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We consider the possibility that the g(2.22} is a bound state of two TM (transverse magnetic) con-
stituent gluons in the general context of the MIT bag theory. Only orbital angular momentum
quantum number l =1 TM gluons are considered. The g(2.22} is analyzed both as a 0++ state and
as a 2++ state. The method .of effective Lagrangians is used to compute the processes V—+g+y
and g~m +rn, for V=1(/J, Y and m =K,m, where in the latter computations, contact is made with
the theory of Lepage and Brodsky for exclusive processes in QCD. When compared to our results,
the limited data which now exist on li /J~g+y are not obviously inconsistent with either the 0++
or the 2++ assignment for the g. Observation of a g signal in Y—+gy, g —+K+K, with the
branching-ratio product B( Y~gy}B(g'~K+K }-1.4&(10 s would strongly favor the 0++ as-
signment. The finding of the relation of widths I (g~m+tr ) && I (g—+K+K }would do likewise.

I. INTRODUCTION

Recent experimentation at the e+e annihilation ring
SPEAR at SLAC by the Mark III group' has revealed a
surprising new state at the mass 2.22 GeV. The experi-
menters in Ref. 1 have named this state the g(2.22). In
what follows, we wish to explore in some detail the possi-
bility that this g'(2.22) particle is a bound state of two con-
stituent gluons —that is to say, that this g particle is in
fact a glueball.

More precisely, the g(2.22) has been observed to have
the following properties

I (g~all) =0.03+0.01+0.02 CreV, (la)

B( P/J~gy)B(/~K+K ) =(8.0+2.0+1.6) && 10-',
(lb)

I (g ~KsKs)~0 (lc)
Here, we are using the obvious notation that I (A~X)
denotes the width for the process A ~X where A =g,g/J
and X is any final state or set of final states, and
B(A X~) represents the branching ratio for the process
A ~X. The first error in each datum in (1) is statistical;
the second error is systematic. We note that the g is
surprisingly narrow in width and that, since it decays to
KsKs, its spin, parity, and charge conjugation (J ) must
be (2n)++, n =0, 1,2, 3, . . . .

Several scenarios have been put forward for the g. We
refer the reader to Refs. 3 and 4 for discussions of these
viewpoints. Here we wish to analyze in some detail the
scenario in which the g is a bound state of two TM (trans-
verse magnetic) gluons, each in the lowest allowed orbital
angular momentum state 1=1. We will denote such a
state of gluons as a TM state. Further, in general, X-7
wi11 denote a two-gluon state with one gluon in state X
and the other gluon in state K The transverse magnetici-
ty is understood to be that of a massive constituent
gluon ' in an MIT bag bound state, where the bag is tak-
en to be a sphere in the usual way. We will follow

Chanowitz and Sharpe and Carlson, Hansson, and Peter-
son, and view the l=1 TE, TE-TM, and TM states as
the effective lowest two-gluon states in the full solution of
the MIT-bag glueball problem. Here TE denotes trans-
verse electric in the context of the MIT bag theory of
massive confined gluons. In this view, our classification
of the g would not be inconsistent with the current think-
ing on the classification of the other glueball candi-

ates 2~3, 6, 8, 10

Our strategy will be that of the effective-Lagrangian
technique, " wherein one looks at the underlying field-
theory model [in this case it is QCD (Ref. 12)], and uses
the amplitude for the relevant fundamental processes in-
volved in a given hadron process to infer the effective La-
grangian of the fundamental fields which would generate
the hadronic amplitude. This effective Lagrangian can
then be used to compute the process under study for the
case of physically observable initial and final particles.
Our objective will be to compute, using this technique, the
widths I (f/J~gy), I (g~all), and I (g' —+mm ),
m =m.,K, where in the last computations we will employ
the methods of Lepage and Brodsky' in evaluating the

~

0) to (mm
~

matrix elements attendant to our
effective-Lagrangian approach to g'~mm, m =m, K. In
this way, we hope to be able to distinguish between the
J assignments 0++ and 2++ for the g particle.

We should mention that, in computing the decay
characteristics of the g on this TM glueball hypothesis,
we will follow the approach of Freund and Nambu and
of Carlson et al. ' and take pure gluon final states to be
Zweig-rule-suppressed in glueball decay relative to the
lowest-order quark-antiquark final state. Such an ap-
proach depends for its validity on the success of the Zweig
rule in ordinary hadronic decay. As such, the approach is
not without justification.

One can even entertain the possibility that glueballs are
eigenstates of the pure color-SU(3) gauge theory (without
quarks) with real energy eigenvalues. Such a state would
never decay strongly in the absence of quarks.

Our work is presented as follows. In the next section,
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II. MIT BAGS WITH MASSIVE GLUONS

In this section, we wish to review the essentials of the
MIT-bag treatment of confined (massive) constituent
gluons. We begin with the relevant QCD Lagrangian.

The relevant Lagrangian is '
W~, =tr ,'F, F—,„—.+m, ' W,„+—'UB„U-'

+f(&'8 —m )g, (2)

where the field strength I6& is such that

a
—,F~zv = trta+Gpv

Sec. II, we review the relevant aspects of the MIT bag
theory of massive gluons. In Sec. III, we present the com-
putations of I ( V~gy), V=//J, Y, presuming that the g
has J =0++,2++. In Sec. IV„we present the computa-
tions of I (g~all) and I"(g—+mm ), m =m, IC, again
presuming that the g has J =0++,2++. We compare
our results with the data in (1). Section V contains some
concluding remarks. The Appendix contains the details
of the relationship between our computation of the ex-
clusive process grimm and the computation methods of
Lepage and Brodsky' for such exclusive processes.

1
tria rb trina 'rb 2 ~ab (7)

where 5,b is the Kronecker 5 function. The constants e,b,
are the color-gauge-group structure constants. The gluon
mass mG, which is supposed to represent a large-distance
effect, will always have a value which is not too different
from 0.7 GeV; for this is the value of mG that one obtains
if one averages the various theoretical and experimental
values of mG in Refs. 6 and 17. This completes the defi-
nition of the right-hand side of (2).

Having specified the relevant Lagrangian, we next turn
to the type of gluon states from which we shall construct
the g(2.22). We have in mind the MIT bag model for the
various confined solutions of (2). When mG ——0, the vari-
ous solutions for the gluon field, to lowest order in g, are
well known for a fixed spherical bag. ' Here, we note
that, to lowest order in g, the only difference between the
solutions in Refs. 2 and 10 and those with mG &0 is that
the mode energy co in the latter solutions is replaced by

co =mG +x /Rp (8)

scaling region; we will use a constituent-type mass of
mz/2, V=//J, Y, for the c and b quarks because it is the
effective mass of the respective quark in the processes of
interest to us. ) Evidently, then, the t generate the adjoint
representation of SU(3) [or SU(N, )] and the ~ generate the
fundamental representation of SU(3) [or SU(N, )]. We
have normalized the t and v so that

where

(iD& )~i3 i B„5~p gAG& 7——~p, —

= —,
'

(B„W,', —B,a,'„—g~.„a,'„a,', ), (3)

(4)

where x is the corresponding eigenvalue for the radial
coordinate. Thus, we see that the results of Jaffe and
Johnson can be used to identify the / = 1 TM mode ener-

gy as

and where the auxiliary field matrix U may be written as co=coTM2 ——[mG +(4.4934) /Ro ]' (9)

U=exp(igg t)

for auxiliary fields P such that the mass term in (2) is
gauge invariant. Here, AG& ——2 trt, AG& is the Yang-Mills
vector potential; P f is the quark field which carries fla-
vor f and color a in the representation generated by v,
where f=u, d, s, c,b and a= red, white, and blue for the
physical SU(3) color group, but a= 1, . . . , N, for the
SU(N, ) color group with N, & 3 (we shall sometimes find
it convenient to use the general color group with
colors); g is the QCD gauge coupling constant; and the
quark mass matrix is diagonal and its light-quark sector is
taken from the analysis of Weinberg' (m„will always
denote the rest mass of ri):

r

mc

with m„=0.0042 GeV, md ——0.007S GeV, m, =0.150
GeV, m, = 1.55 GeV, and mb ——4.73 GeV. (In other
words, we will use current masses for the light quarks be-
cause the g decays will involve the production of quarks
and antiquarks with energy 1.11 GeV which is within the

+TM2

BE,/BRO ——0 .

Since we know the value of E 2, namely, it is 2.22 GeV
in our model of the g(2.22), we allow mG to vary as a pa-
rameter until we find that E 2

——2.22 GeV when (11) is
satisfied. In this way, we find, using ' B' =0.135 GeV
and Zp=-1. 895,

m~ =-0.824 GeV,
(12)

Rp =-5.676 Ge'V

in agreement with (8). [In other words, the value of x in
(8) is x =4.4934.]

To determine the value of Ro, we recall that, for the
purpose of determining a hadron's mass, one makes the
approximation that the effect of the quadratic bag boun-
dary condition associated with (2) is at least approximate-
ly represented if one minimizes with respect to Rp the
sum of all contributions to the'respective hadron's mass in
the bag model. In our case, for the TM glueball mass, we
would write the approximation

I

4~ 3 Zp
BRp — +2COTM2 ~ (10)

where B is the bag constant and Zp represents the effect
of zero-point fluctuations, and we would require
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We are encouraged that mg is not too different from the
0.7 GeV which we determined from Refs. 6 and 17. We
expected some difference since it is already true that the
masses of the light quarks implied by the MIT-bag-model
fit to the light-hadron mass spectrum are somewhat dif-
ferent from the constituent quark masses as determined
by %'einberg' and by De Rujula, Georgi, and Glashow. '

Physically, the constituent mass contains effects which
are represented by 8, Zo, and the mode kinetic energy in
the bag model.

If one wants to compare (12) with the results of
Chanowitz and Sharpe ' and of Carlson, Hansson, and
Peterson, one must remember that these authors take
no~ ——0 and attempt to model glueball energies by using
the structure of the complete QCD Feynman rules for a
cavity. Thus, when one allows for the differences between
our approach and the approaches of Chanowitz and
Sharpe ' and of Carlson, Hansson, and Peterson, we feel
that (12) is not obviously inconsistent with the results in
the latter references.

We will have in mind, then, that the values of mg and
Ro in (12) apply to the g(2.22) but that its spin at this
point is undetermined; it is restricted to be either 0 or 2 in
our model by the experimentally imposed requirement
that J =(2k)++, k =0, 1,2, . . . , as we have already
emphasized. What we shall do in the next two sections is
to calculate the widths I (P/J~gy), I (g—&all), and
I (g—+mm ), m =m, K, in an effort to choose between the
alternatives J=0 and J=2.

P7'7

G1 G1

-P-
C

PG e1
+

2

YHr
PG,e2

+ ( G e1) ( G e2)1' 2'

FIG. 1. The elementary process c+c~GI+G2+y, where
GI and G2 are gluons.

III. EFFECTIUE-LAGRANGIAN TREATMENT
OF V~('y, V=//J, Y

In this section we shall compute the width for V~gy,
V=1i)/J, Y, to lowest order in the QCD coupling constant
g. We shall do this for the two possibilities J=0,2. We
begin with the J=0 case and the specific choice
P/J~gy. The extension of our work to Y~gy will be
immediate.

In order to compute a process such as 1i)/J~gy in our
TM model, we consider the diagrams in Fig. 1 for the
process c+c—+GI+Gz+y, where GI and 62 are gluons.
The standard methods allow us to write the amplitude for
this process as (the kinematics is summarized in Fig. 1)

~(c+c~&$+&2+y)=(2~) 5 (P, +P, Pg, Pg -—Py)( —ig e—,—)

XU-, r. . .[e'p'g, e''I( —Pr)e'r/( 2P, Pr)( 2P, .P—g +mg')—

+O'P'r&rP'g (r(/( 2Pg2 P, +mg )( —2Pg) P-, +mg )—
e'2e're(''I/( 2Pg P, +m—g—)

+e'rP're'2( P'g )e'I/( 2P~ Pr—)( 2P—, Pg +mg—)

+(Pg, e, )~(Pg, ,e2) crossed terms]

(14)

Xr....,u, '/[8Pg, Pg P', (2~)']'", (13)

where e, =—', e is the electric charge of the c quark and where we have in mind that the two gluons have the same color
label a. For the purpose of relating (13) to g/J~gy, we note that the 1t /J is a 1 color-singlet bound state of c and c.
Thus for any 3 X 3 matrix g and for any 4X4 matrix M, we recall the representations

U, ri pu,~=2 +U-, r, u, tr(r, ri)

and

u,„M,pu, „= g arD-(„)tr(I D'"'M),
I D(n)

where r~, a =0, 1,2, . . . , 8, are Gell-Mann's U(3) matrices ' with the normalization which is given in (7) (extended to
a, b =0 also) and where

I D" =I 1 y5 y„y„y5 g„vI
{n)
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a rD, „I——sgn( I D '"')U-, l D '"'u, /4

(ID )) =sgn(l D )

Note that greek superscripts on V-, and u, refer to color space whereas greek subscripts on these spinors are Dirac spinor
indices. On applying ( 14) and ( 1 5) in ( 13), we can isolate the part of the amplitude in ( 13) which corresponds to the ini-
tial state operator which can annihilate a 1 color-singlet state such as the P/J. Further, we recall that we are working
to lowest order in g so that Pg e~" Pg —e&™ybe identified with the field strength i'—' to this order. In this way,

we obtain the effective Lagrangian for f/J~ 6
~ +G2 +y, when G& and G2 form a color singlet, as (the manifestly

gauge-invariant form of W,qf is described presently)
2 I I

av a 1 1 v 1 1 a 1 av a 1 1 2jeff gc FAe [2( Fg g' Agj )Fy + yA, Fg Agk', TAg Fgk', A,Fy )/[m Q/JEy (m Q//Eg mg )]
C

v a ak1X 1
ave

1 a ~1 1 av a 2 2+(F"x Ag~ Fg +Fg Ag~ F ~ —
2 Ag Fg F ~ ~ ) /(my/JEg —mg )

+ (2Ag Ay Ag A yAg Ag )/(my/JEg mg )] ( 16)

where we have followed Van Royen and Weisskopf and
taken

P& =P~ = ( m y / J/2, 0 )

and Pg Pg (with an ——'eye toward the g), so that Eg, the

energy of one of the gluons, is

( mp/J +mr. )/4m'//

an d

Ey ={m@/J ™g)/2m@/J2 2

is the energy of the photon. The photon vector field and
field-strength tensor have been denoted by A

y&
and F~z',

respectively, in ( 16). The expression ( 16) may, be made
manifestly gauge invariant with the on-shell substitutions

~G~,
—D"+op~, ~m G

'

Ay 'Ag ~ Fy~ FP'"/[(m—g// mg )/2], —
and

A "P,y P, +((j„P,y f, )Fy —/[(m g/J —mg )/2],
where

( D„),b =8„5,b +go,b, Ag„

We may now specialize ( 16) further to the specific decay
g/J ~('y with the understanding that it [Eq. ( 16)] indeed
represents a gauge- invariant interaction.

More precisely, in the spirit of Van Royen and
Weisskopf, we begin the specialization of ( 16) to the de-
cay g/J~gy by taking mg ———,mg = 1.1 1 GeV in ( 1 6).
Then, the matrix element for the decay wi 11 be completely
determined if we determine the matrix elements

&0
~ @,(0)1A, (0)

] q/J &

m Q/Jf Q/JEg/J /[2m f/J(27r)'] '/
( 17)

l

and

Here, of course, we have in mind that P~ =m ~ and
P~/J (m ~//, 0) in (——1 8) and ( 17), respectively, where PJ is
the four-momentum of j,j=g, p/J. The subscript 0 on
the decay constant fo reminds us that it refers to the
J=0 hypothesis of the g. The decay constant fgp/J is well
known ' from the g/J leptonic width to be (fz will al-
ways denote the electromagnetic decay constant of the
neutral vector meson V)

fy/J =-0.254 GeV . (20)

Thus, we may turn to the evaluation offo.
We will take the following approach to the evaluation

of fo. First, we recall the success which we have had in
Refs. 25 with the lattice model for heavy bound states,
in which the respective wave function at the origin is
given by 1 /a where the lattice constant a is the smal 1-

est value of the lattice sparing such that none of the mo-
menta on the lattice are large enough to probe the internal
structure of the heavy bound state to any significant de-
gree. On this view, we have

4.4934 /R o rr /a, ——
a =—3.97 CieV

(2 1 )

(22)

and, on introducing the Van Royen —Weisskop f repre-
sentation for

~ g & into ( 1 8), we find

1 /2+2m( 8 =O. 196 GeVIg 3 Q

& o
I Agx, (0)Agx, (0)

I k &
—=P~,x,fo /[ 2Eg

(2~)']'", ( 1 8)

where Ep/I is the P/J polarization four-vector, fQ/J is the
g/J decay constant, and fo is the g decay constant with
the tensor Pq, ~, defined in the unitary gauge so that it is

( 19)
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Thus, we are using a combination of the MIT-bag solu-
tion together with the lattice QCD model to determine de-
cay constants such as fo. In this way, we hope to avoid
severe dependence on the internal structure of the TM
wave function —for, in the g/J~gy and g—+qq processes
of interest, one expects the internal quark line to probe
distances of 1/m, and 2/m~, respectively. Consequently,
in view of Bjorken scaling, it is a good approximation that
the two gluons in the g' are actually produced (or annihi-
lated, respectively) at a single point. In this approxima-
tion, we may appeal to the Van Royen —Weisskopf for-
malism to draw an analogy between the local bound state
production (or annihilation) of the constituents of the p,
for example, and that for the constituents of the g. We
note that, although the MIT theory of the p involves, for
example, a massless quark and a massless antiquark with
momenta' -2.04/5. 09=0.401 GeV, the bound state an-
nihilation can be described quite adequately by using the
constituent mass m~=mz/2 and presuming that the p
constituents move nonrelativistically: one finds, for

I

a =n/0 4.01=7.84 GeV ' in the spirit of (21)—(23), that
the decay constant fz is

f = = —=0.127 GeV,
Qmz Qmz (7.84 GeV ')

(24)

to be compared with the well-known result of 0.14 GeV.
Here, we have defined

(0
I
JgM(0)

I p, e) =mzfzeI'/[2m&(2n. ) j'

where JnsM is the electromagnetic current and the p rest
polarization is e. Thus, it is in view of (24) that we feel
justified in using (21)—(23) to determine fo, with the im-
plied use of mG ——m~/2 in (16).

Returning now to the general development of our actual
numerical evaluation of the width for P/J —+gy, we have,
from the matrix element of Wgff in (16) between

I
P/J)

and (gy I, using (17), (18), and (23) and the standard
methods, the result (here, a =e /4n)

16ag fy/J fo Ey(1 —2mG /Egmgij+Er/2Eg)r(g/Jgy) =
3(2X, ) m~iJ E~ (1 2mG /E—&m&/J)"

(25)

The only quantity on the right-hand side of (25) which we
have not specified is the value of the strong coupling con-
stant g. To this we now turn.

More specifically, we follow the discussion of Brodsky,
Lepage, and MacKenzie and determine g from P/J de-
cay via the relation

This gives

g =2.253 (28)

in (25) so that, using (20) and (23), we arrive, for X, =3,
at

1 —2B„- Ig +R + ry +giUe/re

10(m —9) as 8(m —9) as+R+
81m(e, /e). a 9m 0.

(26)

I (g/J~jy) —=6.91 X 10 GeV, (29)

if J =0 for the g'.

Turning next to our prediction for I (P/J~gy) when
J =2 for the g, we first note that we can still use (16) but
that, in lieu of (18), we have

a, =0.179 . (27)

Here, I s is the width I (g/J~gluons), I r+s|„, is the
width I (f/J~y+gluons), I „„ is the width
r(g/J~pp),

B„„=r„„/r(y/J au)

(B„„is -0.074), and

o(e+e —+hadrons) -=2 1+a, /m.
o(e+e ~pP)

is evaluated just off the g/J resonance. In this way, we
find

(0
I ~Gk (0)~GA2(0) I 0) =f2ekik, /[2Eg(2~) j'", (30)

where f2 is the decay constant for the g if the g has spin 2
and e~ ~ is the massive spin-2 polarization tensor. On

1 2

using our lattice-bag model for the parameter f2 in com-
plete analogy with our determination of fo, we find

f2 ——0.3396 GeV . (31)

Thus, we may effect the evaluation of I (g/J~gy) on the
J=2 hypothesis for the g by introducing (17), (20), (30),
and (31) into the matrix element of W,ff in (16) between

I
g/J) and (gy I

and using the standard methods. We
find, for X, =3,

16ag (1 Ez/E~ 2mG /E~—m&ij) Erf&iJ —fz [ 3 +xi(Eg mg )/mg j
r(g/J~gy) =

3(2X, ) E~ m~iJ (1 2mG /Egm&iq)—

=2.56X 10 CxeV . (32)
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t

f~ —=0.2499 CreV, (34)

where we take 1{Y—+all)—=48 keV. Upon introducing
(33) and (34) into the analog of (25) and (32) for the Y, we
find

and

1 (Y~g(J =0)+y)=-5.30X10 GeV

I'(Y—&g(J =2)+y) —=5.99X 10 ' GeV,

(35)

This completes our model calculations for the process
f/J~gy for the two alternatives J=0,2. We see that
the two respective branching fractions, 1.10% for J=0
and 0.406% for J=2, are not that different when one al-
lows for the uncertainty in our methods. Nonetheless, an
experimental comparison would be interesting.

Having completed our analysis of g/J~gy, we may
now extend that analysis to the process Y~gy in a rather
immediate fashion in this TM view of the g'. Indeed, in
order to do this, we simply need the value of f~ and the
value of g at the mass of the Y. Again, recalling the
work of Brodsky, Lepage, and MacKenzie, we proceed
by using the analog of (26) for the Y. In this way, using
8„„=0.0307 for the Y, we find

g2/4m. =—0.163 .

Also, it is well known that, from the value of 8„„,we
have

where the notation g(J =k) emphasizes that the process
refers to the J =k hypothesis for the g. The branching
ratios corresponding to (35) and (36), 1.10X10 and
1.25X10, respectively, indicate that the g will be a
challenge for Y experimentation, especially if J=2 for
the g. Indeed, the small value of 8(Y—+g{J=2)+y)
could very well be used to distinguish J=2 from J=0.

We turn next to the g decays themselves in the next sec-
tion.

IV. EFFECTIVE-LAGRANGIAN TREATMENT
OF g DECAY

By now, our specific effective-Lagrangian strategy
should be clear. We compute a process involving the g by
computing first the amplitude for the process with the g
replaced by two massive gluons in an appropriate
kinematical configuration and by using, then, that ampli-
tude to infer the effective interaction density which
governs the actual g process of interest. In the present
section, we wish to apply this technique to the decay of
the g' with an eye toward the data in (1). We begin with
the J=0 hypothesis for the g.

To compute the decay rate for the g in the framework
of Freund and Nambu and of Carlson et al. in Ref. 14,
consider the diagrams in Fig. 2 for the process
6/+Gp~q+q, where GI and Gp are gluons and
q =u, d,s. By the standard methods, we have the follow-
ing amplitude for Fig. 2 (the kinematics is summarized in
the figure):

A(GI+62~q+q)

=(2m) 5"(Pg, +Pg Pq P~){—ig )u—q—&,y, ( Pq+Pg, +—mq )r,y,
(P P) —m-

q ~ q

~,y~, ( —P-+P
,g+m)q,r~y

(P- Pg ) —m—

aalu

aalu
E]

q [4pg pg (2m)6]'i
I 2

(37)

where we take the two gluons to have the same color and where e;'is the polarization of G;, i = 1,2. We now specialize
(37) further to the case where Pg Pg, ——(m~/2, 0——) and where the spin and color states of the two gluons coincide with
those of the g. Then, we find

r

2C
(G)+G2) „)„„„sl„~q+q=(2n)"5 (Pg Pq P )—,

—-uqu /[( m-g /4)[4Pg Pg—(2~)6]'~ I .

(38)

Here, Cp ——(N, —1)/2N, is the quadratic-Casimir-
operator eigenvalue for the fundamental representation of
the color SU(N, ) group and P~ (mg, O). ——

At this point, we will record the effective Lagrangian
which would correspond to (38) although it is not really
necessary to do this because the right-hand side of (38)
only differs from the amplitude for g~qq by a factor of
the wave function at the origin. We have that (38) corre-
sponds to

I

The corresponding decay rate for g—+qq is [one can sim-
ply multiply (38) by 1/a ~, which is our lattice model for
the -value of the wave function at the origin, and proceed
with the standard manipulations]

G1
Pq G1

S,U, CI S,U,d
PG1 &1,

G2
(

p Gp

—16g ~q, Fgl F~a fq4q'
3&e m~

(39)

S,U,d S,U, dPG~, gp

FICz. 2. The elementary process G 1 +G~ ~qq, where

q =u, d, s and G& and Gq are gluons.
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64g C N(m —4m )/m
I-(g qq)= ~ ' ' . (40)

(N, —1)t2 mg

Thus, we can determine I"(g~qq ) if we determine the ap-
propriate value for g in (40).

Toward the latter end, we again recall the work of
Brodsky, Lepage, and MacKenzie and view g decay as
another gluon-rich decay process, so that the coupling
constant g which we obtained in our f/J +gy—analysis
should be related to that in g decay by the basic
renormalization-group equation: '

dg (t) 4

dt
b,g —(t)+ . (41)

with bo ——23/48' and t =ln(M /my/g ), so that
g (0)—=2.253, as in (28). In this way, we find

m =m, K.
Considering first I (g—+K+K ), we have

=1.28X10-2 . (46)

Similarly, we have

(9.9X10 +3.1 X 10 ) P~+ 2

3.87 ~ 10-'

=—1.97X 10 (47)

' —=B(g K+K-)
I (g—+all)

[3.86X10 + 4(3.1X10 )]
(P-, )

3.87~10 ~

g =g ( —0.666)=2.43 . (42)

We may proceed with the evaluation of (40).
More precisely, on introducing (42) into (40), we find

Since our g is an isospin singlet, G even state, we have

I (g +K+K—) =2I (g—+KsKs) =2I (g~KLKL ) (48a)

3.10& 10 GeV,
I (g~qq) = 9.90X 10 GeV,

3.86& 10 GeV,

g =0,
q=d,
g =S.

The implied total width is

I (g~all) =3.87X10 GeV . (44)

Evidently, the g decays primarily into states containing
kaons in this J=0 scenario.

Indeed, in order to compare our work with the kaon
rates in (1), we must convert the results in (43) to rates for
exclusive channels such as %+K, EzKq, m+m, and

We will do this by appealing to parton-model
ideas taken tagether with the methods of Lepage and
Brodsky. ' In this way, we arrive at a reasonably quanti-
tative view of the decays g—+mm, m =m, K.

More specifically, the energy of the quark (or anti-
quark) in g~qq is large enough that the usual fragmenta-
tion ideas should apply. Thus, let P' be the probability
that a quark (or antiquark) of type a picks up an anti-
quark (or quark, respectively) of type b to form the meson

33 K+ & K+ K+ K & Kab. Then, we have P„=—,P, , Pd =-0, Pd ———,P,

relative probabilities are supposed to depend only on the
fragmenting particle and its energy and not'on the specific
process in which the fragmenting particle is produced.
We shall argue below in our analysis of the J=2 hy-
pothesis for the g, using the methods of Lepage and Brod-
sky, that, for a state such as the g, the absolute normaliza-
tion of these probabilities is such that

(P, )'=1.28X10—', (P„)2=5.87X10—' . (45)

We should emphasize that it is indeed appropriate to use
K+ 2 n+ 2the spin-2 hypothesis to determine (P, ) and (P„) be-

cause, in this case, the relevant operator matrix element is
ane for twist 2 (Ref. 34), so that the methods of Ref. 13
should apply without modification. With the results (45),
we may proceed with the evaluation af I (grimm ),

and

1(g ~+~-)=21 (g ~'~') . (48b)

This completes our analysis of the decays of the g under
the hypothesis that the g has spin J=0.

Before turning to the g decay characteristics under the
J =2 scenario for the g spin, we call attention to (1). We
note that our prediction for the total g width for the J=0
scenario, 0.39 MeV, is quite consistent with the data in
(1). Further, from (29) and (46) we have the J=0 predic-
tion (we use 63 keV for the g/J total width )

B(Q/J ~gy )B(/~K+K ) =—14.0X 10 (49)

=(2~)4S4(p, P, P,)——
(X, —1)' mg

Qe u v-
1

q (4po po (2 )6]1/2
1 2

(50)

The corresponding effective Lagrangian is (to the arder to

this is 1.66o above the result (lb). Finally, we predict
that I (g—+KsKs) is an appreciable fraction of
I (/~K+K ); again, this is consistent with (1). Evident-
ly, a key test of this J=0 hypothesis will be the actual
size of the g~m~ decay width. We await the detailed
measurements.

Turning now to the J=2 hypothesis for the spin of the

g, we can praceed in complete analogy with the steps
which led to (38) from (37). Indeed, we simply replace

Qcx) Qtx2 ~ ~ ~ ~ ~i~2
E2 in (37) with the spin-2 polarization e ' ' and,

again, take the two gluons in the process represented in
(37) to have the color state of the g Then, w. ith the gluon
momenta specialized to PG, PG ——(m~/2, 0) as in——(38),
we obtain from (37) the amplitude

(G l +G2 ) color sioglet~qq
J=2
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which we are working)

4g'fz@g' '
.—

,Pq+X,m~
(51)

[8(g~ss)+ ,'B—(g~uu)](P, ) =8(/~K+K )

=—5.29 ~ 10-' (59)

a&a2
where H.c. represents Hermitian conjugation, where N~
is the g field operator, and where, as in (4),

(Dq ) p= d„5 p+ig AGq q p . (52)

13.02 MeV, q =u,
I"(g~qq) = 13.02 MeV, q =d,

12.82 MeV, q =s.
(54)

Thus, the total width for the J=2 hypothesis, 38.87
MeU, is also consistent with (1).

To obtain the respective KK and m7r decay rates, we
will use the parton-model ideas which we have already in-
troduced in our discussion of the J =0 scenario. Here, we
wish to complete these ideas by using the methods of
Lepage and Brodsky to compute the key quantities
I (grimm), m =rt, K; in this way we will compute the

K+ 2 ++2.
squared probabilities (P„) and (P„) in (45). Indeed,
from the effective Lagrangian (51), we will have need of
the amplitude

The corresponding decay width can be obtained by multi-
plying (50) by 1/a, which, to repeat somewhat, is the
value of the respective wave function at the origin, and
proceeding with the standard manipulations or by using
(31) in the matrix element of the effective Lagrangian in
(Sl) between

~ g) and (qq
~

and proceeding with the stan-
dard methods. We find, for this J=2 scenario,

128g C X (m /4 —m ) (3m +8m )
qq) =

15(X, —1)na m~

(53)

Explicitly, we have
r

28(g~uu )(P„" ) =B(g~n+qr ) =-3.93)& 10 (60)

are precisely the results (4S). Thus, this, as it is amplified
in the Appendix, is our promised computation of (P„)
and (P, ) .-Isospin and 6 parity considerations imply
the relations (48) for the other KK and qr7r decay modes
for this J =2 hypothesis also. This completes our compu-
tation of the exclusive decay modes for the J=2 scenario.

We note that (32) and (59) imply the product of branch-
ing ratios

8(g/J~gy)B(/~K+K )=2. 15X—10 (61)

This theoretical product is —1.62o below the result (lb).
Thus, since the average of (49) and (61) is 8.075&&10
we can say that our analysis would be consistent with the
production of both J=0 and J =2 g-like states, for we
note that the two data in (1) other than the product of
branching ratios are quite consistent with our J=2 hy-
pothesis.

We should also note that, unlike the J=O case, our
J=2 scenario predicts that I (/~++A. ) is an appre-
ciable fraction of I (/~K+K ). Thus, a precise mea-
surement of the branching ratio product in (61) and a pre-
cise measurement of the ratio of the widths I (g
~qr+m )/I (/~K+K ) would be experimental results
that could distinguish between J=0 and J=2 in our
model of the g. We await such measurements.

It is of some interest to record the predicted
branching-ratio products B(Y~gy )B(/~K+K ) for
our J=0,2 scenarios. We have from (35), (36), (46), and
(59) the products

8(Y~g(J =0)y)8(g(J =0)~K+K ) =1.41&(10

(62)

i8g f2e ' '(K+K ~O~ ~0)(K+K-
~
iW„,

~ g) =
X,mg [2m'(2~) ]'~

B(Y~g(J=2)y)8(g(J =2)—+K+K ) =6.61&(10

(63)

where the twist-2 operator O~ ~ isala2
I

0 (igqy D~ gq+H c )/2 (56)

I (g~m+qr ) =-1.53)& 10 GeV . (58)

lr+ 2 K+The implied values of (P„) and (P, ), via the relations

(0 is the quark contribution to the energy-momentum
1 2

tensor of QCD. ) Thus, the exclusive matrix element
(K K

~

0
~
0) is ideally suited for the application of

the methods of Lepage and Brodsky. ' This application is
effected in the Appendix, where we find

I (g—+K+K )—=2.06X10 "GeV

and

These results are not in any disagreement with the limit of
Behrends et al., which is 8(Y~gy)8(g —+K+K )

&2&&10 . A test of the results (62) and (63) could ap-
parently distinguish between our J=0 and J=2
scenarios.

The fact that (62) and (63) differ by a factor of -213,
whereas (49) and (61) differ by a factor of —6.5 is a
consequence of Yang's theorem as it applies to the decay
of a 1 particle into a massless 1 particle and a
massless 2++ particle: In the limit that the mass of the g
vanishes, the width n V~/(J =2)y) must vanish, where
V is any 1 state with a mass mv&0. Thus, barring
pathologies, for m~&0, the respective branching ratio
must approach zero as m~~op if V has other non-
suppressed decay modes. %'e see that this vanishing
behavior is beginning to set in at the Y.

Since we find small two-body branching ratios for the
g, many-body decays must dominate. To get a handle on
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these decays, note that the g has I =0 and G = + so that
only states with even numbers of pions are allowed. Fur-
ther note that the mean charged multiplicity in a light-
quark jet of energy 1.11 GeV, which is the energy of the q
in the process g—+qq in the g rest frame, is expected to
be ——,, so that the total multiplicity should be -2.3.
Thus, the mean multiplicity in g decay should be -4.5.
We expect therefore substantial decay modes of the type
g ~KK +nn, .n =2,4, for J =0 and g~KK+2m,
%%+4m, 4m. , 6m, etc. for J=2. We challenge experimen-
talists to look' for such signals in radiative P/J decay.

We would like to close this section by discussing the
levels of uncertainty in our various manipulations. We
note that the idea of the effective Lagrangian has worked
quite well in other contexts in theoretical particle phys-
ics." Thus, we feel that our basic strategy is not inherent-
ly prone to error. Our values for the light-quark masses
could be in error by —10—15%. Our most uncertain pa-
rameter would then be the value of the g wave function at
the origin. We have taken this from the lattice model,
where we have experience with its use. In the analyses
in Ref. 2S, we feel that the wave function at the origin ex-
hibits less than a 25% uncertainty in its value as deter-
mined by the lattice model. This is not unreasonable if
one recalls that our lattice-bag-model estimate of fz was
within 10% of the experimental value. The error in g is
expected to be small because we chose it to fit the g/J(Y)
decay characteristics. The error in our exclusive g decay
estimates due to our fragmentation probabilities I", we
may hope to be small due to our use of the physically
measured form factors in our analysis of the probabilities;
only the algebraic structure of the Lepage-Brodsky for-
malism is used, in the spirit of the light-cone methods of
Pell-Mann. Thus, in summary there are no obvious
sources of a large error in our analysis, except, of course,
the possibility that the g is not a bound state of two mas-
sive constituent gluons.

Thus, even if the g actually turns out to be a manifesta-
tion of another dynamical scenario, we do feel that bound
states of two gluons in the mass regime of the g, with de-
cay characteristics similar to the J=0 and J=2 scenarios
discussed in our work, should exist. In particular, if the g
is either of our J=0,2, scenarios, we have no reason to
exclude the appearance of the state with the companion J
value. Again, we look forward to the detailed measure-
ments which could assess the actual number of relatively
narrow states in the decay P/J —+yX.

V. CONCI. USIGN

What we have accomplished is a quantitative assess-
ment of the hypothesis that the recently discovered' g
(2.22) is a bound state of two massive constituent gluons.
For the precise model of the two-gluon state, we have tak-
en the J=0,2 bound states of two TM I = 1 gluons in the
MIT-bag picture. We were encouraged by what we found.

More specifically, the J=0 ease of our TM l = 1

scenario appears to be consistent with all measured as-
pects of the g to date. Further, this scenario predicts that

I (g~~+m. ) &&I ((~K+K ) .

Such a prediction should be readily testable when suffi-
cient data are available.

The J=2 possibility of our TM scenario is not ruled
out by the currently measured aspects of the g. Amusing-
ly, we find that the branching ratio product

B(g/J~g(J =2)y)B(g(J =2)~K+K )

is almost as much below the measured value (lb) as

B(g/J~g(J =0)y)B(g(J =0)~K+K )

is above (lb). It is for this reason that we say our analysis
of the current data is consistent with both J=0 and J=2
g-like states. The J=2 hypothesis makes the clear pre-
diction that the width I"(g~m+rr ) is an appreciable
fraction of the width I (/~K+K ). Again, this predic-
tion should be readily testable when more data are avail-
able.

We end by making the following observation. The
effective-Lagrangian methods which we have used in our
analysis are known to give reasonable estimates for pro-
cesses such as decay processes in other applications in
theoretical particle physics. We thus are very encouraged
that these same methods have resulted in predictions for g
decay and production which appear to be reasonable from
the standpoint of the limited observation which now ex-
ists. This would suggest that the underlying theory, QCD
(or some theory similar to it), has some deeper signifi-
cance with regard to the actual theory of strong interac-
tions. Such a suggestion, we feel, represents progress in
the understanding of this latter theory.

Rote added. One may wonder whether the decay
g(1690)~2', which has a branching ratio of —24%,
contradicts our results for B(grimm ), m =rr, K. We
would emphasize that the g is normally considered to be
an L =2 3 qq state of I= 1. Thus, by Zweig's rule, it
does not decay by qq annihilation, but by relatively soft
gluon exchange. Hence, the energy of the bound quark
after the decay is nearly equal to its energy before the de-
cay. This decay, therefore, is not expected to be perturba-
tive. Further, there is experimental evidence that quarks
with energy less than 1+ GeV do not behave as though
they are free. Thus, the parton model is not expected to
apply to the hadronization of the quark and antiquark in

g decay. A nonperturbative approach would be used.
Such an approach exists [B.F. L. Ward, Phys. Rev. D 25,
1330 (1982); 28, 1131 (1983); 28, 1215 (1983)],but its use
here would take us beyond the scope of our present dis-
cussion. We have no reason to doubt that g decay can be
understood in this latter approach. However, if we con-
sider the X(3415) and X(3555) decays to vrYr and KK, we
have two more scenarios in which perturbative techniques
such as those used in the text should apply; for, the c and
c must annihilate to produce two gluons which then ha-
dronize to.~m or ICE. To relate this hadronization to that
for qq in our discussion of grimm, m =rr, K, we follow
A. Ali et al. [Phys. Lett. 93B, 155 (1980)] and view gluon
fragmentation as the two-step process G~qq and qq~
hadrons, with a gluon splitting function f$(z) acz~

+(1—z) if z is the light-cone momentum fraction of q
relative to G. Since f$ is independent of the flavor of q
for q =u, d, s, we have the expectations
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yg(, )
= I (X(3415) m+qr )/I"(X(3415) GG) =yg( )

—=I (X(3555) qr+qr )/I (X(3555) GG)

=- —,(P„) =0.39%%uo

and

y (, , )
=I (X(3415) K+K )/I (X(3415) GG) =y ( „)=I (X(3555)~K+K )/I (X(3555) GG)

=(1.25/3)(P, ) =0.53% .

The actual values of B(X(3415)~mm) and B(X(3555)
~mm ), m =qr+, K+, depending as they do on the contri-
butions of the soft decays of the X's such as X—+g/J+y,
etc., are beyond the scope of the present discussion. Note,
however, that our predictions for the fractions of the
two-gluon decay widths which materialize as ~+~ and
K+K are within a factor of 2 of the actual data on the
branching ratios [Particle Data Group, Rev. Mod. Phys.
56, Sl (1984)]:

B(X(3415)~tr m )=0.9+0 2%%uo

B(X(3415)~K+K ) =0.8+0.2%,
B(X(3555)~vr+m' ) =0.20+0. 11%,

B(X(3555)~K+K ) =0.16+0.12%%uo

Note further that the ratios

r~=B(M~rr+rr )/B(M~K+K ),
M =X(3415), X(3555),

should be given directly by our methods. We have
7 g(34/5) —p g(3555) —0.73 to be compared with the experi-
mental values rg(3$]5) —1.1+0.38 and r&(3555)

——1.25+1.2.
We consider the agreement between theory and experi-
ment to be reasonable.
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APPENDIX: EXCLUSIVE g DECAY
IN THE LEPAGE-BRODSKY FORMALISM (REF. 13)

In this appendix we wish primarily to derive the decay
widths (57) and (58) for grimm, m =K+,sr+, respective-
ly, and, thereby, the parton-model fragmentation esti-

z+ 7r+mates (45) for P, and P„which were used in Sec. IV
in discussing the exclusive decay phenomena of the g. We
will do this by using the formalism of Lepage and Brod-
sky' for high-energy exclusive processes in QCD to study
I (grimm ), m =qr+, K+ We will con.sider first the
widt r(g K-K+).

For our purposes, we will analyze the spin hypothesis
for the g which results in a high-energy

~

0) to (K+K

matrix element of an operator with the lower twist. We
expect the Lepage-Brodsky approach to work better for
this lower-twist-operator matrix element. On examining
the effective Lagrangians for g~qq for J=0 and J =2,
respectively (39) and (51), we see that, with regard to ex-
tending these effective Lagrangians to the computation of
the exclusive width I (/~K+K ), it is the J=2 hy-
pothesis which will involve the lower-twist-operator ma-
trix element between

~

0) and (K+K
~

. Indeed, the ma-
trix element is, using (55),

&K+K
~

i fd'x w, ff ~
g(J =2))

). 8g fze ' '
=(2') 5 (Pg Px+ P— )—

N, mg [2m'(2n. ) ]'~

X(K+K
~
[(ig y D,P +H. c. )/2] ~0),

(Al)

where P~ ——(mg, 0) and e ' ' are the g four-momentum
and polarization tensor, respectively, and where P + and

P are the four-momenta of the X+ and K, respec-

tively. We therefore need to evaluate the matrix element
of the twist-2 operator

0 (iPqy D Pq+H c )/2

between (K+K
~

and
~
0). Toward this end, it is con-

venient to note the obvious relation due to crossing

(K+K
~
O. . ~

0)

=(K+K
~ , (iP y D,P +H—.c. )

~

0)

(K+(P +)
~ 2 (i gqy~ D Qq+H c )

~

K+( P ) )

(A2)

where we have introduced an obvious notation in the
crossed matrix element: (K+(Pz+)

~

is the (K+
~

state
with four-momentum P +. Thus, it is the crossed matrix
element in (A2) which we shall now evaluate using the
methods of Ref. 13.

More precisely, in the formalism in Ref. 13, the right-
hand side of (A2) corresponds to the diagrams in Fig. 3.
In Fig. 3, the )& represents the vertex corresponding to
the action of the operator Oa a, which carries four-ala2
momentum q. We have taken the crossed matrix element
for this operator with q =(Qz /2, Qq, —Q) /2), Pz+
= —P +q so that, in the notation of Ref. 13, the light-
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cone fractions x; and y; represent the P+ components of
the constituents of the K+ if we choose

x1,03
U

k
k'

S

x2,01

Y ].Y 1 &1

gi

Y2 Y201

0

K K+
1 +Pllr., 1 —Plg2 2

2
. ,Og,

We have also shown the transverse-momentum com-
ponents of the constituents in Fig. 3. For example, the
amplitude represented by Fig. 3(a) can be written as (the
complete kinematics is summarized in the figure)

u 0 CI
I U6 + gC + gl

S 0 S S 0
(d) (e) (&)

FIG. 3. Diagrams for the process K++0 (q)~K+ in the
1 2

Lepage-Brodsky formalism. The vertex of the operator 0 is
1 2

indicated by the )& in the diagrams.

2C
Jdxidxp5(1 —xl —x2)dytdyz5(l —yi —y2)$*(y)$(x)tr[/py spy+7 (k'+q'))' (2k+0) 75+ +]/r (k+0)

—2g CF P"(y)P(x)—dx, dx, 5(1—x, —x, )dy, dy, 5(1—y, —y, ) P (2k+&) . (A3)2 & y, E+aj
2 2

CX2

Here, P(x) is the collinear wave function of the kaon in the convention of Ref. 13 and we are ignoring the quark masses.
Only the y5P +/v 2 part of the kaon wave function is retained in (A3) because the other components would give non-

leading contributions. Expressions entirely analogous to (A3) can be written for the remaining diagrams in Fig. 3 follow-
ing the rules in Ref. 13. The detailed dependence on P(x) can be suppressed somewhat if it is recalled that, ' for

2 ~OOp

P(x)~aex&x2, (A4)

where ao is such that the kaon form factor satisfies'

Frc(Qj.'), g'C~ao'/Qj. ' .
Q 2

(A5)

On evaluating the remaining diagrams in Fig. 3 in accordance with Ref. 13 and using (A4) and (A5) together with the
crossing symmetry, we obtain the result

(K+K
~ O,~, ~

0)=[(—, F~)P,P, + —,Fx—k~,k~, —(mg /2 mK )F~g,—,]/[4P +P (2m) ]' (A6)

where

P=(P P)/2, k=P— +P (A7)

The results (A8) and (A9) agree with (57) and (58) in the
text. The branching ratios implied by (A8) and (A9) are
[as we have noted in (59) and (60)]

We emphasize that (A6) strictly applies at k = oo but
that we can hope that our exchange of I'~ for ao and the
unknown nonasymptotic x dependence of P(x) may im-
prove the applicability of (A6) at k =m&2.

And, indeed, on introducing (A6) into (A 1 ) and
proceeding with the standard methods, we find the predic-
tion

B(g(J =2)—+K+K ) =5.29X 10

8(g(J =2) n.+~-)=3.93~10-'.
(Alo)

(Al 1)

Z+ 2 m+ 2The values of the squared probabilities (P~ ) and (P„)
implied by (A10) and (Al 1) are

1 (g(J =2)~K+K )
(P~ ) =1.28X10, (P„) =5.87)&10 (A12)

g ) ~F (m')~ (m /4 —m ')''
15(N, —1)mmg a

=2.06X 10 GeV, (A8)

if one uses, from (54),

[12.82+ —,(13.02)](P-, )
=B(g(J=2)~K+K ),38.87

(A9)

where in evaluating the numerical value of 1 (g(J =2)
~K+K ) we have used (42) for g, have taken
~F~(mg )

~

=0.213, and have set X, =3. The entirely
analogous formula for the width I (g(J =2)~n+rr ),
which can be obtained from (A8) by making the substitu-
tions E&~F and m& ~m, gives [we use

~

F (mg ) (
=—0.142]

I (g(J =2) +rr+n ) =1.53)&—10 CxeV .

(A13)

(A14)

The results (A12) agree with (45) in the text.
We note that the trace of the matrix element in (A6) is

indeed soft in the sense of Ref. 41. This gives us addition-
al confidence in the manipulations which we used to ar-
rive at (A6).
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