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Gluonic interactions in the soliton bag model

M. Bickeboller, M. C. Birse, H. Marschall,* and L. Wilets
Institute for Nuclear Theory, Department of Physics, FM-15, University of Washington Seattle, Washington 98195
(Received 29 October 1984)

Gluonic effects are included to lowest order in calculations using the soliton bag model. The N-A
splitting is calculated in the one-gluon-exchange approximation, using a gluon propagator which is
confined by the o field. The string constant is obtained, in the Abelian approximation, from a self-
consistent calculation for a cylindrical system of o and gluon fields. These results are used to fix the
strong coupling constant a;. We obtain values for a; which are ~2, similar to those in the MIT bag
model. Constraints are placed on both the model parameters and the dependence of the dielectric

function on the o field.

I. INTRODUCTION

Although quantum chromodynamics (QCD) is general-
ly accepted as the fundamental theory of the strong in-
teraction, there exist no exact solutions to the theory in
the nonperturbative, low-momentum regime. Some infor-
mation has been obtained with lattice-gauge-theory (LGT)
calculations but these are restricted by available computer
size and time considerations. There are also problems
with the finite lattice size and the lack of Lorentz invari-
ance in these calculations. At present, therefore, the best
hope of relating observed hadron properties and interac-
tions to QCD is through the use of models.

One such model is the soliton bag model,! often re-
ferred to as the Friedberg-Lee model. The model de-
scribes quarks and gluons interacting with a phenomeno-
logical scalar field, and contains five adjustable parame-
ters which must be fit to experimental data. In principle,
one would like to determine the parameters theoretically,
but present LGT calculations are not sufficiently reliable
to be regarded as fixed points for the model.

A considerable number of calculations”~> have been re-
ported involving only quarks and the scalar soliton field;
these involve only four of the five parameters. Coupling
of the gluons introduces the fifth parameter: the strong
coupling constant . In the present work,® we calculate
explicit gluon effects to lowest order in «;. The resulting
color-gauge-field equations are thus linear, quite analo-
gous to QED. From comparisons with “key” experimen-
tal data we obtain a value for a,. This is to be interpreted
as an effective value, appropriate to momentum scales of
the order of the inverse hadron size.

We first review the ingredients of the soliton bag model
and - the approximations to be used. The model is
described by a Lagrangian density

L=L 4+ Lo+ Lgot+Lsc (1.1
where the individual terms are interpreted as follows.
The first term,
fq= ; Ef(ira—mf)tﬁf s
31

describes the quarks as Dirac particles of (current) mass

- my, where f is the flavor. Since the current masses of the

up and down quarks are believed to be small (~5—10
MeV), we take m, =myz=0. The fermion field operators
1 have 4 (Dirac) times 3 (color) times n (flavor) com-
ponents.

The scalar field o is described by

L= %aﬂaa"a— U(o) .

It represents the nonperturbative features of the QCD
vacuum and its vacuum expectation value is interpreted as
a gluon condensate. Excitation quanta of this field may
be regarded as glueballs. The momentum operator conju-
gate to o is w=0, and the two satisfy the canonical
equal-time commutation relations

[o(r,t),7(r',t)]=i8%r—1') . (1.2)

The self-interaction of the o field is described by the po-
tential
_a2,. b 3 c 4
U(a)—20+3!0 +4!0'+B. (1.3)
This terminates in fourth order to ensure renormalizabili-
ty, even though we are dealing with an effective field
theory. With a suitable adjustment of the constants, the

. function has two minima, one at o =0, and another, lower

minimum at o=o0y. The physical vacuum corresponds to
the second minimum, and the constant B is chosen so that
U(oy)=0. The value U(0)=B is to be identified with
the bag constant, or volume energy density of a cavity.

The quarks interact with the soliton field through the
term

L go=—"8 Yoip .
In the presence of valence quarks, the sum U(o)+goy
may have a minimum (depending on the parameters) near
o=0 (the perturbative vacuum). This leads to a cavity in
the o field: the bag.

Color-gluon fields are introduced as in QCD, except
that they interact with the soliton field through a dielec-
tric function «(o), chosen such that «(0)=1 and
k(oy)=0. The gluon part of the Lagrangian is written
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fG:—%KF;vF#V—’gs";—byy%}‘cA#ﬁb s (1.4)

where g is the magnitude of the color charge (the strong
coupling constant is a; =g,%/41) and the A° are the eight
SU(3) Gell-Mann matrices.

The dielectric function k(o) is not uniquely prescribed
in the model, and a choice must be made as to its func-
tional form. Several suggestions have been made in the
past. These may be incorporated in the general functional
form

Kpm(o)=|1—(co/0oy)*|™. . (L.5)

Friedberg and Lee! originally proposed n =m =1, while .

others™’ have suggested n=1, m=2. Below we consider
also (n,m)=(2,1), (2,3), and (2,2).

Color confinement results from the general require-
ments on x. This can be seen easily if one keeps only
terms linear in the gluon field; then Gauss’s law gives

V-D°=J§ . (1.6)

If the total color charge does not vanish within some fin-
ite cavity, the D field will fall off like » 2 as — w0, and
the color electric energy in medium,

1 3 D(r )2
3 [ ar ER (1.7)
will be infinite because k vanishes exponentially as ¥ — .

As long as one works only to the order of one-gluon ex-
change, there is no problem of double counting: the soli-
ton field represents at least two-gluon structures.

The main advantage of soliton models over bag models
where boundary conditions are used to give confine-
ment®® is the ability to treat dynamical processes. As a
preliminary step to such calculations, we consider the
static properties of single hadrons. We start with the
semiclassical or mean-field approximation (MFA), which
we use to obtain static solutions to the field equations.
We emphasize that our main interest in the soliton model
is the ability to do dynamics. Dynamical calculations in
this model have been performed and are being pursued
further. These calculations include'®!! the generator-
coordinate method for NN and N1 interactions, normal-
mode expansion about the static bag solution, the coherent
state (which is closely related to the MFA), generalized
one-mode states; and projection onto a state of zero
momentum and relativistic boost. Results of these calcu-
lations will be presented elsewhere.

The field equations which derive from the Lagrangian
(1.1) are

[7#(i8, — 18 A AS) —gol$p=0, (1.8a)

3,00+ U'(0)+K'(0)F5 Ft +gyh=0 , (1.8b)

k(o) Fy, ———gsJJyV%k‘d}—gsK(O')f:dA,‘sz,, , (1.8¢)
where ‘

F,=3,A5—3,A0+g fl.ALAS . (1.8d)

The primes on U’ and «’ denote differentiation with
respect to o.
We make the following approximations:

The MFA for the o field is obtained by writing

o(r,t)=0y(r)+04(r,1) ,
(1.9)
w(r,t)=m(r,t) ,

where o(r) is a time-independent c-number and o, is the
quantum field operator describing fluctuations. Because
oy is static there is no corresponding contribution to 7.
The operators o and 7 satisfy

[oy(r,0),m(r,)]=i83(r—1') . (1.10)

"In the MFA we neglect the fluctuations of the o field and

keep only oy.
We represent the quark field operators by

—I€,t

1,0(1',[): E cn¢n(r)Xne

=y bathy (DX e "
€,>0

t —ient
+ X du¥(0)Xze ,

€ <0

(1.11)

where the ,X, are a complete set of functions; here we
take 1, to be two-component Dirac spinors and the X, to
be two-component angular momentum-flavor-color func-
tions. In the mean-field approximation, the only time
dependence is contained in the exponential factors, but for
generality the ¢, must be time-dependent; they satisfy the
equal-time anticommutation relations

e (Do (O} =8 - (1.12)

The quark part of the state vector is constructed by

!nl,nz,...;ﬁl,ﬁz,...): HbJHdnj|0> . (1.13)
n 7

In the present work, we consider mixed configurations
with the same radial functions. For ¢g (meson) and ggq
(baryon) states, the color function factors.

We treat the gluon fields to lowest order in o, =g,*/4m
(in the energy), which is equivalent to one-gluon exchange
(OGE). To this order, the non-Abelian terms in Eqgs.
(1.8¢c) and (1.8d) can be neglected, in which case the
gluon-field equations become identical with Maxwell’s
equations in medium. We can then identify

E’=—-VA4j5, B°=VXxA?,
(1.14)
D*=«E? H=«B‘.

Instead of solving the linearized form of (1.8c) directly for
the gluon fields in a hadron, we use Green’s-function tech-
niques,lz’13 as described below. We work in the Coulomb
gauge.

The MFA-OGE equations can now be written



2894

BICKEBOLLER, BIRSE, MARSCHALL, AND WILETS 31

<X[(a'p+gﬁao)¢,,(r)+%gszz fd3r'[7/”)f¢,,(r)G’”(r,r';O)J,,'(r')y;k’ctpn'(r’)

—YM}‘cdjn'(r)G#v(r’r';en _en’)lzn’(r’)’}/;)‘wd’n(r')] !X> =€, Y, ,

~V200+U'(09)— 5k (0N E*~B?) 48 3 §,(r)b,(r)=0,
Hu(O)F gy =8 3 VnVys AUy ,
where

Fp,=03,45,—0,4 .

Here G*" is the frequency-dependent gluon propagator
calculated with «(0¢(r)); the Dirac four-matrices (a,,7,)
act on both the two-component spinors 3, and the corre-
sponding Pauli spinors contained in the several-body
functions | X). Sums are over valence quark or antiquark
states.

While, in principle, Eqgs. (1.15) could be solved self-
consistently, the gluon field has been treated perturbative-
ly in the present work. This means that we drop the
gluon terms in (1.15a) and (1.15b) when determining the
functions v, (r) and oy(r).

Solutions have been obtained previously for ¥, (r) and
oo(r) without gluons, for a variety of parameter sets.>!*
Of the parameters which involve only the o field and
quarks (a, b, ¢, and g), two are fixed by fitting (1) the
mean nucleon-A mass and (2) the proton rms charge ra-
dius. This leaves two parameters, for which we choose
the dimensionless quantities ¢ and f=b%/ac. For f=3,
we have B=0 (no volume energy); for f =« the quadra-
tic term in U vanishes and 0=0 is an inflection point.
Unlike the MIT bag, the soliton bag has surface energy,
and this is maximal for f=3. For a given family f, the
curvature U''(op) increases with increasing ¢. We identi-
fy this curvature with mgp?, where mgg is the 07+ glue-
ball mass. At present neither of these parameters is well
determined. However, we favor values which lead to glue-
ball masses ~0.7—1 GeV. These values are consistent
with LGT results.

Here we calculate properties which allow us to deter-
mine the remaining parameter of the model, a;. The two
properties we consider are (1) the nucleon-A mass splitting
and (2) the string constant. In this model the former is a
consequence of the spin-dependence of the OGE interac-
tion between quarks. In other models'® pionic effects can
also contribute to the N-A splitting. The string constant
is the coefficient of the linear term in the potential be-
tween massive quarks. It is obtained from fits to the
charmonium and upsilon spectra using a nonrelativistic
quark model.’® Theoretical values have been obtained
from LGT calculations,'® although the string constant is
more usually the scale-fixing parameter in LGT calcula-
tions.

In Sec. II we calculate the OGE contribution to the N-
A splitting, using Green’s functions. The result is used to
fix the strong coupling constant a; which is found to be
rather insensitive to the choice of ¢ and f.

In Sec. III we determine the string constant by solving

(1.15a)
(1.15b)

(1.15¢)

(1.15d)

I
the problem of a cylindrical system of ¢ and gluon fields
(without quarks).

Finally, in Sec. IV we discuss some problems with the
current approximations and outline future developments.

II. THE NUCLEON-A MASS SPLITTING

To our present level of approximation, the soliton does
not contain any pionic effects and so the N-A splitting is
purely a result of the spin-dependent OGE force between
quarks. This is similar to the situation in the MIT bag
model where gluon effects have been calculated to lowest
order by DeGrand, Jaffe, Johnson, and Kiskis.!” The
gluon propagator for a spherical bag with a sharp surface
has been calculated by Lee.""'® The dielectric function x
in that calculation was a step function:

k(r)=60(R —r)+k_0(r —R)

where k,—0. Here we use a « which depends on the o
field and so does not have a sharp surface. As in the ear-
lier calculations we neglect the self-interactions of the
gluon field and work in the Abelian approximation. The
rationale for this is that the o field is presumed to
represent at least some of the effects of the non-Abelian
gluon self-interactions.

Rather than solving Egs. (1.15) self-consistently we
have treated the OGE force to lowest perturbative order.
We neglect the effect of the gluons on the quark functions
and o, Although we find a;~2, this is probably a
reasonable approach since the MIT calculation!” gave
~5% differences between nucleon and A properties such
as bag radii.

A method of calculating the propagator for an Abelian
gauge field in the presence of an arbitrary dielectric func-
tion (r) was presented in a previous paper.'>!* Here, we
use this propagator to calculate the color-magnetic energy
contribution to the masses of the nucleon and A. The ex-
perimental value of the N-A mass splitting (297 MeV) can
then be used to determine the strong coupling constant in
the model. The calculations have been done for various
choices of the parameters ¢ and f, which are, at present,
not well determined.

A. Review of the calculation of the gluon propagator

The gluon field equations (1.15¢) can be written

HKFL, =TS, 2.1)



where the total quark color current operator is
Jf' =&s 2 “Zn?/v%)‘c‘pn (2.2)
n

and
Ffwza”Af,—avAz . (2.3)

We now drop the color indices since the equations for dif-
ferent colors decouple.
We choose to work in the Coulomb gauge,

V-kA=0. (2.4)

This decouples the equations for the time component A4,
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where J, is the transverse part of the current.

The scalar Green’s function G (r,r')=G%(r,r') is de-
fined by the time-independent equation [corresponding to
(2.5)]

Vk(r)VG(r,r')= —8r—r') . 2.7)
We denote the time Fourier tr.z.l’nsform of the tensor (or
dyadic) Green’s function by G” (r,r’;w). It is convenient

to define

G¥(r,r',0)=k(r)G¥(r,r,0) . (2.8)

From the gauge condition (2.4), we see that this object has

V-kVAg=—Jo , (2.5) to be transverse:

and the space components A 9'G " (r,r";0)=0. (2.9)

It satisfies the differential equation [corresponding to
(2.6)]

—Kk3?A+VikA -V X

KAX LV |=—3,, (26
K

i

(@*+9%)G ¥ (1,1';0) — €110"[€1mn G ™ (1,1";0)3"Ink(r) ] = — 8 (r—1') , (2.10)

where 8% (r—r') is the transverse part of the dyadic & function.!®

pieces.

These Green’s functions can be calculated numerically for an arbitrary spatial dependence of the dielectric function «.
Details of the method can be found in Ref. 13. They are expanded using spherical harmonics for the scalar Green’s
function and using vector spherical harmonics for the tensor Green’s function. For example, in the presence of a spatial-
ly uniform dielectric k=1 the solutions can be determined analytically;

Unlike the usual 8 function this contains long-ranged

)

1 . "
G(rr)= — 177 Yim (Q) Y5 (O 2.11
L2m21+1r>l+1 I( I( ) ( )
and
G(r,r0)=3 | —oljjor )Y um(Q )] <[nor, )% (Q.)]>
ILm
—g)‘[vxfl(w’k)@zlm(9<)]i<[V><n1(wr>)@’}‘,m(ﬂ>)]i>
1 1 ) K i, 1 . iy
—_ 2 21+1 [VX”< gllm(ﬂ<)] VX . 1'+—1 Ilm(‘Q‘>) . (2.12)
: >

The j; and n; are spherical Bessel functions; the quantities (r _,Q _,i _) refer to (#,Q,i) if r > r’ and to (#',Q',i") if r <7';
(r,,Q,,i,) is defined correspondingly. The tensor Green’s function is transverse; the first term in (2.12) corresponds to
the magnetic modes and the second and third terms to the electric modes.

For spherical bags, where x depends only on the radial coordinate r, the expansions of the scalar and tensor Green’s
functions will have the same form for their angular dependence as (2.11) and (2.12). However, the radial behavior must
be calculated numerically. For a non-spherically-symmetric «, the radial dependences do not decouple for different par- -
tial waves and the structure is more complicated.

Here we need only the expression for a spherically symmetric k. Moreover we will see that, for quarks in s-wave orbi-
tals, we need only the static M1 (magnetic dipole) piece of the Green’s function:

(2.13)

Gl (r,r';0)= l ctro) ]jl(r<)ﬁ‘(r>

) i * i
W (ro) §[911m<ﬂ<>] UFn (2]

re(r)r'v(r’)
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The function j;(7) is the solution to the equation [Eq.
(4.30a) of Ref. 13]

d?
F

2
d ji(n=0,

—dT-I— +

d

—1 Ink

d
nK ar +

(2.14)

which is regular at the origin; #(r) is the solution which
is regular at infinity. These functions are determined by
numerical integration of (2.14). The quantity W (r,) is
the Wronskian

dj(r) 7 dri,(r)
ar T
evaluated at some convenient radius 7y. The general

properties of Wronskians ensure that W(ry)/k(ry) is in-
‘dependent of 7.

W(r)=n,(r) (2.15)

B. The one-gluon-exchange interaction

To lowest order in o, =g,%/47 the quark-gluon interac-
tion contributes to both the quark self-energy and the
OGE force. In the approximations we use only the lowest
quark orbital contributes to the self-energies of the nu-
cleon and A—there are no intermediate excitations. Since
the magnetic self-energy contribution is the same for both
N and A, we have not included it in the present work.
However, we feel that it should be included in dynamical
calculations because it does depend on (o). The self-
energy including a complete set of intermediate states has
recently been calculated in the MIT bag model.® We
have not attempted such a calculation here; we assume
that most of the effect is removed by renormalization of
the quark mass.

Within our approximations the total (mutual plus self)
color electrostatic energy is zero. To see this, we note that
in the N and A states, all of the quarks are in the same or-

- bital, and the system is in a color singlet. Within the Hil-
bert space where all quarks are in the same orbital, the
scalar potential operator factors, one factor being just the

J

Ey=—

i<j

Lra, 3 (kW ooy "("” = [ [ rarriar 2 = g, R
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total color operator. Acting on a color-singlet state, this
vanishes. Note the difference between this situation and
that in the quarkonia. There the heavy quarks are
presumed to be moving slowly so that an adiabatic treat-
ment is possible, with the gluon fields adjusting to the in-
stantaneous configuration of the quarks. The color-
electric fields in that case give rise to a stringlike poten-
tial, as will be discussed in the next section.

The OGE contribution to the color-magnetic energy is
given in terms of the tensor Green’s function, and can be
written

=33 [a% [ drifme ™ r,r;00F ()
ckk'i <j
(2.16)

This is a static calculation and so w=0. If we express ¥;
in terms of radial functions « and v,

u(r) }

A 2.17)
ioTv(r)

Y(0)=

then the contribution of the ith quark to (2.16) can be
written as

I(r) = —gyu (P (PX]ACEX 0X; (2.18)
As described above, the tensor Green’s function is given
as an expansion in vector spherical harmonics. The angu-

lar integrals are straightforward and give

172
[ 06X Wy @=—i |2 | o, 219
J 0@ Xa) VX (N 4 (2)]=0 . (2.20)

These show that the contributions from all but the M1
mode vanish. Hence we can replace the Green’s function
in (2.16) by its M1 part, (2.13). Using (2.13), (2.18), and
(2.19) in (2.16), we obtain an expression for the color-
magnetic energy of a hadron,

() (2.21)

r'e(r')

where we have used the fact that the color functions factorize. For a baryon the color matrix element is?°

(Atl 'AZ> = —2_ )
and the spin matrix element is

—1 for the nucleon ,
(or:ay) = +1 for the A .

(2.22)

(2.23)

Finally we obtain an expression for the nucleon-A mass splitting in terms of the MFA quark functions u,v, and the func-

tions j,#;:

E(A)—E(N)=27%

K(ro f f rdrr'd ulriv(r)

() ]1(1’ iy (r, )

u(r'v(r’)

2.24
(r") 224
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TABLE 1. Values of a; fitted to the observed N-A mass splitting, for various parameter sets and
choices of the dielectric function (1.5) with n=2. The parameter sets are from Ref. 14. They are fit to
the average N-A mass (including some center-of-mass corrections) and the proton rms charge radius.

All dimensioned quantities are in appropriate powers of fm (1 fm~!=197 MeV).
Qs

f a b c g m= m= % m=2
3.0 7.67 —107 5% 102 13.09 2.18 2.05 1.95
3.0 12.85 —196 1x10? 13.06 2.23 2.11 2.02
3.0 40.88 —783 5% 10° 14.01 2.34 2.24 2.16
3.0 66.42 — 1411 1x10* 14.83 2.37 2.27 1.93
3.0 - 107.32 —2537 2% 10* 15.94 2.39 2.24 0.11
3.2 5.71 —95 5% 10? 11.48 2.20 2.05 1.94
3.2 9.38 —173 1x10° 11.19 2.26 2.11 2.00
3.2 28.25 —672 5% 103 11.28 2.34 2.17 1.47
3.2 44.62 —1194 1x10* 11.71 2.32 1.93 0.14
32 69.73 —2112 2% 10* 12.42 2.24 1.33 0.03
6.0 1.60 —69 5% 10% 9.57 2.16 1.96 1.81
6.0 2.59 —124 1x10° 9.36 2.17 1.97 1.79
6.0 7.51 —474 5x 10 10.09 2.08 1.52 0.17
6.0 11.60 —834 1x10* 10.96 1.95 1.06 0.06
6.0 17.70 — 1457 2% 10* 12.16 1.80 0.74 0.03
© 0 —58 5% 10% 9.16 2.11 1.89 1.72
© 0 —105 1x10° 9.04 2.10 1.87 1.63
© 0 —399 5%x10° 10.01 1.93 1.25 0.11
© 0 —700 1x10* 10.98 1.79 0.86 0.05
© 0 —1222 2% 10* 12.28 1.64 0.62 0.03

For a meson, the matrix elements corresponding to
(2.22) and (2.23) are?®

Apdyy=—12, (2.25)

—3 for the pion

+1 for thep . (2.26)

(0'1'0’2)=

Since there is just one quark-antiquark pair in a meson,
the overall numerical coefficient for the 7-p splitting is +
of that for the N-A.

C. Determination of the strong coupling constant

The solution of the MFA equations, (1.15a) and (1.15b)
provides us with self-consistent quark functions and clas-

0.5 : -

n n Loaa il n |
103 104 10
c

FIG. 1. The calculated a; from the N-A splitting plotted
against ¢ for n=2, m=1, and various families f.

sical o field. With a chosen form for the dielectric func-
tion, (1.5), we can then calculate the radial functions j;
and 7 for the M1 part of the confined gluon propagator.
From these and the quark functions we obtain the OGE
N-A energy difference, (2.24). For each choice of parame-
ters (a,b,c,g) and dielectric function (specified by n,m)
we adjust a; to fit the observed N-A splitting.

The results for various parameter sets are given in
Table I. In Figs. 1 and 2 we plot a, against ¢ for several
parameter families f(f =b2%/ac). For the dielectric con-
stant we looked at the cases m=1, %, and 2, all with
n=2, as well as m=2, n=1. The results for m=2, n=1
are similar to those for m =n =2. However, we do not
regard this choice as acceptable, since it leads to a k signi-
ficantly different from unity inside the bag.

25—

L e

2
;<=|I-(c7'/<7,,)2

104 10°
c

FIG. 2. As Fig. 1, but for m=2.
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We notice that for m>1 and higher ¢ values (corre-
sponding to bags with sharper surfaces) the strong cou-
pling constant becomes very small. In fact, with m=2,
a; vanishes for ¢ > 10° (the precise value depending on f).
This is a sign that, for these choices of parameters, the in-
tegral in (2.24) is either very large or divergent. The pa-
rameters for which this occurs correspond to very sharp
surfaces in the dielectric function, «(r). For large r, «
tends to zero exponentially; as it does so, the Green’s
function (2.13), which goes like k!, grows exponentially.
The integrals in (2.24) will be finite only if the quark
currents fall off fast enough to kill this behavior. If the
surface thickness of k is too small this does not happen
and the integrals diverge, leading to small or zero values
for a.

In the regions of the parameter space where the results
are not strongly dependent on the choice of ¢ we find
1.5 <ay <2.5. These values are similar to the MIT bag re-
sult,!” @;~2.2. For comparison, we note that use of the
free gluon propagator leads to a;~3.4. Confinement
enhances the gluon field strength inside bag and increases
the color-magnetic energy by ~50%.

The results are well behaved for smaller values of c,
corresponding to “softer” bags. These parameter choices
are also preferred in other calculations which include
center-of-mass corrections.!!

III. THE STRING CONSTANT

In this section we calculate another quantity which de-
pends on the gluonic interactions: the string constant ¢.
This is the linearly rising potential between a quark-
antiquark pair. Phenomenologically, it is obtained by fit-
ting the charmonium and Y spectra with a nonrelativistic
potential of the form

k

Vin=-——+-,
r a

(3.1

where k =4a,/3 and 1/a%=t is the string constant. The
values obtained from quarkonium spectra'® range from
750 MeV/fm to 925 MeV/fm. The more recent results
prefer the lower values for . We will return to this ques-
tion in Sec. IV.

Here we calculate the string constant in the soliton bag
model by considering a quark-antiquark pair fixed at two
widely separated points. Provided that the separation is
large enough and we are far from both quarks, the fields
will be independent of z, the coordinate along the axis of
the quarks. In such a region we consider a system of o
and gluon fields only: a flux tube. By minimizing the en-
ergy per unit length of this system, we obtain the forms of
the o and color electric fields in the tube, and a value for
the string constant.

This calculation uses a different type of approximation
from that in the previous section. Instead of working in a
limited space of quark orbitals, we neglect the motion of
the quark-antiquark pair and consider the instantaneous
configuration of the gluon fields between them. Given the
large mass of the charm and bottom quarks, we expect
that this adiabatic (Born-Oppenheimer) treatment should
be a good approximation.?!
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The energy per unit length (string constant) can be writ-
ten

t= [ d’S[+|Voo|+Ulop)]

++ [d’SE“De, (3.2)
where the color electric fields are defined as in (1.14) and
are parallel to the z axis. (As in the calculation of the N-
A splitting, we work in the Abelian approximation.) For
large separations the static color-magnetic energy is negli-
gible compared with the electric energy.

From the Maxwell equation

VXE’=0, (3.3)

and the fact that the color electric field is everywhere
along the z direction we see that E° must be independent
of r. Using this and the definition of D°, we can write
(3.2) as

t= deS[ﬂvUo!z{LU(oo)]
+5 | E°|2 [ d%S k(o) . (3.4)

From the fact that A;+A, vanishes acting on a color-
singlet meson state, together with Gauss’s law,
vV-D°=J§ ,

it follows that the total color electric flux through a plane
between the two quarks is equal (in magnitude) to the
color charge on one of them. Hence we find that

(3.5)

. 8sA°

=, (3.6)
2fd2SK(00)

This is still an operator acting in the color space of one of
the quarks.

The color electric energy is obtained bﬁy averaging over
color configurations and using {A-A)=-, to get

8 Qs

— . (3.7)
3 fdst(O'o)

t= [ d’S[+|Voo|2+Ulog)]+

We vary the energy per unit length with respect to oy,.
This leads to the following nonlinear integrodifferential
equation:

K'(UQ)

V2044 U'log)— 2 q (3.8)

2 =0,
3 [deSK(ao)]
where, as usual, the primes denote differentiation with
respect to o. If we assume that oy is cylindrically sym-
metric, then (3.8) reduces to

__|@ 14 .
Fl(og)=— dp2+PdP oolp)+U'(oy)
_%as oo . (3.9)
ol

This equation is solved .by the generalized Newton’s
method,?>” subject to the boundary conditions
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that described in Ref. 22 and the Appendix of Ref. 7, ex-

dO’O
dp (0)=0, oplw)=0y . 3.10) cept for the following point. The correction, Ao,, to the
nth iterate, o,, is found by solving the inhomogeneous
The iterative method is a straightforward extension of linear integrodifferential equation
|
2 ”"
- f—ﬁi;— Ao, +U"(a,)Aa, —%as K0 Ao
p- P ap T [fpdpk(a,,)]
4 © K'(oy)
+3-0 2 3 ( [ pdpk'o,)00, |=F(a,), (.11
[f pde(0n>]
I
subject to the boundary conditions 32 172
t= —3—aSB , (3.14)
)=0. (3.12)

4 Agp(0)=0, Ad,(oo
dp

Note that it is essential to include the integral term which
comes from differentiating the denominator of the final
term of (3.9) with respect to . With this term (3.11) is an
integrodifferential equation. Hence, after discretization,
we have to invert a full matrix instead of a tridiagonal
one. (We could not find a convergent iterative procedure
based on a differential equation.)

The string constant has been calculated as a function of
a for a variety of choices of the parameters which speci-
fy U(o) and the functional form of k. In Fig. 3 we plot
the string constant ¢ against ¢ for various families f. For
these calculations a value of 2.2 was used for a;. The
dependence of ¢ on ag is shown in Table II. The solutions
have a flux-tubelike form with k~1 inside the tube and
k=0 outside, as can be seen from Fig. 4.

For comparison, we quote results of a similar calcula-
tion in the MIT bag model.”> There k=1 inside the tube,
and the bag volume energy contributes BA to the energy
per unit length, where A is the cross-sectional area of the
tube. Hence the total energy per unit length is

8m %

t=BA
* 3 4

(3.13)

Minimizing this with respect to A gives

1200 +rrr———

L K=!|‘(a/a'.,)21

1000

800

t (Gev/fm)

600

4001 —

10 10* 10

FIG. 3. The string constant ¢ plotted against ¢ for n=2,
m=2, and various families f. The strong coupling constant was
taken to be a; =2.2.

Inserting the MIT values B=57 MeV/fm3, a,=2.2 leads
to a value of 910 MeV/fm for the string constant . Since
the MIT bag has only volume energy, it gives ¢ «ca,!/?
In the soliton model, with low values of f, surface energy
dominates, leading to an approximate dependence
t ca,!’3; for f = o (maximum volume energy) the depen-
dence is close to ¢ «< a,!/?, as in the MIT model.

Finally, we note that it is essential to have m > 1 in the
dependence of « on o, Eq. (1.5). Otherwise (3.9) cannot be
solved with the boundary conditions (3.10). As p— o the
o field tends to its constant vacuum value, oy, and (3.9)
reduces to

K'(oy)

[fpdpk(oo)]

This can be satisfied only if k(o) is zero, which is im-
possible if m=1 in (1.5).

IV. DISCUSSION

The calculations presented here include gluonic effects
to lowest order, in the soliton bag model. Two comple-
mentary situations are studied: (1) the color-magnetic en-
ergy of quarks in a spherical bag; (2) the energy per unit
length of a cylindrical system of o and color-electric
fields. The calculations are performed using the mean-
field approximation for the o field and the Abelian ap-

(3.15)

2:0.

R (fm)
FIG. 4. The radial form of the dielectric function «(r) for
n=m=2, a;=2.2, f=3.2, and three values of c.
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TABLE II. Dependence of the string constant ¢ on the strong
coupling constant a;, for n =m =2. Since the a dependence is
well represented by a power law, interpolation on logarithmic
scales can be used to find ¢ for other values of a;. The final
column gives the string constants for the values of a, obtained
from the fits to the N-A splitting (Table I); only cases which
gave acceptable results for the splitting are shown.

t (MeV/fm)

f c a;=1.0 a;=2.0 a;=3.0 as(N-A)
3.0 10° - 350 445 511 446
3.0 10* 395 497 563 490
3.0 10° 407 515 590
3.2 10° 396 527 624 527
3.2 10* 491 662 796
3.2 10° 575 787 950
6.0 10° 469 641 776 605
6.0 10* 612 848 1031
6.0 10° 714 1002 1220
© 10° 488 680 825 609
0 10* 652 910 1107
© 10° 768 1075 1314

proximation for the gauge fields.

In the first case, we obtain the N-A splitting from one
gluon exchange (first order in «;). The gluons are con-
fined by a dielectric function which depends on the o
field. The OGE magnetic energy is calculated using
Green’s-function methods.'>!* By fitting our results to
the observed N-A splitting we obtain a value for ;. De-
pending on the choice of the other parameters in the
model we find a; ~1.5—2.5. This is similar to results of
an analogous calculation in the MIT bag model.!”

In the second case, we calculate a string constant which
we identify with the linear term in phenomenological QQ
potentials.

We find meaningful results for only a limited range of
the parameters f,c [specifying U(o)] and of forms for
the dielectric function,

Kpm(o)=|1—(c/oy)"|™ . (1.5)

If, as ¥ — w0, k goes to zero faster than the quark color
currents, then there is a large or divergent surface contri-
bution to the OGE energy. This leads to small or zero
values for a;. To get reasonable results with m>1 in
(1.5), we need ¢ < 10* for the family f=3.0 or ¢ <10* for
f = o. These results indicate a strong preference for pa-
rameters which correspond to ‘“softer” bags. For m=1
the restrictions on the parameters are much less severe but
this choice is unacceptable because it is impossible to find
solutions for the string problem.

For choices of parameters which fit the N-A splitting
we find values for the string constant ¢ which lie mostly
in the range 400—600 MeV/fm. This is significantly
smaller than the frequently quoted values ~1 GeV/fm, as
obtained in older fits to the charmonium spectrum!>®
and an MIT bag calculation.”®> However, newer fits'>®
including the Y states give ¢t ~750—800 MeV/fm. For a
few parameter choices we can get close to the lower edge
of this range.

Quigg and Rosner?* have suggested that the linear re-
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gion of the QQ potential may not have been probed so far,
and that higher excited states of the Y may be needed.
The fits used to determine ¢ assume a two-parameter cen-
tral potential of the form (3.1). Although the two param-
eters (k and t) may be fairly well determined by the data,
the functional form of the potential could be more com-
plicated, and so the extracted linear term could be unreli-
able. On the theoretical side, LGT calculations have an
arbitrary length scale. While the QCD scaling parameter
is sometimes used to set this scale, it is also not well deter-
mined by deep-inelastic scattering experiments. In fact
the string constant is often used to set the scale and so'is
not a prediction of the calculations.!®

The present calculation includes no pionic effects. In
models with pions,’ these contribute to the N-A splitting
and so reduce the deduced a,. This would further de-
crease the calculated string constant. One feature of our
results which deserves comment is the large radius of the
flux tube. From Fig. 4 we see that this is typically ~2
fm. This is larger than in the MIT calculation.?® This
may reflect the small bag constant in the soliton model
and the tendency of surface energy to dominate.

One modification which has been suggested'® is the in-
clusion of a o-dependent gluon mass in the model. This
shortens the range of the gluon propagator outside the
bag, and could help avoid the divergences in the OGE en-
ergy for a wider range of parameters. It also ensures that
there are no long-range color van der Waals forces be-
tween hadrons. However such a mass term breaks the lo-
cal gauge invariance of the model. This is a somewhat
undesirable feature since it also introduces an exponential
damping into the integral in (1.7), removing absolute color
confinement. A large gluon mass outside the bag is re-
quired to cut off the surface contributions. However, the
o field inside the bag is not identically zero. Hence a sim-
ple form for the gluon mass, such as mg=k02, will also
lead to a nonzero gluon mass inside the bag. Numerically
this was found to have a substantial effect on the propaga-
tor inside the bag. This could only be avoided by using a
more complicated form for mg, which would introduce
further parameters with no clear physical significance.
We have not pursued this approach.

Possible improvements of the calculations include a
self-consistent treatment of the OGE force in the N and
A. There are various ways in which this could be done.
The simplest would be to keep all quarks in the same spa-
tial function and do a Hartree-Fock calculation. A more
sophisticated treatment would allow for the fact that
OGE can break the SU(4) (spin X isospin) symmetry of the
nucleon wave function.?’ This could be done by allowing
the wave function of the down quark in a proton to differ
from that of the up quarks. It may also be possible to in-
clude the non-Abelian terms and obtain full solutions to
for both the color-magnetic energy and the string con-
stant.
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