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We calculate the spectrum of nucleon and 6 resonances of the Skyrme model. The masses that
we find are accurate on the average to within 8/o of their experimental values up to 3 GeV. For
most partial waves the model reproduces many significant features of the experimental Argand dia-
grams correctly. The values of the Skyrme parameters obtained from a best fit to the spectrum im-

prove some of the static properties of the model.

I. INTRODUCTION

Recent months have seen a flurry of work on the model
first proposed by Skyrme nearly a quarter of a century
ago. This model is just one particular choice for a non-
linear cr model describing the breakdown of the chiral
symmetries SU(2)L &&SU(2)~ down to isospin. But it has
the great advantage of being only second order in time

. derivatives, and hence, of succumbing to the traditional
methods of Hamiltonian quantum mechanics. Further-
more, it possesses soliton solutions, or "Skyrmions, " of
finite extent. Thus the Skyrme model is an ideal testing
ground for Witten's imaginative proposal ' that —insofar
as the "3" in SU(3)„i„can be considered a large
number —baryons ought to emerge as solitons in the non-
linear cr model of the pion field.

In the framework of this model one can calculate many
static properties of baryons such as magnetic moments, g
factors, and charge radii. Despite some glaring excep-
tions, these typically agree with experiment to within
30%, when the adjustable parameters of the model are
chosen to give the nucleon and 6 masses correctly. Much
less attention, however, has been focused on the dynami-
cal properties of Skyrmions. Important progress in this
direction was made independently by Zahed, Meissner,
and Kaulfuss, Breit and Nappi, and Walliser and
Eckart. Interpreting fluctuations around the soliton as
pion-nucleon scattering, the authors of Refs. 5 and 6 cal-
culated the phase shifts in the "breathing mode" of the
Skyrmion and looked for a resonance in this channel by
seeing if and when the phase shift crossed 90'. (We shall
adopt a different criterion for the existence of a resonance
below. ) With this criterion there is no resonance for the
case of massless pions, and a marginal resonance at 1270
MeV for massive pions, which Breit and Nappi identified
with the real-world Roper resonance P»(1440). (We shall
follow the standard notation L2I 2J for resonances, where
I.=S,P,D,F, . . . denotes the partial wave in which the
resonance is formed, and I and J give the total isospin
and angular momentum. Nucleon and 5 resonances are
characterized by I= —, and I = —,', respectively. ) This
work was greatly extended in the multiple-channel
analysis of the group at Siegen University; we shall dis-
cuss their results at the end of this section.

In this spirit we have examined the processes mN~mÃ

and mN —++A in all channels of isospin and angular
momentum for which experimental data was available for
comparison. This paper can be viewed as a detailed appli-
cation to one particularly tractable model of the more
general considerations of Ref. 10; as such, it constitutes a
lowest-order calculation in 1/X, with N the number of
colors of the underlying gauge group.

We are not motivated by the belief that there is any-
thing especially fundamental about the Skyrme Lagrang-
ian. Rather, we find it instructive to see how well the ac-
tual spectrum of nucleon and b, resonances can be fit
starting from a model that contains no explicit baryon
fields and only three adjustable parameters. Indeed, in
this paper we specialize to a two-parameter fit (one-
parameter if the proton mass is fixed) by working in the
chiral limit m~=0; the results of turning on a pion mass
will be presented in a future publication. Nevertheless our
findings are in generally good agreement with the real
world for energies up to 3 GeV, with resonance masses
predicted on the average to within 8% of their actual
values. (Qur baryon-mass predictions are presented in
Table I of Sec. III.) This is all the more surprising given
the rather drastic nature of our approximations, such as
completely neglecting baryon recoil. As a bonus we find
that our "best fit" values for the Skyrme parameters sub-
stantially improve some of the static properties of the
model.

Another noteworthy result of the Skyrme-model calcu-
lation concerns the qualitative behavior of the mX phase
shifts in a given partial wave for adjacent values of L
Specifically, for each partial wave L &2, the amplitude
Li 21 i moves much further in the unitarity circle than
does I.~ 2I +i, while in contrast, for the I= —,

' channels, it
is L32L+i that dominates L32L i. And in fact, with a
surprisingly high degree of regularity, this is what one
finds in Nature. Moreover, in the model as in Nature,
this pattern becomes more and more pronounced with
higher and higher I..

We should at the outset mention some of our disap-
pointments as well. The most obvious of these is our
failure to find in pion-Skyrmion scattering what in the
real world is the most spectacular baryon resonance of all,
the 6 itself; likewise the Pi &

and S3& channels at low ener-
gies are manifestly in poor agreement with experiment. It
is not clear to us whether these represent failures of the
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with
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(TrU —2)
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Skyrme model or merely of our approximations near
threshold. Either way, we shall argue that these
discrepancies are not necessarily fatal to the model by
showing that small perturbations can easily restore the
correct low-energy behavior in these channels. In particu-
lar, we can expect the 6 to reappear in the next order in
1/N. One can even take the optimistic view that these
chiral-soliton models provide precisely the right frame-
work for understanding why some of the S-, P, and D
wave channels contain clear, low-lying resonances, while
others, in stark contrast, are marked by repulsive behavior
near threshold. We will return to a full discussion of
these matters in Sec. III, where we take up pion-nucleon
scattering, but first, in Sec. II, we lay the groundwork by
examining the "elementary" processes in which a pion
scatters elastically off an unrotated Skyrmion (as we shall
review below, nucleons and 6's should properly be identi-
fied with rotating solitons).

While in the process of writing up our results we have
learned of similar work (albeit from a somewhat different
theoretical outlook) carried out at Siegen University. "'
In particular, much of the development in Sec. II and Ap-
pendix A, which concerns such elementary processes, is
similar to that of Ref. 7. Furthermore, Eq. (20) below,
which we borrow from Ref. 10, is derived in a different
manner in Ref. 12; this equation gives the prescription for
expressing physical pion-nucleon scattering as a linear su-
perposition of elementary processes. The Argand 'plots
presented in Ref. 12 (for F wave nN e-lastic scattering
only) appear to be in good numerical agreement with our
own. We thank Dr. Hayashi for bringing this work to
our attention.

Finally we should note that, although we assemble all
the necessary machinery in this paper for dealing with
mN —'+nb, , we have chosen for the sake of conciseness to
limit our presentation here to the elastic case m.X—+mX.
We will present the analogous m.A results in the very near
future.

II. PION SCATTERING FROM UNROTATED
SKYRMIONS

In order to motivate our approach we begin with a brief
review of the Skyrme model, essentially following Ref. 4.
The Skyrme Lagrangian with a chiral-symmetry-breaking
mass term is given by

2

TrB„UB"U + 2 Tr[(B„U)U, (B,U) Ut]
32e'

iF(r)r a
o ——e (2)

Indeed, if we plug this ansatz into (1) and look at small
fluctuations about the soliton

F(r)r~F(r)r+ n(x, t)
2

(3)

we obtain the Euler equation

(r m)[(r +8 sin F)F"+2FF'+4sin2F(F')

—sin2F — sin Fsin2F —m r sinF] =0, (4)
r

where the derivatives are taken with respect to the dimen-
sionless variable r=ef r and rn =rn /ef Field. con-
figurations of the form (2) are thus automatically stable
against angular fluctuations tr=a8+bg. To render them
stable against radial fluctuations as well, one requires the
expression in square brackets to vanish, which gives the
defining equation for F(r). It can be shown that the
boundary conditions F(0)=m. and F(oo ) =0 yield a con-
figuration of baryon number (i.e., topological charge) uni-

ty, as desired.
The ansatz (2) is of course not the only choice available.

In particular, isospin rotations of the form AUOA yield
equally acceptable soliton solutions (while preserving the
vacuum at infinity). Indeed, it turns out that in order to
form solitonic states of definite spin and isospin (i.e., nu-
cleons and deltas), one must take a superposition of all
possible A' s, weighted by appropriately chosen wave func-
tions X;, (A ). Straightforward Hamiltonian quantum

mechanics in the "collective coordinates" 3 then yields
for the nucleon and b, masses

m~ ——m o+ ye f„(—,
'

)& —', ),
3 3 5m~=mo+ye f ( —, X —,),

where mo is the mass of the "elementary" (i.e., unrotated)
Skyrmion (approximately 36.5f /e) and y =4.7 && 10

This concludes our brief review of the Skyrme model;
in the remainder of this section we put aside the issue of
collective coordinates and focus purely on the question of
pion scattering from elementary Skyrmions of the form
(2). Explicit forms of the rather unwieldy differential
operators involved are presented in Appendix A. The re-
sults for the S matrix that we obtain in this section will be
reassembled in the next to yield the amplitudes for the
physical processes m.X~mX.

We proceed in a straightforward manner, by enforcing
the substitution (3) in the Skyrme Lagrangian (1). After
integration by parts one obtains

Here f is the pion decay constant (186 Me& in the real
world), m is the pion mass, and e is a new, dimensionless
coupling constant peculiar to the model. The "small pa-
rameter" 1/N enters the Lagrangian through f~ and e,
which behave like X' and X ' in the large-X limit,
respectively.

It is easy to guess' that W as given admits a
"hedgehog" soliton solution of the form

S = —ma+ fd'x ~"(x, t)LJm'(x, t)+0(n3/f ) (6)

with L a complicated 3&&3 matrix of second-order dif-
ferential operators. (We are allowing complex pion fields
as a convenience; this way we are spared from having to
take real parts of spherical harmonics and of e ' '

throughout. ) Consistent with the "large N" spirit that-
motivates the model we will henceforth drop all terms of
cubic or higher order in the pion fields; these are damped
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KK
IIL ' ——

(L, l,K —1, 1 ~K,K )YL, » i(Q)

(L, 1,K„O
i
K,K, ) YL» (Q)

(L, 1,K, +1,—1
~

K,K, ) YL, » +,(Q)

(8)

which are states of definite K and K, . Accordingly we
plug

I

by powers of f„-N'~ . As a result, the equations of
otion for the pion fields that we will derive will be linear

ones.
We can make substantial progress by realizing that I.,

complicated though it may be, preserves the symmetry
K=I(pion) +L(pion). Explicitly,

Jk r 'dj5b, + i ekb, )Lb,

L,b—( e—, k
'd 5b —ekb )=0. (7)

We can take advantage of this fact by expanding the pion
field in terms of the vector spherical harmonics (here
given in the I +,0, —I basis)

KK EE KE EK
m(x, t)= g [g '(r, t)II» 'i(Q)+go *(r,t)II» '(Q)

K,K

+/+ '(r, t)II»+ i(Q)]

KE Q 1 KKV.IIK '1 ——— r.HK '1 ———
r

KK, %+2„KK, ~+2V.IIK+ r.HE+1 ———
T

EIC KK
V IIK ' ——r IIK ' ——0 .
We are left with

2K+1
1/2

(10)

into (6). Parity precludes the 1to s from mixing with the
g+'s; f+ and P can mix in this model, however, as they
do in Nature, where jumps of two units of pion angular
momentum are allowed in the process mN —+m.h.

The angular integration can be performed, thanks to the
identities

' 1/2

r

A K A KK

z Ic», , »», L —— L —+S=—mo+ g Jr dr $0 *(r,t)'Logo '(r, t)+ g J r dr(f '(r, t)*,g+ *(r,t)*)
K,K Ic, ic, L + L ++ P+ '(r, t)

L»[y»( ) grot] 0 (12a)

where the L 's are complicated second-order differential
operators in r and t alone. We will refer to the 2X2 ma-

trix of operators here as L and the two-component
column vector of wave functions as 4 .

The determination of phase shifts now proceeds in a
completely straightforward manner. The -"normal-mode"
equations to be solved are

s»»»(co) = (B +i A) —'(B iA )— (14)

which lies on the unit circle. (Following Ref. 10 we will
adopt the notational convention SKL L, where L, and L, '

refer to the incoming and outgoing angular momentum of
the pion, respectively. )

The 2X2 case (12b) proceeds analogously. Near the
origin for each K) 1 there are two independent regular
solutions %'& and 0'2, which behave asymptotically a,s

A; (coj)»,(kr) +B;(co)n», (kr )

C;(co)j»+,(kr)+D;(co)n»+i(kr)
L [4 (r)e'"']=0 (12b)

l =1~2 .

constant X [h» s«»(co)h» ]—
yielding

(13)

for all co; here we are assuming that L and L have been
chosen with care to be self-adjoint. By time-reversal in-

variance L and L are real operators, so it suffices to con-
sider the real radial wave functions that are regular (i.e.,
square-integrable) at the origin and integrate out past the
point where the Skyrmion profile Ii(r) is negligible. In
this regime the theory is one of free pions, so $0 can be fit
to

A (~)J»(kr)+B(~)n»(«)

with

(
2 2)&/2

(We follow Messiah' in our definitions of the spherical
Bessel functions. ) The S matrix in this channel is extract-
ed by rewriting this as

[The exception is the translational zero mode (19b) below;
the second zero-energy solution which is well behaved at
the origin blows up for large r.] If we work in the con-
venient basis in which the incoming pions are in pure
(K —1) waves or (K+ 1) waves of orbital angular
momentum, the 2&2 S matrices are given by

SK IC —1 K —1 SK,K —1,K+1
SK=-

SK,E+ 1,K 1 SIC,K+1,K+1
—18, +iA1 D, +ic1 a1 —EA1 D1 —~C1

B2+sd2 D2+tC2 82 —iA2 D2 —tC2

(16)

In the next section we shall show that the amplitudes for
elastic nN scattering in the Lth partial wave are in fact
linear superpositions of sL 1 I.L, , SI.L,L, , and sL +1 I.I .

Note that S» as given is correctly invariant under dif-
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ferent choices of regular solutions 'p'1 ——a'Pi+p%'2 and
%'2 ——yV~+5+2. Furthermore it is trivial to prove that a
matrix of the form —M 'M' can be unitary if and only
if it is also complex-symmetric, so that sz13 S231 etc.
This result, which follows generally from time-reversal in-
variance, '" provides a useful check on one's numerical cal-
culations. Accordingly we can parametrize S~ as

D ', ZX —l SC —i'9ze

OD ~'~z, x —&.,re+i
Ore e

00 ' rc,r —i,z+&'gg e
' K,K+1,K+1

Yfge
(17)

where the phase shifts and absorption parameters are con-
strained by unitarity to obey

5K,K —1,K —1(~)+5KK~1,K~1(~) 25K, K —1,K+1(~)

=(n+ —,
'

)m (18a)

and

the latter, the weak rise, like that of 5&~&, is due to mixing
with the translational mode (19b).

Figures 5 and 6 present the corresponding graphs for
the off-diagonal elements sz z+& ~ ~. These describe
processes in which the orbital angular momentum of the
pion jnmps by two units. By conservation of angular
momentum these processes are only relevant to mX~m. h,
and so we defer discussion to the future.

At this point we should make a technical comment
about how we determined the location of resonances. In
principle it is unsatisfactory merely to find where the
phase shift crosses 90', due to the often significant effects
of background. A much more reliable criterion is to look
for a well-defined peak in the speed

~

dS/de
~

in those
regions where the amplitude is curving counterclockwise
in the Argand diagram. Surprisingly, for sKK+1 K+1 this
occurs when the phase-shifts are approximately 4S'. We
turn now to our main topic of pion-nucleon scattering in
the Skyrme model.

(gK(co)) +(11K (co)) =1 . (18b)
III. PION-NUCLEON SCATTERING

(The superscripts D and OD here stand for diagonal and
off-diagonal. )

We should mention the special case E =0, for which
only the rightmost term in (9) exists; this is the breathing
mode ~~r of the Skyrmion. In our notation the only
nonvanishing component of the S matrix when E =0 is

sp~~
——e . We further note that the zero modes corre-

2g 5p& i

sponding to rotations and translations of the Skyrmion,

II1 (Q)E(r) (19a)

(19b)

respectively, appear in the model' as threshold bound
states. These will play a crucial role in our later discus-
sions.

Some further details of the above procedure, including
explicit expressions for L 0 and L, are given in Appen-
dix A. The results of our phase-shift analysis for the vari-
ous S-matrix components szLL with L,L'(7 are plotted
in Figs. 1—6. We have restricted our numerical analysis
in the present paper to the case m =0.

Figure 1 depicts the phase shifts 5KKK graphed against
pion energy co, measured in units of ef . (This number
should be thought of as lying somewhere between 700 and
900 MeV; we will take up this matter in Sec. III.) The ab-
sence of a resonance for E =1 is of course due to the
presence in this channel of the rotational zero mode (19a).
For E ) 1 the obvious trend is for the resonances to be-
come broader and more massive with increasing E.

Figures 2, 3, and 4 present our results for the diagonal
components of SK. Clearly, for L &3, the phase-shifts
~L —1,L,L rise sooner than 5LLL and certainly much more
dramatically than 6L+& L L. As a consequence, the loca-
tion of the resonances in the corresponding channels of
mN scattering can essentially be read off from Fig. 2(b).
In contrast to L) 3 note the tepid behavior of 6p~~ and
5122 [Fig. 2(a)]. The former is the breathing mode; as for

So far we have discussed the (linearized) equations of
motion for pions moving in a fixed external Skyrmion
background. To relate this to mX and mA scattering re-
quires a little group theory, and we will now just quote the
result derived in Refs. 12 and 10.

For a given pion energy a physical process ~X—+m.N or
n.N —&nb, can be completely specified by the following
quantum numbers: total isospin I, incoming and outgo-
ing pion angular momenta L and L, ', and total angular
momentum J. In addition we will let R' stand for the
representation of the final baryon, i.e., R'= —,

' for N and
R'=

2 for h. One can show that the S matrix for any
such process is given by

LL'R'II(~) g ~, 1 KLL'(~)
E LL '—R 'IJE (20a)

Here SKLL refers to the S matrix for pions scattering
from elementary Skyrmions as discussed in the previous
section, and the P symbols are defined by

&LL'RR'uK=( —1) [(2R +1)(2R'+1)]' (2&+1)

EC I J E I J
R' I.' 1 R L 1

(20b)

The index IC stands for the vector K=I(pion)+L(pion)
introduced earlier. Equation (20) can thus best be inter-
preted as the decomposition of "physical" mN~mN or
m%~m. A scattering in terms of pion scattering from ele-
mentary Skyrmions, where each of these elementary pro-
cesses is characterized by its own conserved value of E.

Note that Eq. (20) holds quite generally for any chiral-
soliton model which admits a classical solution of the
hedgehog form (2). It is analogous to the Wigner-Eckart
theorem in that a large number of physical matrix ele-
ments are expressed in terms of a substantially smaller set
of "reduced" matrix elements weighted by appropriate
group-theoretical coefficients. Gne can carry the analogy
further by finding those special linear combinations for
which the model-dependent right-hand side of (20a) can-



31 BARYON SPECTRUM OF THE SKYRME MODEL 2837

250

200

150

100

a I a I

I

I, I I I

I

a I I I

[
I I 1 ~ I a

~Z23

~333

~444

1 555

~888

~777

0.9

0.8

0.7

a I ~

I
~ a

~ ~

~

I
s ~ r a

I
I ~ I I

[
I I a r

50

0
0 0.5 1 1.5 2

Pion Energy
2, 5

0.6

0.5

1.0

. . . I,
~ r ~

I
a

a a

r a r
I, .

a ~

s, I
a r

I
r ~ ~

~ ~ j

~ ~ a

r ~ r

I a a ~ a

I
I r ~ I

FIG. 1. Phase shifts 5~~~ plotted vs pion energy m, measured
in units of ef„.

09

0.8 D

0,7

0.6

~ ~ ~
8

q'7
(b)

80

s

0.5
0 0,5

a I I I r a

1

Pion

a I I a a a

1.5 2
Energy

I a s a a

60

FIG. 4. Absorption parameters g~ plotted vs pion energy co,

measured in units of ef .

40 1..0 r 1 ~ ~

I
I ~ I r

I
I a I r

I
r I a I

I
I r ~ I

[
a r

20
0,8 OD

1

0
0.6

200—

150—

100—

50

0 I I I

0 0, 5 1 1.5
Pion Energy

2 2.5

344

~4ss

~888

~877

0.4

0.2

0

0.8

0.6

r ~ I

[
r a r

I
~ r r ~

I
a r \ ~

I
I a ~ 1

I
a a r ~

(b)

FIG. 2. Phase shifts 5~~+1~+1 plotted vs pion energy co,

measured in units of ef .
0.2

0.0
0 0.5 1 1.5 2 2.5 3

Pion Energy

FIG. 5. Absorption parameters gz plotted vs pion energy u,
measured in units of ef .

60

40—

a I

I

I \ I I

I

I r a I

I

I I I a

[
a I r r

I

I r a

~ 100
~311
~3n
~433

&544

6855

~ 788

400
I

200—

ass jrrsrjarrslsaraj r I

I

s 1 a a

~313
~384

~435

~548

~ 857

20 ~877

0

0 0.5 1 1.5
Pion Energy

2 2.5
~ r a r I s r a r I r s r r I ~ a ~ a I0

0 0.5 1 1,5 2
Pion Energy

FIG. 3. Phase shifts 5~~ 1~ 1 plotted vs pion energy ~,
measured in units of ef .

FKx. 6. Phase shifts 5~~ 1~+1 plotted vs pion energy m,
measured in units of ef .



2838 MICHAEL P. MATTIS AND MAREK KARLINER 31

eels out; the net result will then be a set of energy-
independent linear relations between physical scattering
amplitudes that can serve as a test of the applicability of
the chiral-soliton ansatz to the real world. ' ' This pro-
gram is carried out in detail in Ref. 10, with generally en-
couraging results.

We should point out, however, that the derivation of
(20) requires the use of some fairly drastic approxima-
tions. For example, the collective coordinates characteriz-
ing the baryon are assumed not to change appreciably
during the time of interaction, and, more seriously, baryon
recoil is not taken into account. These approximations
can be justified in the framework of the large-N expan-
sion, ' but in practice —where we would like to consider
processes both near threshold and at pion energies on the
order of the nucleon mass —they ought at least to make us
wary.

Bearing this in mind, let us look at the implications of
Eq. (20) for nN elastic scattering, which in our conven-
tions means R'=1/2 and L'=L. The left-hand side of
(20a) can then be reexpressed in the standard notation
Lzt zt, which we shall adopt from now on. From the ex-
plicit formulas for the relevant P symbols' we deduce

2I. —1 I. +1
L1,2L, —I = 3L &L —I L„t.+ 3L st.LL, (21a)

L, 2L+3
1 2L+1 3L 3 SLLL+

3L 3
SL+-1,L L+

(2L —1)(L —1) 2L —1

6L(2L+1) ' ' 6L
2L, +3+ 4I +2 SL+1,L,L

2L —1 2L, +3
32L+1 4I +2 L —1LL+

6L +6 LLL

(L +2)(2L +3)
6(L +1)(2L +1) +'

+3,2L —I

(21b)

(21c)

(21d)

[Of course (21a) and (2lc) only make sense if L & 0; like-
wise the first term on the right-hand side of (21d) is ab-
sent for L =0]. Thus, for example, the P~I channel is
given by —,

'
so11+—', s111 instead of pure "breathing-mode"

spt& as assumed in Refs. 5—7; this point was made in Ref.
12. We will return to this channel shortly.

The Argand plots obtained from these equations are
presented in Fig. 8 of Appendix B, juxtaposed with the
corresponding experimental results as drawn from Hohler
et al. ' (The experimental graphs are the "inner" ones. )
As is customary we have graphed the T matrix instead of
the S matrix; they are related by T =(S—1)/2i Pion en-.
ergy co is given in units of ef for our graphs, while those
drawn from Ref. 15 are parametrized by total center-of-
mass energy 8 in GeV. For each of our resonances we
give the corresponding value of co, as well as the mass and
width in MeV, using our "best-fit" values
[e=4.79, f =150 MeV, ef =718.5 MeVj that we shall
obtain at the end of this section. ' The locations of reso-
nances in the real-world data are indicated by vertical
lines. Note that, as mentioned earlier, a resonance in the
Skyrme model (as determined by the speed criterion) tends
to occur toward the right-hand side of a circle and not at
the top.

Before discussing the successes of the model we should
confront its failures; these lie in the S and P waves.
Indeed one's natural inclination is to turn first to the P33
channel, where in one of the cleanest examples of elastic
scattering in Nature the 6 manifests itself dramatically as
a full rotation around the unitarity circle. Instead, one
finds in the Skyrme model initial repulsive (i.e., clockwise)
behavior, followed by a highly inelastic resonance at
co=0 34ef. , then one that is extremely broad (and poorly
defined) at 1.05ef . A similar sad story, albeit somewhat
less egregious, is to be found in the P» channel; this is
where the second-lightest resonance, the N(1440), appears
in Nature.

Yet these results are not necessarily fatal for the model.
That is, despite the large discrepancies, one can argue that
small perturbations in the P-wave sector of the theory can
cause enormous effects in the corresponding Argand plots
which could easily produce the observed real-world
behavior for the amplitudes.

To see this, note that the physical P-wave amplitudes
(P» and P33 especially) all contain contributions from the
elementary S-matrix element sIII, as is apparent from
(21). This is the channel to which the rotational zero-
mode of the Skyrmion, Eq. (19a), couples at threshold.
As a result, in the model, the S matrix has a pole and a
zero that have coalesced at the origin of the energy plane
for all four P-wave channels of mN scattering. Now, one
can easily envision effects which perturb these poles and
zeros away from the origin, certainly the quantization of
the collective coordinates, which involves the next order
in the 1/N expansion, is one such effect. Consequently,
some of these poles might end up in the fourth quadrant,
slightly below the positive real axis [Fig. 7(a)], while oth-
ers might be pushed into the second quadrant [Fig. 7(b)].
(These are quadrants of the "second sheet. ")

If this scenario actually takes place in the real world,
what would we actually observers The channels in which
the poles have been perturbed into the fourth quadrant
would contain clear P-wave resonances lying reasonably
close to threshold: suggestively, the resonances our model
lacks, the 6(1232) and the N(1440), are in fact the two
lowest-lying excitations in pion-nucleon scattering. In
contrast, the channels in which the poles have been
pushed into the first or second quadrant would be charac-
terized by precisely the kind of repulsive behavior at low
.energies that one finds in the PI3 and P3I amplitudes.
Thus our scenario gives at least a consistent interpretation
of the real-world P wave amplitudes near t-hreshold.

In a sense we already know that the 4 pole must be
pushed into the fourth quadrant by such higher-order
corrections. This, after all, is the essence of the calcula-
tion in Ref. 4 leading to the mass formula (5). Recall that
in the large Nexpansion f --N'~ while e -N
Consequently, according to Eq. (5) (which of course gets
renormalized by additional 1/N contributions), the
nucleon-6 mass difference is proportional to e f and
hence of order 1/N, whereas typical excitation energies as
obtained in the present analysis are measured in units of
ef which is of order unity. Thus it would actually have
been inconsistent for the 6 to have appeared in our
lowest-order calculation. [Note that the ratio
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FIG. 7. Possible movement due to 1/X corrections of the
poles and zeros of the S matrix in the complex energy plane,
and the resulting effects on the amplitude near threshold. Poles
are denoted by a cross and zeros by a circle.

(m~ —rnIv)/mIv —I/X; this is just a special case of the
well-known fact that the zero modes of a soliton, when
quantized, produce energy splittings of order A, which in
the large-X approach is equivalent to I/iIi .]

Before leaving the P waves we ought to point out that
the P~3 and P3& amplitudes are already given quite nicely.
[It is of course no coincidence that in the model P3I —PI3
and likewise S3~ ——S&3, this is a model-independent result
that follows directly from Eq. (20).] Indeed the standard
lore is that the repulsive regions of Argand diagrams are

very difficult to concoct in quark models of resonances,
and so we consider it especially satisfactory to find such
behavior emerging automatically from such a simple
model. Nor is the agreement merely qualitative: the
"cusps" in the real-world P~3 and P3~ diagrams occur at
1530 and 1560 MeV, respectively, while the Skyrme-
model prediction is 1640 MeV in each case.

We turn next to the S-wave channels, where we find a
similar discrepancy. In particular the model fails to
reproduce the observed initial repulsive behavior of the
amplitude in the S3~ channel. But the S waves couple to
the translational modes of the soliton, Eq. (19b). Thus
just as for the P waves one can argue that a small pertur-
bation of the form depicted in Fig. 7(b) would induce such
behavior. The situation for S» is not so clear: If one
considers the real-world resonance at 1526 MeV to be
"close" to threshold then presumably it is Fig. 7(a) that
gives the correct picture; otherwise it is Fig. 7(c).

In short, we have outlined a framework according to
which all the S- and P-wave amplitudes in the real world
can be understood as arising from higher-order correc-
tions in an underlying chiral-soliton model such as
Skyrme's. In particular, repulsive behavior near threshold
arises in this picture from S-matrix poles that have been
perturbed from the origin into the first or second qua-
drant. [Reassuringly, the only amplitude other than S3I,
P3], and P ~ 3 which exhibits such behavior in the real
world is D35 and this, too, mixes with the translational
mode (19b).] Of course, at higher energies the effect of
perturbing a threshold pole becomes negligible and so we
would expect to see reasonable agreement once again be-
tween the model and experiment, as in fact we do in the S
and P waves.

We turn now to the higher waves, which fortunately
present no such problems. We can be brief since the
graphs, for better or for worse, speak for themselves. By
way of a conclusion we offer the following observations:

(1) The partial waves with I. &2 are on the whole in
very satisfactory agreement with Nature. Many of the
discrepancies in the higher waves can obviously be ac-
counted for by the fact that our simple approach does not
allow for the plethora of inelastic processes that occur in
the real world; consequently our Argand plots stick too
closely to the rim of the unitarity circle, and are simply
much too large. Ideally one should allow for multiple-
pion production, other mesons, and/or strangeness.

(2) The F-wave plots are in particularly close correspon-
dence with experiment; this point has already been made
in Ref. 12. Note that these are the first channels which
do not mix with the. zero-modes of the Skyrmion. In the
F35 channd a speed-analysis actually revealed two over-
lapping resonances in the model at 1831 and 2032 MeV.
Suggestively, the experimental data seem likewise charac-
terized by a double peak, implying "that there might be
additional structure, but the data do not allow additional
structures to be resolved. "' Consequently the assignment
in the real world is to a single broad (I =260+20 MeV)
F35 resonance at 1905 MeV. (Interestingly, a similar
splitting of the F35 resonance is predicted by the quark
model. '

)

(3) Even in those channels where the Argand diagrams
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are not reproduced very well, the model accurately
predicts the locations of resonances with an appropriate
choice of e and f (see Table I}. In fact, almost all of the
masses are given to within 16% of their actual values, and
a majority are given to 6%. This holds for all known res-
onances up to 3 GeV, which is surprising for a "low-
ener'gy" theory. The general rule that masses increase
with increasing partial wave comes out naturally, while
the model correctly pinpoints several exceptions to this
rule in the lower waves.

(4) A serious discrepancy is that, except for P33 the
model fails to predict more than one resonance at reason-
able energies in the channels where it should do so. In
particular the model misses three 3- or 4-star resonances,
namely, the Sii(1650), S3i(1900), and Di3(1700), in ad-
dition of course to the b, and the Roper resonance as we
discussed at length.

(5} Except for the F and 6 waves, the model predicts
widths that are too large by roughly 50% or more. (Ques-
tion marks following some of our width assignments indi-
cate a strong background phase shift to the right of the
resonance which makes a precise determination of the
widths difficult. ) Note that, unlike the quark model, there
is no particular reason in the Skyrme model why reso-
nances should be narrow. '

(6) Finally, the Skyrme model makes a very strong pre-

diction that, in each partial wave starting with the D
wave, the Li 21 i amplitude will move much further in
the unitarity circle than the L, j 2L + ~', while conversely, for
the 6-resonance channels, it is the I.3 2L +] amplitude that
dominates the L3 2L ] In addition this pattern is
predicted to become substantially more pronounced with
higher I.. In fact, with a high degree of regularity, this is
precisely what one finds in Nature, as a glance at the Ar-
gand plots confirms; the only arguable exceptions to the
rule are the D- and I-wave 5 resonances. This important
point is discussed in greater detail in Ref. 10.

Our results for the mass spectrum are presented in
Table I. They are based on a least-squares fit with all res-
onances weighted equally. In fit 1 we fixed the proton
mass, leaving only one free parameter, while in fit 2 we al-
lowed the proton mass to vary. The optimal values for
the Skyrme parameters turn out to be I e =6.29, f = 142
MeVI and Ie=4.79, f„=150 MeVI, respectively. An
alternative approach would be to fix both the proton and
the 6 mass using (5), which gives Ie=5.45, f =129
MeV I, but this yields a much poorer fit to the spectrum
as a whole. (This is not too surprising since specifying the
nucleon-b mass-difference involves a fine-tuning to order
I/N. ) In light of our earlier discussion we have chosen to
compare the lowest-lying Skyrme-model excitations in the
P~I and F33 channels, not with the physical Roper reso-

TABLE I. Comparison between experiment and Skyrme-model predictions for baryon resonances.
Fit 1, nucleon mass fixed. Fit 2, nucleon mass allowed to vary.

Channel

~11
S31

+11

D1S

D3s
+1s
+1V

+3s
+3v
Giv
G19
G3v

H19
H39

H3, 11

I1,11

+1,13

+3,15

Experiment

1526
1610
939

1723
1710
1888
1232
1522
1868
1519
1679
1680
1901
1684
2005
1905
1913
2140
2268
2215
2468
2205
2217
2416
2577
2794
2612
2990

Fit 1

1295
1295
939

1233
1919
1919
1436
1242
1874
1589
1625
1616
1607
1723
1954
1856'
1714
2034
2230
2141
2043
2346
2A AA

2346
2631
2658
3032
2943

% error

—15
—20

0
—28

12
2

17
—18

0.3
5

—3
4

—15
2

—3
—3

—10
—5
—2
—3

—17
6

10
—3

2
—5

16
—2

Fit 2

1478
1478
1190
1427
1982
1982
1424
1435
1946
1715
1744
1737
1730
1823
2011
1931
1816
2075
2234
2162
2083
2327
2407
2327
2558
2579
2882
2810

error

—3
—8
27

—17
16

5
16

—6
4

13
4
3

—9
8
0.3
1

—5
—3
—2
—2

—16
6
9
4

—1
—8
10

—6

'Average of two peaks at 1732 and 1981 MeV.
Average of two peaks at 1831 and 2032 MeV.
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nance and 6, but with the next-higher resonances in those
channels; our "predictions" in Table I for the b, mass
merely come from Eq. (5). In all other cases where there
was more than one physical resonance in a channel we
compared the Argand plots to determine which resonance
we should actually use.

Note that fit 1 gives a nucleon-b mass difference that is
much too large; in fact, it inverts the ordering of the first
two P33 resonances. Furthermore the corresponding
Skyrme parameters yield substantially worse static proper-
ties of the model when plugged into the formulas obtained
in Ref. 4. For these reasons we prefer fit 2, which actual-
ly improves some of these properties, at the expense of al-
lowing a proton mass of 1190 MeV [from Eq. (5)]; it is
these mass assignments that we have noted in the Argand
plots of Fig. 8.

Table II lists a handful of static properties that were
first calculated in the Skyrme model by Adkins, Nappi,
and Witten (ANW). The middle column lists their predic-
tions for the proton and neutron magnetic moments, the
axial-vector coupling constant, and the mean isoscalar and
isoscalar magnetic radii; the third column gives the same
quantities recalculated' using the values for the Skyrme
parameters given by fit 2; and the first column lists the
experimental results. In summary, we find it intriguing
that this simple two-parameter model could yield a
reasonable fit to such a wide range of both static and
dynamic properties of hadrons.
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TABLE II. Static properties in the Skyrme model.
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pp
Pn
ga

&r')I =o'"
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?

2.79
—1.91

1.23
0.72 fm
0.81 fm

ANW

129 MeV
5.45
1.87

—1.31
0.61
0.59 fm
0.92 fm

Fit 2

150 MeV
4.79
2.83

—2.29
0.79
0.58 fm
0.90 fm

APPENDIX A: DETAILS CONCERNING
DIFFERENTIAL EQUATIONS

In this appendix we give some further details concern-
ing the differential equations (12a) and (12b). We will ex-
press our results in terms of the dimensionless variables
r=ef rand m =m lef .

We consider the 1&&1 case (12a) first. After multiply-
ing through by 2F /sin F the equation turns out to be
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by the Department of Energy, Contract No. DE-AC03-
76F00515.

4sin F d x 2, 2 8sin2F Ssin F

K(K+1)[,2, 2 F„ 1 4sin F 2F', 2 2 8 sin F 8 2cotF 8sin2F+

[r 'F"+ - ] o12 1+—4(F')'+4
r sinF 2

yK 0 (A 1)

The term fr F' + . ] denotes the defining equation for F, Eq. (4), which of course is identically zero. Near the origin
the regular solution satisfies

Pf-r ~ '[m ar+O(r )],—

(A2a)

and

where a'=
~

F (0)
~

-=1; from this we obtain the initial conditions needed to carry out the numerical integration. It is
easily verified that the rotational mode (19a) solves (A 1) when K = 1 and co =0.

The 2)& 2 case (12b) is more complicated. It is convenient to change variables to
K' f +(K+1)—'

(2K+1)'"

(K + 1 )1/2' +K 1/2 yK

(2K+1) /

We then need to solve the coupled linear equations

(A2b)
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2F—r (r+ 8 sin E) f, 4—F r (r+4F'sin2F)

and

+ I2F [2cos2F+K(K+1)](r +4sin E)+2F [4sin 2F —Sr F"sin2F+m ~ r cosF —Sr (F') cos2F]

2r —F"(r +Ssin E)co jP& —8[K(K+1)]'~F F'r sin F
dr

+(F [K(K+1)]' sin FI16Esin2F —16r FF"+4r FcotF[1—4(F') ]+8r (F') j)Pz ——0 (A3a)

2

2F r—(r +4sin E) fz+[ 4F r—+r F'( —16F sin2F 4F co—tFr +16Fsin F+4r F))
dr dr

K(K+1)E2ISsin F+2r [1+4(F') ]j+2r [ SF (F—') 2F +—4Fsin FF"+8Fsin2F(F') +Fr(ZF'+rF")

+2F cotFr (F') 8sin F—(F') —2r z(F')~]

2~2+3 (-2E'ii . . . ) —2 2F2 2[4 ' 2F+4 z(F~)2+ '1
sin E

+8[K(K+1)]'~ r F F' Pf+ I8F [K(K+1)]'~ [2sin2F rF"+ —cotF]jgf=O,
dr 2

(A3b)

(A4)

where

yK

1/2
1+2m X+10o,'

K+1 —1+2' K —4n

'~ 1/2X+1
E

where we have multiplied through by —4r I' and
4r F"/sin —F, respectively. (The advantage of the

change of variables is that each of these equations is
second order in only one variable. ) We are relieved to find
that, in the case of massless pions, Eqs. (Al) and (A3) are
in agreement with Ref. 7. One can check that the transla-
tional mode (19b) is a zero-energy solution of Eq. (A3)
when EC =1.

For Eq. (A3) there are two regular solutions near the
ongln:

It is straightforward to integrate these equations numeri-
cally out to large r, reconstruct f+, and extract the phase
shifts. The development then proceeds as outlined in
Sec. II.

APPENDIX B.
ARGAND PLOTS FOR ELASTIC mN SCATTERING:

SKYRME MODEL VS EXPERIMENT

In Fig. 8 we present the experimental Argand plots'
for ~N~m. N juxtaposed with the Skyrme-model results.
(In each pair these are the "inner" and "outer" graphs,
respectively. ) Both the experimental and the Skyrme-
model plots consist of three parts: Imaginary vs real part
of the scattering amplitude T, imaginary part of 1vs en-
ergy, and real part of T vs energy.

In the Skyrme-model plots, the energy in question is
pion energy co, which is given in units of ef„. Resonance
masses are given in terms of this unit, as well as in MeV,
(using our best-fit value ef~ =718.5 MeV); full widths are
given only in MeV. The experimental graphs are
parametrized by total energy in MeV, and masses and
widths are likewise in MeV.
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