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In this paper, we invoke the formalism used previously by Krajcik and Foldy to obtain the relativ-
istic center-of-mass coordinates for a system of pointlike Dirac particles. This procedure allows us
to investi'gate a recent dispute regarding the size, as well as the proper formulation, of recoil correc-
tions to baryon magnetic moments in a bag model. Our results suggest that the overall center-of-
mass-system motion, when factored out properly to yield the momentum-conservation 5 functions,
does not result in the additional and sizable recoil corrections as addressed specifically by Betz and
Goldflam as well as by Guichon. It appears that the major recoil contribution to the baryon mag-
netic moment comes from the spinor rotation of the constituent quarks. Although the dispute in
question is related to effects of first order in q/M with q the magnitude of the momentum transfer
and M the baryon mass and so can be settled with confidence, it appears that terms of order {q/M)
or beyond are highly model-dependent.

I. INTRODUCTION

In recent years, it has become clear that the substruc-
ture of nucleons, isobars, or mesons must be incorporated
into a proper description of electroweak or nuclear reac-
tions at intermediate energies. It is also evident that
quarks and gluons, interacting among themselves via
quantum chromodynamics (QCD), are building blocks of
the observed hadrons. Although quarks and gluons at
short distances are believed to interact weakly in accord
with the asymptotically free nature of QCD, the confine-
ment problem as well as chiral-symmetry breaking ap-
pears to be a nonperturbative phenomenon and probably
demands a highly nontrivial solution. Popular bag
models, ' or potential quark models, 9 offer us a
reasonable starting point in the attempt of incorporating
hadron substructure into intermediate-energy physics
despite the fact that the quark confinement and often
chiral-symmetry breaking as well are built in by hand.
Nevertheless, any such model, if ever proven useful, needs
to be polished to the extent that the observed hadron
properties are reproduced to high accuracy, since
intermediate-energy physics, or the next generation of nu-
clear physics, will obviously demand much more than just
a crude model. In our opinion, whether any of the exist-
ing models' can meet such a basic challenge remains as
an open question.

To justify in quantitative terms the validity of a given
model, however, it is essential to formulate various
higher-order effects, including recoil corrections, '

center-of-mass (c.m. ) corrections, ' and contributions due
to pion exchange' or gluon exchange. ' This is clearly
not an easy task, as can be reflected by the fact that dif-
ferent authors often come up with different answers to the
same question. For instance, it was pointed out by one of
us' and several other authors" that the spinor rotation of
constituent quarks, arising from an infinitesimal Lorentz
transformation associated with nucleon recoil, gives rise
to sizable corrections to baryon magnetic moments. Sub-

sequently, however, Betz and Goldflam' and, indepen-
dently, Guichon' claimed the existence of an additional
recoil correction which cancels approximately the contri-
bution due to the spinor rotation of the constituent
quarks. As for the c.m. problem, it is not clear whether
the problem exists at a very serious level, since the bag [or
the perturbative QCD vacuum) may already serve as a
buffer in balancing out any nonzero momentum fluctua-
tions. After all, the asymptotically free nature of QCD
suggests that quarks interact weakly at small distances.
Thus, a bag of very small size must be able to balance out
momentum fluctuations due to quark motions, since
quarks by themselves move more or less independently of
one another. Even if we take the view that the c.m. prob-
lem can be resolved without explicit reference to the bag
dynamics, suitable modification of the nonrelativistic an-
satz' must still be worked out for a system of Dirac par-
ticles. Finally, a consistent treatment of pionic correc-
tions or gluon-exchange currents is clearly needed since
the effects appear to be of numerical importance. Despite
these pessimistic observations, we believe that future
developments will eventually lead to considerably unified
views toward these problems.

In this paper, we wish to address mainly the question of
formulating recoil effects in a bag model. In particular,
we focus our attention on the question as to whether or
not the additional recoil corrections to baryon magnetic
moments, as addressed by Betz and Goldflam' as well as
by Guichon, ' are present. By applying an elegant for-
malism developed by Krajcik and Foldy' for studying the
center-of-mass variables for a system of relativistic con-
stituents to the present problem, we obtain results which
suggest that, once the center-of-mass-system motion has
been treated properly to yield the momentum-
conservation 6 functions, the additional recoil contribu-
tion claimed by Betz and Goldflam' and by Guichon'
appears to be absent. This observation is of importance
since the observed baryon magnetic moments provide crit-
ical information for testing a given quark model. Unless

31 Qc1985 The American Physical Society



RECOIL EFFECTS IN A BAG MODEL 2875

we may agree upon the proper procedure to treat recoil ef-
fects for a system of Dirac particles, such critical infor-
mation remains to be of no practical use. We feel that the
formalism developed by Krajcik and Foldy' is very in-
structive in this context, although we have to admit that
some of the manipulations remain as a formal mathemati-
cal procedure and may, in fact, contradict certain assump-
tions which are often used in connection with the model
at hand. In particular, we assume in Sec. III that the con-
stituent quarks carry all of the hadron four-momentum,
so that direct application of the formalism developed by'
Krajcik and Foldy' is adequate. However, it is generally
thought that the constituent quarks do not exhaust the
hadron four-momentum. Incorporation into the formal-
ism of an additional degree of freedom characterizing an
empty bag appears to be straightforward, if such addition-
al degree of freedom can be described in the same manner
as a physical particle (i.e., it has its own coordinates and
conjugate four-momentum). In this case, our conclusion
regarding the absence of the recoil contribution claimed
by Betz and Goldflam' and by Guichon' remains valid
since the quark sector is not modified in any significant
manner. Therefore, the validity of such a conclusion
must be reexamined if either the quark wave function for
a nucleon at rest differs substantially from that for a
Dirac particle or incorporation into our formalism of the
possible additional degree of freedom such as an empty
bag must be done i:n a way which modifies the quark sec-
tor drastically. Neither seems to be likely for a quark
model listed in Refs. 1—9. In other words, it is relatively
easy to settle a dispute on an effect of first order in q/M
with q the magnitude of the momentum transfer and M
the baryon mass (which is just the key issue of this paper),
but it is awfully complicated to address effects of higher
order in q/M (unless the model has been accurately speci-
fied to the desired order in q/M).

This paper is outlined as follows: In Sec. II, we explain
in general terms why certain recoil corrections are expect-
ed to be present for the determination of baryon magnetic
moments and why the additional recoil contribution ad-
dressed by Betz and Goldflam' and by Guichon' is like-

ly to be absent. The presentation in this section is meant
to be pedagogical rather than of mathematical rigor. In
Sec. III, we follow the formalism used previously by
Krajcik and Foldy' to obtain a rigorous treatment of the
subject, assuming that the constituent quarks interact
among themselves via some "internal" interaction. The
central result is then applied, with considerably less degree
of mathematical rigor, to the bag-model problem in Sec.
IV. Here possible uncertainties associated with our major
conclusion as well as with terms of second order in q/M
are also briefly discussed. Finally, Sec. V contains a brief
summary.

II. GENERAL CONSIDERATIONS

As an illustrative example, we consider the T-matrix
element' for electron-proton scattering,

2

& k',p'
~

T
~
k,p &

=—,iu(k')y„u(k) fd4x e-'& "J„(x),

with q~=(k' —k)~ and k, k' (p,p') the initial and final
electron (proton) four-momentum. The indices specifying
internal degrees of freedom such as spins will be
suppressed wherever possible. Further, Jz(x) is the ma-
trix element of the electromagnetic current operator
J~(x),

J„(x)=&p'i J„(x)ip& .

Translational invariance yields

J~(x)=e '~'"J„(0)e+'~'" .

Thus, Eq. (1) becomes
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It is known that the one-body contribution from constitu-
ent quarks yields the operator, '

(&)
y

J~(x, t =0)= g iy4y„T3+ — 5 (x—x'),
a=1

(5)

&
k'»'

I
T

I
k p & =(2~»(po po qo)— —

e
iu (k')y„u (k )J„

with

J„=f g d x' Pf(Ix'I)
a=1

3

X g e 'q'"' iy4y„T, +-
a=1

X 1t;( I x'I ) . (7)

Comparing Eq. (7) with Eq. (4), we conclude that the
quantity J& must contain the momentum-conservation 5
function, i.e., (2m) 53(p —p' —q). In our opinion, this
seemingly trivial point, already we11 known in, e.g., pho-
tonuclear physics, has been overlooked by Betz and
Goldflam' in their would-be-otherwise elegant formal-
ism. It appears from what follows that the additional

which, in the nucleon case, gives rise to the dominant con-
tributions. ' ' In this paper, we are interested only in
possible important recoil corrections to the one-body con-
tribution. It is clear that introduction of quark dynamics
implies the existence of "higher-order" effects such as
pion-exchange or gluon-exchange currents, which are
commonly classified as two-body contributions. Some of
these two-body currents may be of numerical significance;
for instance, the pion-exchange currents (often known as
the pion-cloud effects) are very important especially if the
bag radius is small. By being interested only in the one-
body contribution, we choose not to confront ourselves
with any of these higher-order effects. Using Eq. (5), we
obtain from Eq. (1)
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recoil corrections to baryon magnetic moments which
they obtained come from the improper treatment of this
specific aspect.

In the nonrelativistic case, it is easy to show, for a two-
particle or three-particle system, that the momentum-
conservation 5 function arises from the integration over
the c.m. coordinates. As will become clear later in Sec.
IV, we may introduce overall center-of-mass-systein
(OCS) coordinates X in the relativistic case to accomplish
this goal. Thus, we may write

r'—=x' —X .
Here r' may be viewed as "internal coordinates" ' while
x' should be considered as "absolute coordinates. " Gen-
eralizing the nonrelativistic result to that the integration
over the OCS coordinates X gives rise to the Inomentum-
conservation 5 function, we obtain from Eqs. (7), (6), and
(4)

2

Jy(0)= f IId " 'Pf I

3

i3 4yp T3+

Refs. 12 and 13), then the boosting vector K receives a
contribution from the Py—t term in Eq. (10a). We be-
lieve this is the origin of the additional recoil correction
addressed by Betz and Goldflam' and by Guichon. ' It
is evident that, in a suitable treatment of the problem,
such additional recoil correction may not arise at a11.

At this juncture, it is also useful to recall some formu-
las for determining the electromagnetic form factors. To
this end, we define

&p(0)—:(p(p')i &p(0)ip(p))

=iut(p')y4 y„ep(q )+ ""
IJ~(q ) u(p),

with

y, =yi y,y.+y y, =2&,.
and mz is the proton mass. ez(q ) and pz(q ) are, respec-
tively, the charge and anomalous-magnetic-moment form
factor for the proton. We use the normalization condi-
tion,

u (p)u(p)=u (p')Q(p')=1 (12)
(9)

Here the integration over II d r' extends over only two

constituents (or over only the internal coordinates). Here
it is known' that factorization of the OCS coordinates is
not complete and effects of order (

i q i
/M) are, in gen-

eral, present as a result of factorizing out the momen-
tum-conservation 5 function. As can be seen from Eqs.
(15) and (16) given later in this section, effects of this kind
do not enter the determination of baryon magnetic mo-
Inents.

As indicated earlier, the initial and final wave functions
are, in general, specified in their own rest frames. We
denote such wave functions, respectively, by gf '(

I roj) and

PI '(Iroj). Of course, every entity appearing on the right-
hand side (RHS) of Eq. (9) must be defined in a single
frame, say, the Breit frame as suggested in the litera-
ture. ' ' ' The fact that we are able to specify the had-
ron wave function in the rest frame of the hadron implies
that, in the Breit frame, we are able to specify the hadron
wave function at rest (p=0), say, g'~= '(Ir, j). The
knowledge regarding the generators of infinitesimal
Lorentz transformations, i.e., the Lorentz boosters
K—(Xl K2 ~K3 ), allows us to generate both Pf '(

I r, j )

and 1tj'; '(Ir, j), which must be used as the input for the
RHS of Eq. (9).

We note that, for the absolute space-time coordinates of
a particle, the I.orentz transformation reads

x' =x+P(P x)(y —1)/
i P i Py t, —

ez(q )= 1+
4(E+m~)

Ip q

4(E+mq )

+Is" 2m~(E+m~)

p (q2)= 1+ q+ 4(E+,)' I„1— 2

4(E+mq )

Zm&—Io
E+mp

(13a)

(13b)

where Io and I„are two Breit-frame matrix elements
specified by

2E (p(p'= —q/2; t)
i
Jo(0)

i p(p=q/2; t)),E+mp

(14a)

(p(p'= —q y/2;1')
~

& (0)
~E+mp /q

Xp(p=qy/2; t) ) . (14b)

Here

so that quark wave functions need to be normalized ac-
cordingly. We have

r —2

t'=y(t Px), —
(10)

(m 2+q2/4)1/2 q ( 2)1/2

q
2 q2 q

2 q2
where p is the velocity of the primed frame relative to the
unprimed frame and where y=(1 —p )

' . Now, if the
coordinates I r'j appearing in the RHS of Eq. (9) are iden-
tified incorrectly as the absolute coordinates Ix'j (as in

The proton total magnetic moment is defined by

pp" ep(q =0)+pp(——q =0) . (15)
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Using Eqs. (13)—(15), we find

pp~' ——I„(q~ =0)

2mp
&~(p'= —e~/2 t)

I J.(0)
~
p(p=ei/2; t))

q —+0 lq

g'(x') =Sag(x)

1 ——P 1+Pt.V+@ x g(x')a a
2 at

=(1+iP K)g(x )'.

III. FORMULATION

To maintain Lorentz covariance, it is essential that the
ten infinitesimal generators of the proper inhomogeneous
Lorentz group, i.e., the generators of the infinitesimal
space translations (P~,Pq, P3 ) =P, the generator of the in-
finitesimal time translation H, the generators of infini-
tesimal rotations (J~,Jq,J3)=J, and the generators of in-
finitesimal Lorentz transformations (K &,Kq, K3 ) =K,
satisfy the well-known commutation relations

[P;,P, ]=0,
[P;,H]=0,
[J;,H]=0,

JJ]=&&1kJk

[J- ~, l=&&;Jk~k

[~r&KJ]=~&rjkKk ~

[H,KJ ]=iP~,

(17a)

(17b)

(17c)

(17d)

(17e)

(17f)

(17g)

Accordingly, a nonzero momentum, which can, in fact, be
taken to be infinitesimal, is required for the initial or final
wave function. Such requirement signifies possible pres-
ence of recoil corrections to the proton magnetic moment.
It is clear that the magnetic moment is proportional to the
coefficient of the term linear in q which appears in the
matrix element of the current density operator. Thus, any
nonzero recoil correction to the predicted magnetic mo-
ment is also of the same order in q/mz (or v/c). Thus,
the dispute regarding whether or not the additional recoil
contribution addressed by Betz and Goldflam' or by
Guichon' is indeed present can be resolved without any
reference to those effects which go beyond the first order
in q/mz and are much more complicated than terms of
the first order.

Or, we find

K= tP —xH+i-~ a
2

=tP —,(xH—+Hx) . (18c)

We note that Eq. (17h) allows us to determine J:

J=xXV/i+a/2 . (18d)

Here it is essential to note that t must be treated as a pa-
rameter which commutes with the operator H defined by
Eq. (18a). Alternatively, we may choose, in connection
with Eqs. (18b)—(18d),

H=i
Bt

(18a')

H =gH',

J=gJ',

(20a)

(20b)

(20c)

(20d)

so that [H, t]=i In b. oth cases, it is straightforward to
demonstrate that the Lie algebra of the Poincare group, or
simply the Poincare algebra, Eqs. (17a)—(17i), holds for
the generators explicitly given above. This implies, in the
operator sense,

V
i =a —.+Pm .

Bt i

The choice given by Eq. (18a') is interesting because all
the generators [H,P, K,J] can be cast into the forms
which do not involve the matrices a explicitly. This as-

pect has been used by, e.g., Foldy to synthesize several
relativistic systems on the same footing.

As our second example, we consider a system of nonin-
teracting Dirac particles. It is clear that the Poincare
algebra, Eqs. (17a)—(17i), holds for the following choice
of the generators:

[K;,KJ ]= i e(p,jk,—
[P;,K ]=i5; H. .

(17h)

(17i)

H=a V/i+Pm, (18a)

It is useful to consider a couple of relevant examples
which shed some light as to how the above algebra works
for a system of Dirac particles. First, we consider a single
free Dirac particle. In this case, we already know

where we have, from Eqs. (18a)—(18d),

H'=a'V'/i+@'m,
P'= V'/i,
J'=x'X V'/i+o'/2,
K'= tP' ——,(x'H'+H'x') .

(21a)

(21b)

(21d)

P=V/i . (18b)

The boosting vector K is obtained by the standard
Lorentz transformation of a free Dirac spinor

It is important to bear in mind that the validity of the
Poincare algebra implies Lorentz covariance of the entire
system. Accordingly, there must be at least a way of
specifying the relativistic center-of-mass (RCM) coordi-
nates R. As emphasized by Krajcik and Foldy, ' the va-
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lidity of the Poincare algebra is equivalent to the state-
ment that the generators IP, R,S,Mt exist and the follow-
ing Lie algebra among these operators holds:

[R;,Rj]= [P;,Pj]= [S;,R )=.[S;,P ]=0,
[M,Rj]=[M,Pj]=[M,S ]=0,
[R;,Pj]=i 5j,
[S;,S ]=i e, .kSk .

(22a)

(22b)

(22d)

Such equivalence may be viewed as the existence theorem
for the operator R. As pointed out in 1949 by Dirac, it
is possible to incorporate "internal" interactions, while
maintaining the validity of the Poincare algebra, by add-
ing the interaction to the total Hamiltonian H and modi-
fying only the boost operator K. Thus, it is essential to
realize the above equivalence theorem since it provides an
explicit definition for the RCM coordinates R. Such real-
ization can be accomplished in the way described immedi-
ately below.

Suppose that, for a given system of relativistic particles,
we have constructed the ten generators IH, P,J,KI which
satisfy the Poincare algebra, Eqs. (17a)—(17i). We intro-
duce, in the most general case, the RCM operator R and
the exp/icit spin operator S according to the following
conditions:

J=lxP+S,
[H,Ri] = iP;H—

(23a)

(23b)

The following commutation relations are imposed to en-
sure the physical meaning of these two operators:

[R;,Rj]=0~
[R;,Pj ]=i5,j,
[S;,Sj ) =i e/JkSk

[S;,Pj]=0,

(24a)

(24b)

(24c)

(24d)

(24e)[S;,Rj]=0 .
To maintain Eq. (17c), it is required that S commute with
H,

[S;,H]=0 . (25)

It is straightforward to demonstrate that Eqs. (17d) and
(17e) follow from Eqs. (23) and (24). To verify that the
Poincare algebra be maintained, we also need to introduce
the boost operator K in terms of the new set of variables:

K=tP ——,(RH+HR)+SXP(M+H) ', (26)

where M is a c-number yet to be determined. That is, we
have

M =H —I' (28)

so that M is to be identified as the mass of the entire sys-
tem.

[M,R;]=[M,P;]=[M,S;]=[M,H]=0 . (27)

It is interesting to prove that Eqs. (17f), (17g), and (17i)
follow. To maintain Eq. (17h), it is required that the fol-
lowing condition hold:

The above realization of the equivalence theorem is
completely general. For a system of (interacting or nonin-
teracting) pointlike Dirac particles, it is interesting to note
that the explicit spin operator S can be set to identically
zero owing to the condition Eq. (25). (As will become
clear later, this choice does yield a consistent solution. )

For a system of relativistic particles with diagonalized
single-particle Hamiltonian (such as the system treated in
detail by Krajcik and Foldy' ), a nonzero explicit spin
operator iri terms of Pauli matrices becomes a natural
choice. The two languages are interlocked together since,
for a system of noninteracting Dirac particles as example,
a unitary transformation U can easily be found such that
a nonzero-spin operator in the diagonalized picture is
translated into a zero-spin operator in the original nondi-
agonalized picture or vice versa. For the bag-model prob-
lem, one has chosen to describe quarks as Dirac particles
(in the nondiagonalized picture) so that S.=O is the solu-
tion and it is to be assumed unless specified otherwise. Of
course, a Dirac particle carries a nonzero spin in an impli-
cit manner (via the Dirac spin).

We proceed to incorporate an "internal" interaction,
while maintaining the validity of the Poincare algebra, by
modifying only the total Hamiltonian H and the boost
operator K. We first note that the Poincare algebra, Eqs.
(17a)—(17i), imposes on the interactions allowed certain
constraints which have been synthesized in detail by
Krajcik and Foldy. ' Working with the general case
where the explicit spin operator may differ from zero, we
write

H=gH'+ U,

K=gK' ——,(RU+ UR) —W,

(29a)

(29b)

where H and K' are given, respectively, by Eqs. (21a) and
(21d). The meaning of W (which was introduced original-
ly by Krajcik and Foldy' ) should become clear later in
this section. To maintain the Poincare algebra, we need to
impose the following "trivial" constraints:

[P;,U] =0,
[J;,U]=0,
[R;,U]=0,
[P;,Wj]=0,

[Ji ~ Wj ] i eijk Wk ~

together with two "less trivial" conditions:

(30a)

(30b)

(30c)

(30d)

(30e)

[H, Wj] = Pj(UH '+H 'U)—J 2 J

+(S&&P)j[U,(M+H)-'],
[R;U+ W;, K, )+[K;,R; U+ W, ]

(30f)

+[R;U+ W;,Rj U+ Wj]=0 . (30g)

Here H is the free total Hamiltonian [Eq. (20a)]. We
have also simplified Eq. (30g) and obtained a cumbersome
expression which should be synthesized in connection
with Eqs. (30d)—(30f). In practice, it is more useful to
keep in mind the following observation: In the absence of
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K=tP ——,
' (HR+RH)+SXP(M+H) (31b)

Accordingly, we obtain

W= —,
' [H'(R —R')+(R—R')H']

+S'&& P(M'+H') ' —S && P(M+H ) ', (32)

which is, in fact, an explicit solution to the operator W.
It is clear that, in the U/c expansion, the leading terms
will cancel in Eq. (32) so that W is of higher order in u/c
as compared to the others. This aspect makes the U/c ex-
pansion a useful tool to solve the problem explicitly, as al-
ready demonstrated in the classic work of Krajcik and
Foldy. ' Finally, it is useful to note that Eqs. (30a)—(30c)
amount to the assertion that the interaction described by
U must be invariant under any. translation (generated by
P) or rotation (generated by J) of the entire system and
must commute with the RCM operator R. In other
words, U is an "internal" interaction as required. As
demonstrated in the work of Krajcik and Foldy, ' the
internal interaction U can, in general, differ from zero; in
other words, the set of U's which satisfy Eqs. (30a)—(30c)
is not trivial. Indeed, if we are allowed to work with the
U/c expansion, the nonrelativistic limit is recovered as a
leading-order approximation so that any internal interac-
tion in the nonrelativistic sense is acceptable within the
same approximation. Thus, it is conceivable that a given
"nonrelativistic" internal interaction can be extended or-
der by order in u/c to generate a "relativistic" internal in-
teraction.

We return our attention to the bag-model problem
where a nondiagonalized Hamiltonian (i.e., the original
Dirac Hamiltonian) is assumed for each constituent
quark. As indicated earlier, we have

an internal interaction, we assume that the relevant RCM,
spin, and mass operators have been found and are denot-
ed, respectively, by R, S, and M . %'e write

K'= tP ——,
' (H'R'+R'H')+S'X P'(M'+H') (3»)

Analogously, in the case of some internal interaction, we
write

Equations (33a) and (33b) result in a W negligible for our
purpose. Thus, we have

K=tP ——,'(RH+HR) .

Or, using Eq. (23b), we find

(34)

t+ —'a-' P —K. a-'.
2

An analogous expression can also be found even for a
nonzero S. Using the Poincare algebra, Eqs. (17a)—(17i),
and the definition for J, Eqs. (23a) and (33a), we find

[It';,P ]=i6; (36a)

[H,R; ]= iP;H- (36b)

[R;,RJ]=0 . (36c)

R=(1—UH ') ' t+ H 'iUH —'-p—E

2

(3,7-)

Thus, the solution to R is self-consistent. Further, the
RCM coordinates R are indeed the desired dynamical
variables conjugate to the momenta P. Such consistent
result is in accord with the central theme of Krajcik and
Foldy' but at variance with certain statements made in
some recent literature.

In summary, the RCM coordinates R given by Eq. (35)
are consistent with the Poincare algebra, Eqs. (17a)—(17i),
provided that the internal interaction U has been chosen
in accord with the constraints, Eqs. (30a)—(30c). In other
words, Eq. (35) provides a consistent solution for the
RCM coordinates R for an arbitrarily given internal in-
teraction U.

Using Eqs. (34) and (36b), we may rewrite Eq. (35) as
follows:

S=O, (33a) = tP —g x'H' —u'—a l a

2
(38)

and, owing to the fact that J and P are not modified by
the internal interaction,

R—R =O(PU(H ) ) or higher order in U/H

(33b)

We note that Eq. (37) is the solution of the RCM coordi-
nates in terms of the known quantities. It is clear that the
u/c expansion is useful here. Using Eqs. (34) and (37), we
obtain

=K' —U(1 —UH ') ' E' t+ H-' iUH—'—P H-—'. -
2 (39)

Alternatively, we may also write To obtain the initial and final wave functions which
can be used to evaluate the matrix element specified by

R= t+ H' P —K H '—(1—UH ')
2

(40a)
M& ——fd x (p'

~

e ~'"J&(x)
~ p ), (41)

K=K —RU . (40b) we assume that the wave function at rest is already given:



2880 A. O. GATTONE AND W-Y. P. HWANG 31

He'"({x'j ) =Me'"({x'j),
Pe"'({x'j)=0

(42a) with

"=p/Ip
I

tanh~= Ip I
/E E=(

I

pl�'+M')'~'.

4'~'({x'j)=exp( —iOv K)+' '({x'j), (43)

%'e note that Mz is the only unknown appearing in the
T-matrix element specified by Eq. (1). We have

Thus, the wave function of three-momentum p or p' can
be obtained from 4' '({x'j) by application of the boost
operator K given by'Eq. (39). For our purpose, we obtain
from Eq. (43),

4'~'( {x'j) = 1+iM '[1+M 'U(1 —UH ') ']g p x'H' ——p.a'
2

r

+ —,M 'p K'+U(1 UH ')—' K-' — r+ H' —iUH —' P H

gp x'H' ——p a' 4' '({x'j ) .
2 (44)

Or, if we assume O(p/M) =O(U/H)=O(U/c), 'we have, to second order in U/c,

2

+iMp t qj' '({x'j) .——,M g p.x'H' —p.u'—
2

%'~'({x'j)= 1+iM '(1+M 'U) g p x'H' ——p a'
2

(45)

It is interesting to note that, in the limit with U =0, the
terms linear in t give rise to the phase factor associated
with the kinetic energy,

exp( iEt ) =ex—p i t M +— +P
2M

(46)

A careful interested reader must have so far observed
that we have introduced two different concepts, namely,
the relativistic center-of-mass (RCM) operator R which
can be defined rigorously as in Sec. III and the overall
center-of-mass system (OCS) coordinates X over which
the integration yields the momentum-conservation 6 func-
tion as illustrated in Sec. II via the step from Eq. (7) to
Eq. (9). However, it is essential to keep in mind that a
choice of the OCS coordinates is a matter of convenience
rather than necessity, since Eqs. (41) and (43), if treated
exactly, should yield the energy-momentum-conservation

Thus, the time-dependent terms in Eq. (45) are exactly
what is needed in going from Eq. (1) to (6). This result is
a consistency check to the boost operator which we have
obtained.

In summary, the validity of the Poincare algebra allows
one to define the relativistic center-of-mass (RCM) coor-
dinates R which are the operators conjugate to the overall
momentum operators P [in the standard sense described
by Eqs. (36a)—(36c)]. In this section, we have followed
very closely the formalism developed by Krajcik and Fol-
dy' to obtain the RCM coordinates R which are suitable
for the original (nondiagonalized) single-particle Dirac
Hamiltonl an.

IV. APPLICATION AND DISCUSSION

where e' is the single-particle eigenenergy,

( H'+ U') 4' '( {x' j ) =E'%"o'( {x' j ), (48)

with e'&0 for all a. Accordingly, we may cast Eq. (43)
into the following form:

'P'~'( {x'j) =exp(ip X)SAY'0'( {x'j ) .
Comparing Eq. (49) with Eq. (45), we obtain an expression
for SA up to second order in p/M:

SA ——1+iM '(1+M 'U) g ——'p ~~
2

2

p g r'H' —a'—
2

t' '2
+ —,M p g r'& +O(p'/M'),

a

5 functions [see Eq. (45) et seq.]. In other words, the
RCM coordinates R are the operators which in general
contain a specific weighted sum of the single-particIe
coordinates and certain information related to individual
spins. The complexities related to the RCM coordinates
are necessarily present to ensure the validity of the Poin-
care algebra. (Such complexities explain why it took years
to reach a formalism such as presented by Krajcik and
Foldy. '

) Nevertheless, it is the specific weighted sum of
the single-particle coordinates which accounts for the
desired 5 function. To illustrate this point, we introduce,
ln view of Eq. (45),

X=+x'e'/M, (47)
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which is to be used in connection with Eq. (9). As dis-
cussed earlier, the time-dependent terms have been ab-
sorbed into the energy-conservation 5 function when we
go from Eq. (1) to Eq. (6). By the same token, we are led
to substitute everywhere x' by r' and V' by V'„, respec-
tively. It is clear that, if we insist on using Eq. (9), such
substitution cannot be avoided. In practice, it is often the
case that one has to work with Eq. (9) instead of treating
Eq. (43) exactly. It is useful to keep in mind that such
substitution as often used in the literature may result in

neglect of terms involving the total momentum of the sys-
tem which are, however, at least of order (U/c) [as can be
seen in going from Eq. (45) to Eq. (50)].

As the first major application, we consider a system of
Dirac particles confined in a cavity:

0 for ~r'~ (8,
(51)

(e for ~r'~ )R .
Since the wave function vanishes identically outside the
cavit'y, we obtain from Eq. (50),

2
b ~ a a

' lSz(cavity) = 1+ g p.a'+ g + g p a~i p r'H'+ —p r'[~', p a~] —p r'(~' —e')p rV +0(p3/M ).

Here, of course, uncertainties arising from the invocation
of a sharp surface cannot be quantified easily in the cavity
approximation. Furthermore, the validity of Eq. (52) re-
lies on the assumption that the constituent quarks carry
all of the four-momentum of a hadron. Such assumption
is clearly subject to severe criticisms. On the other
hand, the situation is relatively simple if we are concerned
primarily with the dispute regarding recoil corrections to
baryon magnetic moments. It is clear from Eq. (16) that
only terms linear in q are relevant for the determination
of the magnetic moment of an octet baryon. This implies
that only the first nontrivial term in Eq. (52), namely,
+(2M) 'gp a', contributes (as.pointed out by Hwang'
or Picek and Tadic"). The question is then whether there
exists some other recoil correction of similar importance.
Betz and Goldflam' performed the Lorentz transforma-
tion of Eq. (10) on the quark coordinates treated as abso-
lute coordinates and thereby obtained an additional contri-
bution to S~ linear in q. Guichon' argued by making an
analogy to the nonrelativistic physics that such additional
contribution which cancels approximately the one implied
by Eq. (52} appears to be plausible. In our view, absence
of such additional contribution can be understood intui-
tively by noting that the quark coordinates must be ex-
pressed with respect to the center of the system (or an ar-
bitrary point which moves with the overall system). Thus,
the terms linear in q, as implied by Eq. (10), disappear for
such relative coordinates. Formally, we have applied in
the previous section the formalism developed by Krajcik
and Foldy' to a system of pointlike Dirac particles to
derive Eq. (45} which implies that, once a factorization
such as Eq. (49) has been performed, the resultant boost
operator such as Eq. (50) does not contain any term simi-
lar to what they suggested. Here, once again, the contri-
bution which they suggested is absent because it is always
necessary to realize the momentum-conservation 5 func-
tions. Alternatively, it is also possible to treat exact1y the
RCM coordinates R inside the cavity (U=O) so as to
reach the same conclusion.

Of course, this conclusion has been reached under the
assumption that quarks carry all of the hadron energy-

momentum. There are different ways of going beyond
this picture. The first possibility is to introduce dynami-
cal variables associated with the cavity or the empty bag.
In the spirit of the formalism described in the previous
section, we need to modify the ten generators of the Poin-
care algebra by adding terms associated with the new de-
gree of freedom. To realize the momentum-conservation
5 functions, however, factorization such as Eq. (49) is in-
dispensible since the constituent quarks are known to car-
ry a significant fraction of the total momentum. Thus,
the quark coordinates need to be treated as "relative"
ones. The other possibility is to work with soliton bag
models. The presence of spontaneous symmetry breaking
in such models gives rise to the physical vacuum, or the
true ground state, which looks like a system of Dirac par-
ticles confined in a cavity. It is clear that our main con-
clusion remains. What may be of great interest is that one
may invoke the concept of "coherent states" to cast the
language in the second-quantized form. However, the
important elements discussed in the previous section will
manifest themselves in a certain way in such formalism.

One may argue with relatively strong confidence as to
whether or not an effect of order q/M is present. One
may also argue that inclusion of an addition'al degree of
freedom such as that characterizing an empty bag or the
soliton field cannot modify the boost operator in the
quark sector to first order in q/M. Nevertheless, correc-
tions of order (q/M) or beyond are awfully complicated
and should be anticipated to vary from model to model.
For instance, Eq. (45) is to be used both if quarks carry all
of the energy momentum of a hadron and if the hadron
wave function at rest is known. In practice, neither condi-
tion appears to be valid so that effects of order (q/M) or
beyond, as predicted by Eq. (45), cannot be taken without
question. As a matter of fact, it is known from nuclear
physics that relativistic effects associated with wave func-
tions cannot be treated separately from such effects in
transition operators and, in addition, are often tied to the
treatment of interaction effects such as pion-exchange
currents. [Here relativistic effects refer specifically to
terms of order (q/M) .] Therefore, it may be of interest
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to investigate as a model problem possible numerical im-
portance of terms of order (q/M) as predicted by Eq.
(45) or (50) but physical significance of any such result
must be assessed with caution.

As another simple application of the above formulation,
it is of some interest to consider again the cavity approxi-
mation but with the diagonalized single-particle Hamil-
tonian:

Ha pa[( a)2+~ ]1/2
I

We obtain

(53a)

SA ——1 — g o'X p'p
M 4m

+ g p r'p p'+O(p /M ) .
2M

(53b)

V. CONCLUSION

In this paper, we have demonstrated how the relativistic
center-of-mass (RCM) coordinates R can be constructed
in consistency with the Poincare algebra [Eqs.

In the "diagonalized" case (which is closely related to the
nonrelativistic case), it can be demonstrated that the only
term linear in p [Eq. (53b)] does not contribute to evalua-
tion of the baryon magnetic moment [Eq. (16)]. Thus, it
is essential to keep in mind that the limit m —+ ~ in a rel-
ativistic formula such as Eq. (52) does not always corre-
spond to the nonrelativistic result. Rather, it is the uni-
tary transformation which should be used to construct the
nonrelativistic picture. Therefore, the qualitative argu-
ment presented by Guichon' by taking m ~ oo to recover
the nonrelativistic limit is in the present case inconsistent
with the well-founded unitary-transforfnation concept.

(17a)—(17i)] for a system of Dirac particles with the
overall in, terna/ interaction U constrained by Eqs.
(30a)—(30c). It has been concluded that the overall
center-of-mass-system motion, when factored out properly
to yield the energy-momentum-conservation 6 functions,
cannot give rise to additional and sizable recoil correc-
tions as addressed by Betz and Goldflam' and indepen-
dently by Guichon. ' Thus, the major recoil contribution
to the baryon magnetic moment comes from the spinor
rotation of the constituent quarks. Such conclusion can
be taken with some confidence since one needs to consider
only effects of first order in q/M with q the magnitude of
the momentum transfer and M the baryon mass. Howev-
er, it is useful to bear in mind that corrections of second
order in q/M or beyond are in general highly model
dependent.

Votes added. After completing this work, we have no-
ticed the recent publication of several works on a related
topic. These include the papers by Bartelski, Szymucha,
Mankiewicz, and Tatur, by Tadic and Tadic, by
Wang 3i by Hajduk and Schwesinger, by Lan and
Wong, and by Fiebig and Hadjimichael. However,
none of these authors have adopted the elegant formalism
developed by Krajcik and Foldy' which, in our opinion,
is the only proper way to address the relativistic center-
of-mass problem in the first quantization l-anguage. Fiebig
and Hadjimichael have adopted exclusively the field-
theoretic (second-quantized) notation so that, for instance,
the constraint on the internal interaction U in our formal-
ism manifests itself as a constraint on their vacuum solu-
tion to 0(x).
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