height of the «' peak is only slightly
smaller than that of the «; this value P=2 is then close to
the maximum that could be reasonably tolerated. In any
case, despite these dramatic differences in the behavior of
the spectral function its Laplace transform in the vicinity
of M=1 GeV is virtually independent of P as may be ap-
preciated from Fig. 2 (broken curve for P=2). In fact,
changing P from 1 to 2 produces only a 2% increase in

(Px+ —Pxo )&,d=(5.3+0.8)X10 GeV (32)

which we shall adopt in the following (for a different ap-
proach to r)~3~, see Ref. 27). In order to estimate the
scalar form factor at threshold one may invoke 5(980)
dominance and extrapolate Eq. (30) by means of a Breit-
Wigner resonance form. It should be clear from this dis-
cussion that the value of d(to), and thus the normaliza-
tion of the spectral function near threshold, is more un-

certain than its strangeness-changing counterpart for
which one has the accurate CTMOP relation.

Following the same procedure as for Imp(t)'„we can
write in lowest-resonance saturation,

1 d 2 q 2 2 [(t —to}(t —ti)l
, ((V«+' —Vxo')')tad2 K K

Mg

(Ms t) +Ms I s—
(33}

Notice that the 5-meson decay constant F~ does not ap-
pear in the spectral function by virtue of (28). In the nu-
merical calculations we shall use M~ ——0.98 GeV and the
"apparent width" 1 s=50—60 MeV (see, e.g., Refs. 21 and
28). This spectral function can be improved by incor-
porating possible radial excitations, which presumably

A successful simultaneous analysis of the r1~3rr decay
and b,I = —, baryon mass differences in. the framework of
extended PCAC gives "

(pz+ —p 0 )„d-5X10 GeV2,

with an error of about 10%%uo. Later estimates have con-
firmed this result, and in particular we notice that a
chiral-perturbation-theory calculation of g —+3m at the
one-loop level yields
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should have more normal widths as they are far from the
problematic KE threshold. In any case we have verified
by explicit calculations that for any choice of ratios
Fs /Fs, compatible with the notion that radial excitations
should represent a correction to the ground state, the La-
place transform of the improved spectral function differs
very little from the single resonance result in the interest-
ing region M=1 GeV.

g"(Q )= f dt —Img(t) .
P (t +Q2)3

Applying the operator

(35)

(36)

renormalization. Invoking analyticity one then arrives at
the following dispersion relation for f"(Q ):

IV. LAPLACE-TRANSFORM QCD SUM RULES
AND QUARK-MASS DIFFERENCES to both sides of Eq. (35) one obtains the Laplace-

transform sum rule
In QCD the vector-current divergences appearing in

Eq. (3) have the form Lg"(Q )=F(M )=
6 f dte '~ —Img(t), (37)

iB —V„(xV=(m, m;):Q—J(x)g;(x):,
where ij stand for u, s and u, d flavors for the
strangeness-changing and isovector currents, respectively.
In perturbation theory one needs to take the second
derivative of the function g(Q ) (Q—:—q ) in order to
eliminate the two subtraction constants from the external

I

which is more sensitive than the Hilbert transform (35) to
the low-energy behavior of the hadronic spectral function
to be inserted in the right-hand side of the sum rules.

The function g"(Q ) and its Laplace transform, i.e., the
left-hand side of Eq. (37), has been calculated in QCD at
the two-loop level with the result '

» ~ a, 6 +higher orders . , (38)

(m„+m, )(uu+ss) = 2ftc etc (1—5z), —(39)

where 5& stands for possible corrections to kaon PCAC.
A Laplace-transform QCD sum-rule analysis' ' of $5(0)

where m;(M ) are the running quark masses in the MS
scheme calculated at the two-loop level, '

a, (M ) =4/[9 ln(M /A ) j
for three flavors, and the operator-product expansion has
been truncated at dimension six including the four-quark
vacuum condensate believed to be the dominant 0 (1/M )

term. As the status of the factorization hypothesis re-
quired to cast this dimension-six contribution in the form
indicated in (38) is not at all clear we follow Ref. 6
and treat it as an error source. Numerically we choose

1408m a, (Pf) /81=0. 05—0. 11 GeV

together with the value zero to arrive at an error estimate
from this source. For the gluon vacuum condensate we
use the value ' '

m(a, F )/3=0. 044 GeV",

and allow A in K, to vary in the range 100(A(200
MeV. Concerning the dimension-four term m ( Pg ) in
the strangeness-changing sum rule, it may be estimated by
using the current-algebra low-energy theorem' for $5(0)'„,
I.e.,

I

has given strong indications that 5z could be as large as
6x —0.5. This has been confirmed by a recent detailed cal-
culation' which gives 6~ ——0.5+0.2. In any case, we shall
consider here the two extreme choices 6z ——0 and 6& ——0.5
as another error source in the QCD side of the sum rule.
In this case, one has

8m.

3

~u msm+ " (uu)+ m+ ' (ss)
2

4~'ftc'ptc' (4 =o—),
2 2 29~fIc etc (4= 2—»

where (uu )=(ss ) when 5tc ——0 and (ss ) /(uu )=—,
'

when 5~ ———,. Notice that in the isovector case, i.e., the
up-down sum rule, this term is negligible as f~ ptc is re-
placed by f p, in (39).

In summary the error sources adopted for the QCD side
of the sum rules are the magnitude of the dimension-six
four-quark vacuum condensate, the value of the
dimension-four m (gf) term (in the up-strange sum rule),
and the uncertainty in A. On the hadronic side the main
source of error in the up-down case comes from the un-
certainty in the value of the isospin-violating scalar form
factor at threshold. Uncertainties from the radial-
excitation contributions are quite small in both sum rules.
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Another minor error source is that due to the Ir- and 6-
meson masses and widths. Using Eq. (38) for the left-
hand side of (37) and integrating the spectral functions
(23) and (33) and their extended versions, i.e., including
radial excitations, we finally obtain

(mg —mg)
~ ] o,v ——185+15 Mev,

(md —m„)
~ & G,v ——4+1 MeV .

(41)

(42)

m„(1 GeV)=6+1 MeV,

md (1 GeV) = 10+ 1 MeV,

m, (1 GeV)=192+15 MeV.

(43)

(44)

(45)

The qualitative behavior of the running-quark-mass
differences as a function of M is essentially the same as
in Ref. 6, except for a light widening of the confidence
window centered at M=1 GeV when the radial excita-
tions are included. Converting (41) and (42) into invariant
masses m by means of the two-loop level formula' we
find m, —m„=254—299 MeV (211—248 MeV) and
md —m„=5—8 MeV (4—6 MeV) for A=100 MeV (200
MeV), which satisfy the bounds obtained in Ref. 6.

By combining Eqs. (41) and (42) with Eqs. (1) and (2) it
is possible to predict individual values for the quark
masses, viz. ,

TABLE I. Some of the quark-mass ratios which can be
formed with Eqs. (43)—(45).

Mass ratio

mt)t —mu

ms mu
md —mu

md+mu
md

mu
ms

md
ms

This paper

0.022+0.006

0.25 +0.07

1.7 +0.3

19 k2

32 +6

Current algebra
(Ref. I)

0.023+0.001

0.28 +0.03

1.76 +0.13

19.6 21.6

34.5 R6.1

where Vz(x) stands for either the strangeness-changing or
the isovector current. Multiplying Eq. (46) by q"q", tak-
ing the soft limit q~0, and using the QCD Lagrangian
one obtains the Ward identity Eq. (15). In analogy with
Eq. (6) we define the function

In Table I we collect some of the mass ratios which can be
calculated using Eqs. (43)—(45) and compare them with
the corresponding current-algebra values. ' The good
agreement obtained all across the board provides an im-
portant additional test of our results. The above values of
the light-quark masses are also in agreement, within er-
rors, with the pioneering calculation of Ref. 35 based on
an exact integral representation for (uu +dd ).

elf (47)

which satisfies an unsubtracted dispersion relation, i.e.,

1 dt Imp(t)
t (t+g )

(48)

V. LAPLACE-TRANSFORM @CD SUM RULES
AND /{0)J

We begin by considering the two-point function

II& (q) =i J d x e'~" (0
~
T( Vz(x) V,(0))

~

0)
=( g&„q +q„q—, )II(q )+g„„D(q ), (46)

I

where Q = —q and f(t) is the two-point function in-
volving the vector divergences, Eq. (3). Following Ref. 3
we have calculated g(Q ) in QCD at the two-loop level in-
corporating the leading nonperturbative contributions up
to the dimension-six four-quark vacuum condensate be-.
lieved to be the dominant 0 ( I/M ) term. The result is

( —m, +m, )' ll &,(Q')
8m. 3 7T ( —m;+m~ )

m; Q~
ln

Q2 2

3 2mJ Q
Q2

2~ &~,F'&

3 g4 3g4
—,+,'

&y, y, &+ —,+,' (y, y, )

, u, (qq)'
27 g6

P(0)';
+

where the flavors i,j stand for up-down and up-strange corresponding to the isovector and the strangeness-changing vec-
tor currents, respectively, a, (Q )=4/[91n(Q /A )], and m;(Q ) are the running quark masses in the MS scheme' at
the two-loop level, i.e.,

P( —,'lng /A P( Pi —,lng /A
(50)
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with P& ————,, P2 ———8, yt ——2, and y2 ——7.5833. . . , for three flavors and three colors.
Taking the Laplace transform, i.e., applying the operator (36) to Eqs. (48) and (49), one finds

-dt „1
M M"

3 ( —m +mj) (1 e ~ )
—2t /M2

8~'
( —' it~Vs'yA') ""' M'

a, (M )
X 1+

m'

4P~—ytf(1)+ lnln
Pi A

P2

p y2 yl
p

L

2 1

M ( —m;+mj)
I M—m; ln +g(2) +mj ln +g(2)
fit

~ P77J.
+3 M

m. + (g;P;)+ m;+ (PJP&) — » m
6 +higher orders

mj ]40s 3 txg (pip )
(51)

where f(1)= —yz, the Euler constant, and hatt(2) =1—yz.
In Eq. (51) we have included the contribution of the QCD
perturbative continuum with threshold tz as in Refs. 12
and 14. In the numerical calculations we shall adopt the
same values of the QCD parameters as in Sec. IV. The
QCD continuum threshold tz will be treated as a free pa-
rameter.

Turning to the first term in Eq. (51), we shall use the
hadronic spectral functions (23) and (33). In order to
gauge the impact of radial-excitation contributions in this
case, we have calculated the integral

(52)

using the full spectral functions Eq. (25). The result is
shown in Fig. 3 for the two extreme choices P= 1 (no ra-
dial excitations) and P=2, which lead to drastically dif-
ferent spectral functions as discussed in Sec. II. Despite
this difference at the level of the spectral function, chang-

ing P from P= 1 to P=2 produces no more than a 10%
change all across the board in the integral (52); in the re-
gion M=1.20—1.30, this change is only less than 1%.

P~oceeding to the calculation of p(0);, we find results
qualitatively similar to those for $5(0)J (see Ref. 14). In
fact, for M & 1 GeV, the functions g(0); depend very
strongly on the dimension-six four-quark vacuum conden-
sate, while for M ~ 1.3 CieV, they exhibit a strong depen-
dence on the QCD continuum threshold t~. For t~ = co,
i.e., no continuum, g(0); reaches a maximum at M=1.25
GeV and then decreases monotonically, while there is al-
ways a finite value of tz &M„& for which P(0); becomes
stable in M. This leaves a confidence or minimal uncer-
tainty window centered at M=1.25 GeV where a predic-
tion can be made. Numerically, both g(0)'„and g(0)"„are
substantially smaller than $5(0); and- of opposite sign. In
Fig. 4 we show the results for g(0)'„with A=100 MeV.
Solid curves (a) and (b) correspond to tz ——2.88 GeV and

~o ~ ~ ~~ ~ ~~~ ggy~ ~~ ~ —(a)

CO

10-
O

2.5
1 I

1.5 2.0
M (GeV)

FICJ. 3. The integral of the hadronic spectral function,
I2(M )'„, defined in Eq. (52). Solid and broken curves are for
two extreme models of the radial-excitation couplings (see text)
P= 1 and P=2, respectively.

3
l I

1.25
I

1.75 2.001.00 1.50

M (GeV)

FIG. 4. The quantity 1t (0)'„ for A = 100 MeV and
D& ———0.07 GeV". Solid curves (a) and {b} are for t~=2.88
GeV and tz ——00, respectively, both with no dimension-six term.
Dashed (dashed-dotted) curves include the smallest (largest}
value of the dimension-six term D6 ——(0.05—0.11) GeV .
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FIG. 5. Same as Fig. 4 except that now A=200 MeV, and
tp ——3.5 GeV .

tz
——oo, respectively, both with no dimension-six term.

Dashed (dashed-dotted) curves include the smallest (larg-
est) value of the dimension-six term in the range con-
sidered, i.e., D6 ——0.05—0.11 GeV . Figure 5 has the same
meaning except that now A =200 MeV, and t~ =3.5
GeV . In both cases the results are for the smallest value
of the dimension-four m (1(tp) term, i.e., D4 ———0.07
GeV . Increasing this value to D4 ———0.12 GeV, accord-
ing to Eq. (40), shifts all curves upward toward zero. The
results for P(0)"„are qualitatively similar.

After taking into account all QCD and hadronic uncer-
tainties and reading P(0); from the minimal uncertainty
windows we obtain

$(0)'„=—(0—3.5) && 10 GeV

g(0)"„=—(0—2.4) X 10 GeV

(53)

(54)

Taking the ratios of these results and Eqs. (12) and (13)
we predict

(uu )

1 —(" ) =(o—6)&&10-'.
(uu)

(56)

It should be noted that despite the large uncertainties in
both $5(0)'„and g(0)'„, the functional relation (17) allows
for an accurate prediction of the ratio (ss ) /(uu ).

VI. SUMMARY

We have reexamined here the estimate of light-quark
mass differences in the framework of Laplace-transform
QCD sum rules for the second derivative of the two-point
functions of the vector divergences. We have constructed
improved hadronic spectral functions satisfying the
correct threshold behavior constraints in the spirit of Ref.

11. Although these spectral functions themselves depend
rather strongly on the radial-excitation couplings, their
Laplace transforms in the region M=1 GeV are remark-
ably model independent. As a result of this we have been
able to predict the light-quark mass differences with
minimal uncertainties from the hadronic sector. Our re-
sults satisfy the bounds obtained in Ref. 6 and are in good
agreement with current-algebra ratios, as well as with ear-
lier absolute estimates.

Next, we have estimated the renormalization-group-
invariant quantities g(0);, which provide information on
flavor SU(2) and SU(3) symmetry breaking in the QCD
nonperturbative vacuum. The approach followed here,
based on Laplace-transform QCD sum rules, has been ap-
plied recently' to estimate the quantities $5(0)~~. Both
sets of functions, g(0); and $5(0);, exhibit a similar quali-
tative behavior in the Laplace-transform variable M, i.e.,
a strong dependence on the dimension-six term at low M
and on the QCD continuum threshold tz at intermediate
and large M, leading to confidence windows centered at
M=1.25 GeV. Numerically, though, f(0)J; is substantial-
ly smaller than $5(0)J and of the opposite sign. In the
course of numerical evaluations, we have used quark-mass
values obtained in the same framework, i.e., Laplace-
transform QCD sum rules, for self-consistency. Other
methods, e.g., approximate analytic continuation by duali-
ty, tend to give somewhat larger values for these masses3
and larger deviations from PCAC (Ref. 14) in the quanti-
ties $5(0);. An inspection of Eq. (51) shows that in the
framework used here, P(0)J depends rather sensitively on
the quark masses.

Combining our results for g(0)~ with those obtained
previously, and in the same framework, ' for gq(0)J we
have been able to predict with reasonable accuracy the ra-
tios (ss )/(uu ) and (dd )/(uu ). Our results are in
agreement with various other estimates from different
sources which indicate a rather small flavor symmetry
breaking in the nonperturbative vacuum. In particular,
g(0); was estimated before' using a Laplace-transform
QCD sum rule different from Eq. (51), which is less sensi-
tive to the nonperturbative contributions. This method
gives a g(0)J which has a minimum at M=0. 8—0.9 GeV,
i.e., below the region where our results for g(0)J; exhibit a
maximum. However, if the two results are compared at
the same region of M, say first at M=0. 8—0.9 GeV and
then at M=1.20—1.25 GeV, then there is good agreement
between our predictions and those of Ref. 13.
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