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Constraints on stress-energy perturbations in general relativity
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Conditions are found for the existence of integral constraints on stress-energy perturbations in

general relativity. The integral- constraints can be thought of as a general-relativistic generalization

of the conservation of energy and momentum of matter perturbations in special relativity. The con-

straints are stated in terms of a vector field V, and the Robertson-Walker spacetimes are shown to

have such constraint vectors. Although in general V is not a Killing vector, in a vacuum spacetime

the constraint vectors are precisely the Killing vectors.

I. INTRODUCTION

%'e are used to associating conserved quantities with
symmetries. In special relativity there are ten conserved
currents, corresponding to the invariance of flat spacetime
under space and time translations, rotations, and boosts.
Conservation laws restrict the possible motions of matter.
For example, suppose that at some initial time the mass
density p is uniform, and then there is a small explosion.
A possible density perturbation, in the theory of special
re1ativity, is

5p( x, t) = —265( x ) +E5( x —v t )+e5( x + v t ) ~

However, a single jet

5p(x, t) = —e5(x)+e5(x —vt)
is not allowed; it conserves mass but not momentum.
More generally, whenever a stress-energy perturbation
vanishes on the boundary of a volume G, then conserva-
tion of energy and momentum in special relativity implies

dv 5px=0 .

(This also assumes that 5p is zero at some initial time. )

In general relativity energy and momentum are not con-
served, in general. Heuristically, this is because energy is
exchanged between the matter and gravitational fields.
Precisely, the stress energy T& is covariantly conserved,
T" .

&
——0 rather than TI"

&
——0. Symmetries of the space-

time, or Killing vectors, still correspond to conserved
currents: if g' is a Killing vector, then J".z= ( T"g").~ 0. ——

However, the same is not true for stress-energy pertur-
bations 5T" . This is because 5T& is not even covariantly
conserved, so a Killing vector does not lead to a conserved
quantity. In this paper, we look for Gauss's laws for
stress-energy perturbations in general relativity. The
problem is to find integral conditions which 5TI' must
satisfy, as a generalization of the special-relativistic state-
ments (1). The integral constraints are formalized in
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terms of a vector field V, which can be thought of as a
generalization of a Killing vector. V is defined in analogy
with Gauss s law in special relativity. I.et 6 be a space-
like. volume with normal n. Then we will require that the
integral of 5T zV"n over the volume G is equal to a sur-
face integral over the boundary of G.

We find the conditions for the existence of a constraint
vector V in a genera1 spacetime. The conditions depend
on the background geometry and on the spacetime split-
ting, but are independent of the choice of gauge for the
metric perturbations and of the equation of state for 5T",.

This is of interest because the Robertson-Walker space-
times each have ten constraint vectors V. Six of these are
the Killing vectors which lie in the spatial hypersurfaces
(in standard comoving coordinates) and the other four are
not Killing vectors. In different flat-space limits the in-
tegral constraints reduce to the special-relativity state-
ments (1). For example, the open Robertson-Walker
uriiverse is asymptotically flat, as tabac. In this 1imit,
the four "other" constraint vectors become precisely the
four space and time translation Killing vectors of Min-
kowski space.

It will be shown that for vacuum spacetimes the con-
straint vectors are precisely the Killing vectors. When
matter is present, there are conditions on the stress energy
such that a Killing vector is also a constraint vector. The
de Sitter stress energy satisfies these conditions, and the
ten de Sitter Killing vectors are also constraint vectors.

One astrophysical application of the integral constraints
is the Sachs-Wolfe effect. Density fluctuations cause per-
turbations in the null geodesics along which photons
propagate. The Sachs-Wolfe' effect is the contribution to
the anisotropy in the microwave background due to the
resulting change in the photon's four-momentum. Sachs
and Wolfe calculate the anisotropic contribution to the
temperature change, in a fiat pressureless Robertson-
Walker universe. They find 5T/T- —,', A(xz), where A is

the gravitational potential for 5p/p and xE is the emis-
sion point. When xE is outside of the source 5p, the in-
tegral constraints imply that the monopole and dipole mo-
ments of the source vanish [as in (1)]. Hence the magni-
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tude of 6T/T with the constraints is decreased by a factor
of order (1+zk) ' (Ref. 2).

In Sec. II, we derive the conditions for the existence of
a constraint vector in a general spacetime. Section III
gives some general results about constraint vectors, and
Sec. IV discusses the connection with Killing vectors.
The cases of the Robertson-Walker and de Sitter space-
times are solved in Sec. V. Section VI treats various flat-
space limits, and Sec. VII the behavior of sound waves.

II. CONSTRAINTS ON STRESS-ENERGY
PERTURBATIONS

Let M be a four-dimensional manifold with metric g&
'

[signature ( —+++)]. Assume that g„',' with stress en-

ergy T(o) is a solution to the Einstein equations
G~(p), ——8mT~~&), . Let IS(t)I be a slicing of M with in-
duced metric g,j. Let n be the unit normal (n n= —1)
on the hypersurface S. w = —w n is the normal com-
ponent of w.

1 8
Kv 2 ngvn 2 o

FIG. 1. (M,g„) is a spacetime satisfying the Einstein equa-
tions with stress energy T„. (S(t),g;J) is a slicing of M with
unit normal n. G is a subset of S with boundary BG. The idea
of an integral constraint vector V" is that the integral of
V"5T„'n, over the volume G is equal to a surface integral over
BG.

then V is an ICV is and only if

(4a)L,JF=0
and

p;
I J +pJ I; = Fq gv'— (4b)

So when K,J
————,yg,J, a Killing vector for the three-

surface is always an ICV with F =0.
It is important to note that the existence of an ICV is

independent of the choice of gauge of the perturbations.
The constraints are also independent of the equation of
state that is assumed for 5T" . Also, we will see that if
h;J

~ so ——0 and p;J.
~ sa ——0, then the boundary term van-

ishes. The existence of constraints does depend on the
background geometry and the slicing. Also, note that
condition (3b) can be restated as W-g;i =0.

Proof of theorem. We use the Arnowitt-Deser-Misner
(ADM) formalism. Let

(o)
gij =gij +hij
m'J =n-(Jo)+p",

v T(0)v+ ~T v

Definition (see Fig I): Let GC:.S with boundary BG.
Then V is an integral constraint vector (ICV) for the hy-
persurface (S,gj ') of the spacetime (M,g&,') if the in-

tegral of V"6T zn over the volume G is equal to a sur-
face integral over BG, for all perturbations h,J and p,J.

which satisfy the linearized Einstein equations:

I dv V"5T „=J da&B~.

One could think of other generalization of (1). This defi-
nition was chosen because Robertson-Walker (RW) space-
times have ICY's as defined here, and the integral con-
straints reduce to flat-space energy-momentum conserva-
tion in limiting cases. First, we prove the following

Theorem. Let V=Fn+ p, p.n=0. Then V is an ICV
if and only if

H =2&g G -= (rr'"vr;k ——,
' n~) —VgR,p

Hk =2V g G k = —
2vrk '(;,

and C&=(H,Hk). Perform the variation of G ~ and in-
tegrate by parts:

is the extrinsic curvature of S, and rr'1 =v g (g JK K'J) is-
the canonical momentum. Here g =det(g, j ), and
K =TrK =K'; and W denotes the Lie derivative. Also,

we will write V .p for covariant differentiation on M and

D;Pk=/3k(; for differentiation on S. Greek indices run
from 0 to 3 and latin indices from 1 to 3.

Consider perturbations from the background spacetime

2L'JF =g'J(PKg, ) '" (O'K")((— (3a) 2vg V&5G „=FDH+P"DHk hV g V)'GP„—

(3b)

ds2= —dt +(Ir (x, t)' 'gj(x), y=2%'/'II],

p, (J+/3J; =2FK;J .

Here L,J= 2( D;Di+g Jb+RV—), b—=D;D', and RV 1s-
the Ricci tensor of S.

Corollary. If KJ = —,' y( x, t)g J [so at least locally, —

ha*= h~i
.F+ P

~glJ ~glJ

5Hki F+ .pk5" +5rr'

' —h~i~g V"G p+D; (v g B~)877 .
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Therefore, using the linearized Einstein equations,

f du V"5T
& f——datB

for all h,j,p'~ if and only if

De* (F;P') Vg—8~(g'JT'„V~, O) =(0,0) . (5)

0—@
I J +~g

I
s

Here

(6b)

S (m, m ) = + g '1( "',——,
'

m )
2 g

P
L -sr= —p'Ik~ p'I t, vr'"+—(vr' p")

I
t, .

We find for the boundary term

(p'+khjk 2p'h J~~')—+Fh
g

+F
I

(h
" Fh "

I
( — —

13k p
"'

V' g
Finally, Eqs. (6a) and (6b) can be rewritten as in (3a) and
(3b). Q.E.D.

III. GENERAL RESULTS

The ICV's are of interest because RW and de Sitter
spacetimes actually have such vectors. We have not yet
found any other nonvacuum spacetimes which have a
constraint vector (in vacuum ICV's turn out to be precise-
ly the Killing vectors). Still, there are some general re-
sults which give a better understanding of the 12 coupled
partial differential equations (3).

(i) The existence of ICV's can be stated in terms of the
existence of solutions to the linearized Einstein constraint
equations, for arbitrary matter sources. The constraint
equations are

(H, Hk) —V'g 16'(T p, T k)=0,
and the linearized equations are

M.(h,p):D@ (h,p) ~gh —Sm(T -, T k)
I

=~g 16~(5TP-,5TP„) .

Proposition I. Given any (suitably bounded) sources
(5T -,5T k ), then there exist ( h,z,p'J) such that

(h,j.,p'~, 5T -,5T k) is a solution to (9) if and only if M is

onto, if and only if M* is one to one, if and only if there
exist no (suitably bounded) ICV's.

Proof. The adjoint is

The adjoints are computed explicitly, for example, in Ref.
4. So explicitly (5) is

V g Sag'~TP„V~= Vg (Ru —,'g'JR—)F Ss(r—r, rr)F

g(FI'IJ gvi F—) Lp~—v (6a)

and

M (FP )=DC* (F,P") S—m'~g(FV"T „0) (10)

Comparing this with (5), (F,P )HKerM* if and only if
V=Fn+P is an ICV, with F,P suitably bounded. (M
and M* map tensors which are candidates for perturba-
tions. So it is possible to have an unbounded ICV, and yet
KerM' empty. In fact, this is the situation in the
k=0, —1 RW universes. ) Fischer and Marsden show
that M* is elliptic in the vacuum case, and from (10) it is
clear that M* is elliptic with the matter term. Finally,M' elliptic and one to one is equivalent to M onto (Ref.
4). Q.E.D.

(ii) In general; the existence of an ICV on one spatial
slice S(tp) does not guarantee the existence of an ICV on
another slice S(t). However, if the metric can be written
as

ds = dt +a —(t)' 'g J(x)dx'dx~

so that Ktj = —(tt /a)g, j globally, then if the surface t = t p
has an ICV it is of the form

V(x, tp)= —F(x) +aaf"(x)—
k

where L;&F =0 and

fk I,.+f,. I„=2"'g,k(x)E ..

Therefore, V( x, t) is an ICV for any slice t =constant.
(iii) Equation (3a) is equivalent to V;. + V., =(). Recall

here that P belongs to the tangent space of S and V is in
the tangent space of M.
When ICtj = —

2 rp( x, t)gi we have the following:
(iv) L;iF =0 implies that DkR =0. Therefore, a neces-

sary condition for the existence of an ICV is that S has
constant curvature.

(v) For compact, S, L,&F =0 is equivalent to the state-
ment that there exists a function F ( x ) such that M is
orthogonal to F for all perturbations of g,z. This follows
because if gj~gr~+h;J, then R~R 2L;Jh', and—

f du FM = —2 f du h'~L;~F =0 .

(vi) The existence of a (bounded) solution F to LE=0 is
equivalent to the existence of a metric which is (infini-
tesimally) conformal to g;~, and has the same curvature
scalar. Simply note that if g;~ =(1+eF)g;1, then
R =R —2',F.

IV. CONNECTION WITH KILLING VECTORS

The Killing vectors g of a spacetime generate con-
served currents: if J"=PT~p~~„ then J".„=0. However,
the same is not true for the perturbed current
5J"=P5T" . This is —because 5T" is not covariantly
conserved, 5T" .

&
——T~~0~~I z —T~&~ I "~@. Therefore

5J";~=K;ph" TPo)+P(T(o)F51 p
—T(o) 51 "~~) .

In a vacuum these expressions do reduce to 6T" .
&
——0 and

5J".
&
——0. So in a vacuum the Killing vectors do generate

conservation laws for perturbations.
Even when T~p~"~0, some ICV's are Killing vectors.

The following discussion will help to show the connection
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between Killing vectors and constraint vectors.
Proposition 2. Let (M' ),g„T&,) be a solution to the

Einstein equations with a Killing vector g. Then there
exists a hypersurface S such that g is an ICV for S if and
only if

pz.0«J' Pz.tj

The condition (11) on T" can be restated as

T'~=p(x)g'J and g p =PT ~, g' ~0
PT „=0, g =0.

Note that this implies that in vacuum a Killing vector is
always an ICV for any slicing.

In the vacuum case, using a result of Moncrief, we also
have the converse.

Proposition 3. Let (M' ',g„,) be a vacuum solution,
and suppose there is a slicing S, such that on each hyper-
surface S, there are X linearly independent ICV's
V"'(x, t), a =1, . . . , X. Then the constraint vectors can
always be chosen so that each ICV is a Killing vector.

The ambiguity or choice comes in because any time-
dependent linear combination of ICV's is also an ICV.

Note that propositions 2 and 3 imply that in vacuum
the constraint vectors are the Killing vectors.

The de Sitter spacetime has ten Killing vectors all
which satisfy (11), since T",~g",. So all the Killing vec-
tors are also ICV s. This is interesting because it is an ex-
ample of a nonvacuum case where proposition 2 applies.
It is easy to check directly that the Killing vectors also
satisfy (4).

The R%' spacetimes each have six Killing vectors
which lie in the spatial hypersurfaces, in standard RW
coordinates (14). So g =0, and since T J

——0, these spa-
tial Killing vectors also satisfy (11). One can also check
directly from (4) that whenever KJ ~ g;J, a spatial Killing
vector is also an ICV.

Proof of proposition 2. Generalizing Moncrief's proof
to include spacetimes with matter, the following can easi-
ly be shown:

Given a solution to the Einstein equations
(M' ',g„,T„„)and a vector field g, pick some hypersur-
face S with normal n. Let g=Fn+P"ek, n ek ——0.
Then

V (aP'~(t) gab(t)V (b)(t) g
(a)

Q E 0
It seems plausible that the converse of proposition 2 is

also true with matter: Given an ICV V, then V is a Kil-
ling vector if and only if (11). However, so far we have
not been able to prove this.

V. CONSTRAINT VECTORS
IN ROBERTSON-WAI. KER SPACETIMES

RW spacetimes are of the form

ds = —dt +a (t)[dX +X (X,k)dO ],
k=0,

X =.sing, @=+1,
sinh2X, k = —1.

(14)

We shall see that for any a(t), there exist ten ICV's.
Six of these are the Killing vectors that lie in the
t =constant hypersurfaces. The other four have nonzero
time components and so impose constraints on 6p. First,
we will find the solutions, and then show that the con-
straints reduce to energy-momentum conservation in dif-
ferent flat-space limits.

The t =constant surfaces of (14) all have Ricci tensor

2g)k
Rp, ——k

a

and Eqs. (4) become

coordinate transformations) for vacuum spacetimes with

g,j and ~ specified on an initial surface S0, in a neigh-
borhood of S0. Therefore, the Cauchy development of
( S0, g, m) is the same spacetime as the one we started with.

By proposition 2, the fact that g" is a Killing vector
implies that P' is an ICV. Therefore,

g "(x,t)= g A,
' (t)V (x,t), a =1, . . . , %

b=1

and I,' (t0) =5' . On each slice relabel the constraint vec-
tors:

(12)

D4* (F,pk) vg Sm(FT'J, O) =—(0,0) . (13)

( Ln'~, L g;. ) =—DN*.(F,P ) Vg Sn(FT'J, O) —.
[Recall @=(H,Hk ).] Therefore, if g is a Killing vector,

DDF= —k F
a

a
pi (~+pJ (; ——2 g F. "

a J

(15a)

(15b)

Now, g is an ICV if and only if (5) is true. Comparing (5)
and (13) gives the result. Q.E.D.

Proof of proposition 3. Let V"=F"n+P". Then
(5) becomes, for a vacuum,

D@*.(F"P'")=(0 0)

Moncrief proved that there exists a Cauchy
development of (SQ,g,n)with a Killing .vector g ", suchp'=F"n+ p " on S0. Further, Fischer and
Marsden (Ref. 4, Theorem 4.27) prove uniqueness (up to

Consider (15) for k =+1. When F&0, let p; =kaaD, F,
and (15b) reduces to (15a). This is a great simplification,
since the system of 12 partial differential equations has
been reduced to six, and is possible precisely when
R,J ~g;J.. We are left with the equations for a conformal
killing vector DF on the three-sphere S or pseudosphere
H . When k = + 1 the solutions for F are the four

3

second-order spherical harmonics Q
' on S (Ref. 7).

We choose the following linear combinations of g as
solutions:
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k =+1: Q' '=cosX,
Q"'= sinX cos0,

Q'2'= sinX sinS cosy,

Q =slnX slnS S111lp,

(16a)

VI. FLAT-SPACE LIMITS AND
THE DOMINANT ENERGY CONDITION

A. Flat-space limits

In the open k = —1 R%' universe, p approaches zero as
t goes to infinity, and the spacetime becomes flat,

k = —1: substitute coshX for cosX ds2~ —dt +t (dX +sinh XdA ) . (19)
and sinhX for sinX . (16b)

Therefore, for k =+1, we have the following four
ICV's.

=Q" +kaaD~Q" . , a =0, 1,2, 3 .(a) = Bxj
(17)

In addition, the six spatial Killing vectors of S (H ) are
ICV's. It is easy to see that these ten vectors are all of the
ICV's. If F&0, DF is a conformal Killing vector on
S (H ), and if F =0, the ICV must be a spatial Killing
vector. A three-dimensional surface has at most ten con-
formal Killing vectors; S (H ) has six KV's and the four
conformal Killing vectors DQ' ' just found.

When k =0 the solutions with F&0 are easily found to
be

8 a
V()—— ——x'-

Bt a (jx'

V~k~ ——x" +—( —,5"'r —x'x") . , k =1,2, 3 .

(18)

'2
A

3
TPv

8+6 '
a

which implies a =aoe '. In this case the ten ICV's
are the ten Killing vectors of de Sitter space. This tells us
immediately that de Sitter has ten constraint vectors for
any spacetime slicing.

For a closed universe the boundary term can always be
taken to be zero. So when k =+ 1 and 5T k

——0, the con-
straint, vectors (17) imply the integral conditions on 5p:

f du 5p cosX =0,
f du 5psinXF& ——0 .

For small X (e.g., if 5p is clustered around the origin)
these reduce to the special-relativity statements (1) that
the monopole and dipole moments of 5p vanish.

There are certainly other possible definitions one could
make to generalize Gauss's law; for example, one could re-
quire

f d'x W"5(MgT „)=0.
However, the RW spacetimes do not have any vectors
which satisfy this. In the next section we will show in
what sense the constraints are generalizations of energy-
momentum conservation.

In addition, there are the six spatial Killing vectors.
The de Sitter universe is the solution to Einstein s equa-

tions for

This is Minkowski space written in comoving coordinates.
Geodesic observers with constant spatial coordinates re-
cede from each other at constant velocity. That is, the
t =constant hypersurfaces of (19) are the hyperboloids in
Minkowski space which are invariant under boosts. Let
I x~I be standard Minkowski coordinates, and let

x"=tQ'"', for k = —1,
where the Q'"' are defined in (16b). Then

dsM;„g = —(dx ) +5,jdx dx

dt +t—(dX +sinh XdQ ) .

The four time and space translation Killing vectors in flat
space are

P'= —Vx'= —VtQ" a =0, 1,2, 3 . (20)
l

Now, if one takes the late-time limit of the four ICV's for
k = —1 [Eq. (17)], they are just the Killing vectors (20),
written in I t,X,S,@J coordinates. Also,

+O(X) .0 8 a
ax'

So a comoving observer also sees g ' ' as time translation
in his local frame.

In the k =0 universe, consider the case when 5T"k ——0.
(When p =0 and the flow is irrotational, one can choose
coordinates which are simultaneously synchronous and
comoving. In this case it is not possible, in general, to
build a perturbation which is localized in space. Howev-
er, if one starts with a local perturbation, the irrotational
component dominates at late times. ) If 5p is localized in
space, then the boundary term vanishes and the integral
constraints with the vectors (18) become the special-
relativity statements (1).

B. Dominant energy condition

The positivity of 6p becomes an issue whenever
T(o)" ——0 and there exists a timelike ICV. This happens,
for example, in the k = —1 RW universe as t~~. Then,
asymptotically, V(o) is timelike over the entire hypersur-
face, and T"„=5T",. The following comments apply,
however, to any case where T(o)" ——0 on 6 and V(o) is
timelike on G.

The dominant energy condition states that
5T z

———T &n is timelike or null, since n is timelike.
Also, 5T & and V&o~ [Eq. (17)] are future pointing. There-
fore, 6T „V~~z) &0, where equality is obtained only when
either vector vanishes. So if 6T z is not identically zero,
the dominant energy condition implies
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f dv V~~p}5T „&0 . (21)

VII. THE BEHAVIOR OF SOUND WAVES

In the RW spacetimes (14), time translation ()/Bt is not
a Killing vector. However, the ICV's V(0} [Eqs. (17) and
(18)] look like time translations in a comoving observer's
local frame. It is interesting to ask "how far out" on a
spatial hypersurface V(0} is "like" a time translation. In
particular, where is V(0} timelike? A first guess might be
that V~0~ is timelike within the horizon

XH(t)= f

Now suppose we have a perturbation which is created
by causal processes over some finite region in space, and
hence is localized. Then the boundary term in the IC van-
ishes, and the IC says

f dv V(0}5T &=0,
in contradiction with (21).

To summarize, suppose a region of spacetime has a
timelike ICV and T(Q} =0. Then stress-energy fluctua-
tions cannot simultaneously satisfy the dominant energy
condition, and be created by local causal processes. This
is an example of Hawking and Ellis's conservation
theorem.

In standard Minkowski coordinates there is a simple ex-
ample of a perturbation which satisfies the IC with zero
boundary term, but consequently violates the dominant
energy condition. Birkhoff's theorem implies that space is
flat exterior to a spherical source 5p which satisfies

d x 5p=O.

Since space is flat, h&, ——0, and the boundary term van-
ishes. Also, 8/Bt is timelike, and the integral constraint
which it generates is precisely the condition for flatness.
And, of course, 5p is negative somewhere.

Let Xr be the value of X such that V(0} is timelike for
X &Xz-. From the expressions for V~0~,

&'(k,Xr) =
+k

(22)

Then

nm
4 «1 ~

asB T

where X is. defined in (14). For k =0 or k = —1,
gz —+ ~ as t~ oo, and V|0~ becomes timelike everywhere.
When k=+1, X =sin Xz-. Then V(0) is tirnelike on all
of 5 when a =.0, that is, at maximum expansion.

The relation between Xs and Xz depends on the equa-
tion of state. The Einstein equations can be used to ex-
press a in terms of p and p. Let a1 and p& be the values
of a and p at t}. Then

Xz (p)=, exp
1 1 2 ~ dp'

. —', ~Oa, p ~i p'+S'
(23)

dr,
Xs(k,p) =2

p+3p (1—kyar')'i'

From (22) we see immediately that for cs ——constant,

2,cs
Xs= qXr &Xv for 0&cs .

1+3cs
A second example of interest is a relativistic gas of pho-

tons and baryons with adiabatic perturbations. Let n be
the baryon number density, m the baryon mass, T the
temperature, and o. the (constant) entropy. Then

34, 4 4 asB
p=asBT +nm, p = 3asBT

3 nk

as& is the Stefan-Boltzmann constant. Let

However, this turns out not to be true. Consider instead
the sound horizon

~ cs(t)
Xs(t) = f dt,

0 a(t)

where 5p=cs (t)5p. (It is assumed that cs is independent
of x.) We will show that V(0} is timelike within the sound
horizon for several relevant examples of equations of
state. (1) p =cs~p, cs2 —constant, 0 & cs & 1; (2) a relativ-
istic mixture of photons and baryons with adiabatic per-
turbations; (3) an ideal gas.

Why should the sound horizon be the relevant
boundary to consider? If there is a local perturbation in
the matter and metric, gravitational waves will propagate
to the horizon g~. But the perturbation in the matter
5p, v' (and h) are nonzero only inside the forward sound
cone of the initial disturbance. Therefore, we consider
whether V~0~ is timelike inside the region in which rnatter
can be pushed around.

1, k=0,
coshXr —1

1 —eosX y
2 . , k =+1.

S1Hg y

It follows that Xs is always less than Xr, if e& 1.
A final example of interest is an ideal gas with equation

of state p =K pr, 1&y& —,'. Let u(p)=2pcs/(p+3p).
Then

du
Xs ——u (p)Xr Jdp Xr(p;k), —.

0 dp

where Xz.(p;k) is defined in (14) and (22). The integration
cannot be done explicitly, but as long as p & 3 p,
du/dp&0 and Xs & u (p)Xr &Xr, for the allowed range
of y.
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VIII. CONCLUSIONS

In this paper we have looked for Gauss's laws for
stress-energy perturbations in general relativity. It was
found that spacetimes with enough symmetry can be
sliced in a way such that there is a generalized Gauss's
law. Qn each spatial hypersurface S, there exists one or
more constraint vectors V such that the integral of
V"'6T „n over a spatial volume in S is equal to a
boundary term, for arbitrary metric perturbations. (n is
the normal to S..) The ICV's are independent of the
gauge chosen for the perturbations, and of the equation of
state for oT" . V does depend on the slicing. Mathemati-
cally, the existence of constraint vectors tells if the linear-
ized Einstein constraint equations are onto. That is, there
exist solutions to the linearized constraint equations for
arbitrary sources 6T &, if and only if there exist no suit-
ably bounded ICV's.

In vacuum, the ICV's are the Killing vectors. Further,
if a nonvacuum spacetime has a stress-energy tensor of a
special form and a Killing vector g, then g is also an
ICV. The de Sitter universe is an example. of this, so the
ten Killing vectors are also ICV's. The most interesting
constraint vectors —since we already know to look for
Killing vectors to find conserved quantities —are the ones
which are not Killing vectors. The RW universes each
have four ICV's which are not Killing vectors (plus six
which are).

In what sense can we think of the resulting four con-
straint integrals as energy-momentum conservation? In
different flat-space limits, the integrals reduce to the flat-

space, special-relativity statements that energy and
momentum of matter perturbations are conserved. Also,
the ICV V~o~ looks like time translation near the origin of
a t =constant surface, and is timelike within the sound
horizon.

One application of the integral constraints is anisotro-
pies in the microwave background. One contribution to
anisotropies is the Sachs-Wolfe effect. In a previous pa-
per it was shown that the effect of the constraints in the
k =0 universe was to decrease the magnitude of the
Sachs-Wolfe effect, due to causal, uncorrelated perturba-
tions. In a subsequent paper, we will apply the constraints
to anisotropies in the microwave background in a closed
universe.

Finally, it appears that there is a connection between
the existence of constraint vectors and the existence of ex-
act solutions to the Einstein constraint equations near
some known solution. (D'Eath has discussed the existence
of exact solutions near the RW solution. ) This will be ex-
plored in further work.
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