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We develop a method which allows us to obtain the multiple-scattering structure of the Glauber
model for nucleus-nucleus collisions. We analyze this structure in terms of the numbers of interact-
ing nucleons and nucleon-nucleon collisions. In this way, several average values involving these
numbers are computed. We also investigate the effects of this multiple-scattering structure in some
specific types of events, such as the diffractive (and nondiffractive) and the central (and peripheral)
events. The formulas for the central, semicentral, and peripheral cross sections are derived, showing
that the calculated values are in good agreement with the available experimental data. Average
values involving the numbers of interacting nucleons and inelastic nucleon-nucleon collisions are
also calculated for these kinds of events.

I. INTRODUCTION

High-energy nucleus-nucleus collisions can provide a
unique source of dense, highly excited nuclear matter in
the laboratory. ' As a consequence of a collision between
ultrarelativistic nuclei, a very high energy density can be
reached in some phase-space regions and a phase transi-
tion from confined hadron matter to unconfined quark-
gluon plasma can take place. The initial energy density
achieved in the collision can be estimated from the rapidi-
ty density of produced particles, which can be computed
in the several proposed models for soft multiparticle
production in nucleus-nucleus collisions. In all these
models, the average number of interacting nucleons and
the average number of nucleon-nucleon collisions are cru-
cial inputs. Some of these average numbers have been ob-
tained from the Glauber ' multiple-scattering model.
In this paper we present a method which permits a sys-
tematic evaluation of all these average va1ues in the
Glauber model.

Let us cal1 "wounded nucleon" that nucleon which un-
derwent at least one inelastic collision during the nucleus-
nucleus collision. All multiple-scattering diagrams contri-
buting to nucleus-1 —nucleus-B collisions can be classi-
fied in terms of the numbers of wounded nucleons of A
and B, and of the number of nucleon-nucleon inelastic
collisions (henceforth denoted by 8'„, JP~, and n, respec-
tively). In this way the expansion of the total inelastic
cross section in terms of the cross sections corresponding
to fixed numbers 8'z, 8'~, and n gives us the multiple-
scattering structure of the collision.

On the other hand, one can investigate what are the
main physical differences that appear when only events
with some restriction in their final states are studied.
This topic has been investigated" in particle-nucleus col-
lisions by introducing the so-called criterion C which
refers to a wide class of final states. Those processes
characterized by final states which verify the criterion C

can be systematically studied in hadron-nucleus col-
lisions. ' In this way, the propagation of. some hadronic
properties through nuclear matter can be analyzed.

In nucleus-nucleus collisions, the study of the different
kinds of collisions becomes more complex due to the more
complicated multiple-scattering structure. In this paper
we shaH evaluate relevant quantities, related with some
specific types of nucleus-nucleus collisions, in order to ex-
tract out a11 possible information contained in the Glauber
model.

As a very important application of our formalism we
shall study the central (head-on) nucleus-nucleus col-
lisions. It is well known' that the quark-gluon plasma
only can be accessible in ultrarelativistic central heavy-ion
collisions, because in these co11isions the attained energy
density becomes maximum.

The cross sections for central collisions can be obtained
in our formalism and the numerical va1ues are in agree-
ment with the existing experimental data. Also the aver-
age numbers of wounded nucleons and nucleon-nucleon
collisions in a central collision will be obtained. These
numbers give us an idea of how many particles participate
and how much energy density can be obtained in a central
nucleus-nucleus collision. The dependence of these num-
bers on the degree of centrality of the collision can be
studied also.

This paper is organized as follows. In Sec. II we briefly
introduce the Glauber formalism and analyze the
multiple-scattering structure of the collision in terms of
the wounded nucleons. The expansion of the cross section
with respect to the number of nucleon-nucleon collisions
is done in Sec. III. In Sec. IV the cross sections for some
selected types of events are computed. As an application,
in Sec. V we compute the central, semicentral, and peri-
pheral o,-nucleus cross sections and we successfully corn-
pare with experimental data. Finally in Sec. VI we
present our conclusions. In Appendices A and 8 we show
some details of our evaluations.
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II. EXPANSION IN THE NUMBER OF %'OUNDED
NUCLEONS

expressed as an integral over the impact parameter b:

oAB ——f db'oAB(b) . (2.1)

In the extension of the Glauber model to nucleus-
nucleus scattering, the inelastic cross section for the col-
lision of two nuclei with mass numbers A and 8, can be

I

In the high-energy limit all nucleon-nucleon amplitudes
can be taken as purely imaginary and cr AB(b) can be writ-
ten as

B A

(b+ "—')1
k=1 i =1

(2.2)

where cr~~(s) denotes the nucleon-nucleon profile function at impact parameter s, and the angular brackets stand for the
integration over the coordinates of the projectile and target nucleons. (Notice that in our formulas no Bessel functions
appear. This is due to the fact that when one considers total and inelastic cross sections, only the forward elastic ampli-
tudes are needed, and as momentum transfer goes to zero, the Bessel function disappears. } oz&(s) is normalized to the
nucleon-nucleon inelastic cross section (denoted by o ):

f d s o'~~(s) =(T .

Equation (2.2) can be easily understood if we note that

(2.3)

B A

II II Ii — (b+ '—')114 &

k =1 r'=1

is the probability for processes where no inelastic nucleon-nucleon collision takes place.
Actually the Glauber formula for total cross section in nucleus-nucleus collisions, taking again the nucleon-nucleon

amplitudes as purely imaginary, is given by'

oAB f d b ~AB(b) (2.4)

' (»=2&y l&y
I

1 —H X I:I——,
' ' (b+,"—')] lk & IP &

k=1 i=1
(2.5)

where ozz(b) is normalized to the total nucleon-nucleon cross section

o o~&($)—cJcv+ (2.6)

Notice that we can obtain Eq. (2.2) from Eq. (2.4) if we make the substitutions o'AB/2~a AB, a'~tv/2~o'zz. These sub-
stitutions can be understood by means of the unitarity condition. The total cross section aAB is obtained by evaluating
the total discontinuity of the forward elastic nucleus-nucleus amplitude. This is of course equivalent to taking the imagi-
nary part of the forward amplitude and by doing this, Eq. (2.4) can be easily deduced. ' On the contrary, to obtain the
inelastic nucleus-nucleus cross section we must evaluate the contribution of the inelastic intermediate states to the discon-
tinuity of the forward elastic amplitude. This can be done by means of the cutting rules and Eq. (2.2) is obtained (see
Ref. 16 where a detailed calculation is done for the case of hadron-nucleus collisions; this calculation is easily generaliz-
able to nucleus-nucleus collisions). In this paper we will consider only inelastic processes and Eq. (2.2) is our starting
point. This equation gives the Glauber multiple-scattering series for inelastic nucleus-nucleus collisions. The exact
evaluation of this series can be done' only if one of the two nuclei (or both) are very light. So in many cases some ap-
proximations are necessary.

If we introduce in Eq. (2.2) a complete set of intermediate states of the projectile and target nucleus and restrict the
summation to the ground states

I pA & and
I pB &, we arrive at the optical-limit approximation

B A

(»=1—g II &0 I &0 I
ti — (b+ ' —')/

I 0 & (2.7)
k=1 i =1

which neglects completely shadowing effects in the projectile and target nucleus. If we use closure only on the projectile
and keeping only the ground state

I QA & as an intermediate state, the rigid-projectile approximation is obtained:

B A

I + I:1— (b+ "—')314 &

k=1 i=1
(2.8)
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In this approximation the projectile is treated as an ele-
mentary object during the elastic scattering and therefore
its .polarization is neglected during this process. In other
words the general diagram of Fig. 1 is substituted by dia-
grams of the type of Fig. 2.

If we take o&z(s) =05' '(s), we arrive to the following
formula for cruz(b) in the optical approximation:

8

FIG. 2. Diagram corresponding to the rigid-projectile ap-
proximation.

o ~~(b) = 1 —[1 os—g(b)]" (2.9)

where we have neglected correlations among nucleons. In
Eq. (2.6) Tgz(b) is defined as

Tgg(b)= f d's T„(s)T~(b—s), (2.10)

where Tz (s) and Tz(s) are nucleus thickness functions of
the A and B nuclei, obtained from the normalized single-
particle densities of the nuclei pz (z, s) and pz(z, s):

T~ (s) = f dz p„(z,s),
(2.11)

Tz(s) = f dz p~(z, s) .

The normalization relations are

F can be interpreted as the probability of collision of a nu-
cleon of B with any one of the nucleons of 3, located at
transverse coordinates s~, s2, . . . , sz (we have dropped
the dependence on s,

" of I' for notation simplicity). Then

we can write the general Glauber expression of o „g (b):
w~o.~z (b)

/ d's" T„(s"—b) ~ (+) '(1 F)—
m=1 B

(2.17)

f T~(s)d s = f p„(z,s)dz d s =1 . (2.12)
All average numbers involving only 8'z can be ob-

tained from Eq. (2.17). For instance, we can compute

In the rigid-projectile approximation the corresponding
formulas are

sr~~(b) = 1 —[1 ygg(b)—]

with

(2.13) (2.18)

X~~(b)= f d s T~(b —s)I1 —[1—crT&(s)]"J

= f d s Tz(b —s)o.~z (s) . (2.14)

cr„(b)= f + d s T„(s"—b)[1—(1—F) ], (2.15)

with
r

E= f d s T (s) 1 —+ [1—z&(sk —s)]
k=1

(2.16)

8 1 B

FIG. 1. General diagram of the nucleus-nucleus collision.

yzz(b) is just a convolution (in impact-parameter space)
between the nuclear thickness function of nucleus B and
the nucleon —nucleus-2 profile function ozz(s). When

crJv~ (s) is integrated over the impact parameter s, the in-
elastic cross section for collisions between a nucleon of B
and nucleus A is obtained. In this approximation the
nucleus-3 —nucleus-B collision is reduced to a superposi-
tion of several hadron-nucleus collisions (see Fig. 2).

The general Glauber formula [Eq. (2.2)] can be rear-
ranged in such a way that we can write'

8

W~ ——1 W~ ——1

(2.19)

Let us first expand cruz with respect to W~. Actually the

direct evaluation of o.zz is very hard because our
multiple-scattering series for the nucleus-nucleus col-
lisions is organized in terms of subcollisions between a nu-
cleon of B and nucleus 3 and the classification of the
multiple-scattering diagrams which contain 8'z wounded
nucleons of A is very difficult. This happens because
each wounded nucleon of 3 has participated in one or
several subcollisions between a nucleon of 8 and nucleus
A. Given a wounded nucleon of A we cannot be sure that
this nucleon participates in a determined subcollision be-
tween a nucleon of 8 and nucleus A. In fact we can only
say that this wounded nucleon of A collides with at least
one of the nucleons of B. So, for instance, in Fig. 3 we
show a diagram which contributes to the cross section for
having the nucleons 1 and 2 of A wounded. If the second

We could also calculate ( W~ ). In both cases the results
obtained are the same as in Ref. 8.

As we have said in the Introduction, our goal is to ob-
tain the maximum information about the multiple-
scattering structure of the nucleus-nucleus collision. So
let us try to expand the inelastic cross section in terms of
the wounded nucleons of A. Of course such an expansion
could be done by changing in Eqs. (2.15)—(2.17) A by B
and vice versa. However we shall keep the rearrangement
of the Glauber series given by Eq. (2.15), in order to per-
form a simultaneous expansion of cruz in terms of W'z

and 8'g..
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A

FIG. 3. Multiple-scattering diagram contributing to the cross
section for having the nucleons 1 and 2 of 3 wounded.

and third blob of this figure are modified by inserting any
number of collisions, the resulting diagram would also
contribute to this cross section. Also it would contribute
if in the first blob only nucleon 1 collides. Many other
possibilities can be imagined. The number of these possi-

bilities grows so much with the increasing number of
wounded nucleons of A that the problem, formulated in
this way, becomes intractable.

Due to this problem, we are going to propose a method
which begins evaluating the cross section for noncollision
of a fixed set of nucleons of A. In fact you are always
sure that a nonwounded nucleon of A does not collide
with any nucleon of B. In this way you can classify the
diagrams which contribute to this cross section and then
you can sum all of them.

Let us compute the probability of noncollision of a
fixed set of A —Wz nucleons of A in subcollision be-
tween a nucleon of B and nucleus A. If we denote by s;
(i =1, . . . , A —W~) the transverse coordinates of these
nonwounded nucleons of A, this probability can be writ-
ten as

A —8'~

T „—:fd T() g [1— (; —)] 1—
j=3 —8'~+1

[1—oNN(sj —s)] (2.20)

If in the nucleus-A —nucleus-B collision A —8'z nu-
cleons of A do not participate, we shall have that in the
O'B subcollisions between a nucleon of B and nucleus A
these A —8'z nucleons do not participate either. There-
fore to evaluate the cross section for noncollision of
A —Wz nucleons of A in the AB collision, we must per-
form in Eq. (2.17) the substitution

(E) ~(Tw„) (2.21)

obtaining

Integrating (2.25) over the impact parameter b, we shall
obtain the cross section for noncollision of A —Wz nu-
cleons of A. Let us see further what is the multiple-
scattering content of Eq. (2.25). If A —W~ nucleons of A
do not collide, then up to 8'q nucleons can collide. Let j
be the number of nucleons, among these Wz, which really
collide, and let us denote by ozz the cross section for the
collision of a set of j fixed nucleons of A with B. As we

can choose j nucleons from W„ in ( 1 ) different ways,
we can write

m=1 B
f d'b[l ~-w (» —1~(b)]= g +ps .

j 1 j (2.26)

Summing over Wz, Eq. (2.22) gives rise to

(2.22)
After some effort we can inve~ Eq. (2.26) (see Appendix
A):

m=1
dsmT& sm —b 1 —F+T~ B—1 F' o

(2.23)

P

A

W fdb X ( —1) k l~ —w+k(b).
k=0

Let us define the functions I J(b) by means of the expres-
sion

I .(b) = f g d s"T„(s —b)(1 F+Tz )—
m=1

=f Q d s T„(s"—b)

(2.27)

On the right-hand side of E~. (2.27) we have included an
extra combinatorial factor (w ), because we are interested

in the cross section for collision of Wz nucleons of A

chosen among A nucleons.
8'~

As is shown in Appendix A, o ~z satisfies

X f d s T (s) + [1—o (s,"—s)]
i=1

Using this definition we can rewrite Eq. (2.23) as

I'~ w„(» 1~-(b) . —

'B

(2.24)

(2.25)

As

o„"= f d b[I (b) —I „(b)] .
8~ ——1

I p(b)=1

(2.28)

(2.29)
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r„(b)= f ~ d s"T (s —b)
m=1

from the definition of I,(b) [Eq. (2.24)], it is easy to show
that

&& f d»B(~) Q [1—criviv(s

A

= f Q d s"T„(s"—b)(1 F)—

B f d'br, (b)

= f d s", f d s TB(s)[1—criviv(s~ —s)]

then we obtain

(2.33)

we have

(2.30) (2.34)

~AB d b ~AB(b) ~AB (2.31)

as it was expected. On the other hand we can compute
the average value ( WA ) by making use of the equation

WAoAB ——4 f d b[1 0(b) —I )(b)] (2.32)
8'~ ——1

which is obtained in Appendix A. On the other hand,

8'~, 8'~
oAB —— d bcrAB (b)

being

(2.35)

where cr&B is given in Eq. (2.15) when we take A = l.
I.et us compute now the cross section for having simul-

taneously WA wounded nucleons of A and WB wounded
nucleons of 8 in an AB collision. To do this we must fol-

W~
low the same steps given above when we obtained oAB,
without summing over WB in Eq. (2.22). In this way we
obtain

8"~,8'~
~AB (b)= WA

B Af + d's AT~A(s ~b)[1 F(s„', . . . , s„"—)]88

X g( —1)'
k=0

|W„'

J

[Tw„i(sA-* . sA)l ' (2.36)

where TA(s), F(sA, . . . , sA ), and T~ k(sA, . . . , sA ) are given in Eqs. (2.11), (2.16), and (2.20), respectively [we have
written Eq. (2.36) with all variables explicitly shown]. It is easy to see that

A W~, 8'~ 8'~ B ~~ ~a
AB AB & ~AB AB (2.37)

8'~ ——1 8'~ ——1

Equation (2.36) contains all the information about the wounded nucleon structure of the AB collision. All the average
values involving only wounded nucleon numbers, can be computed in a systematic way by means of this equation. So,
for instance, if we calculate the average value ( WA WB ), we obtain the same result of Ref. 8 (where it was calculated us-
ing a generating function).

The optical approximation can be obtained from the general Glauber formulas when the integrals over the A and 8
coordinates are exchanged with products over the coordinates of both nuclei. In this case,

and

I" (b) =[1—o TAB(b)] (2.38)

B
g ( —1)
i=0

B AB —i 8'~
[1 oTAB(b)] "—[ I —[1—o TAB(b)]'I (2.39)

( 1) A & '
[1 Cr T (b)]AB ij—

J

We can arrange this expression in a more symmetric form with respect to both nuclei:
I

w~8'~, 8'~
crAB

t —0 J —0
(2.40)

III. EXPANSION IN THE NUMBER OF COLLISIONS

In the preceding section we have studied the contributions to the total inelastic nucleus-nucleus cross section, coming
from multiple-scattering configurations with different numbers of wounded nucleons. In order to complete the
multiple-scattering picture of the collision it is also necessary to look at the expansion of the cross section in the number
of nucleon-nucleon collisions. This is the purpose of this section.

We shall first expand the probability of a subcollision of a nucleon of 8 with nucleus A as a function of the number of
nucleon-nucleon collisions (denoted by m):
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A
Fm (3.1)

m —1

where F is the probability for the collision of a nucleon of 8 with m different nucleons of p:
m AF-= f d" T.( ) y ~ (,".—.) g [1— (.,„—.)], (3.2)

p; j=.l k=m+1
J

where the sum extends over all possible sets of m indexes ij
Let us denote by m; the number of nucleon-nucleon inelastic collisions in the ith nucleon- A subcollision

(i = 1, . . . , Wz ). Then,

A 8 W~

'(b)= f g d "T„( —b) W (1 F) — gF '

m=1 B i=1
(3.3)

is the probability for having Wz nucleons of 8 wounded and m i NN collisions in the first NA subcollision, m2 NN col-
lisions in the second NA subcollision, and so on. To calculate the average number of NN collisions we must perform the
SUIl1

B A B W
W

AB
W& ——1 m;=1 i =1

(3.4)

W
(Notice that the number of inelastic nucleon-nucleon collisions, which we shall denote by n, is equal to g,.

&
m;. ) Real-

izing that
A m A A

X - XII--(",—) II [1---(,",—)] = X--(""-)
m=1 P, j=l k=m+1 k=1

we can write

A A

mF = f d s Tz(s) g cr&&(sk —s)
k=1

(3.5)

(3.6)

from which follows that

m =1I

W~ A B W A

g m; oqz
' (b) =W f Q d s "Tq(s —b) W (F) (1 F) f—d s Tg(s) g o~iv(sk —s)

i=1 m=1 B k=1

(3.7)
Denoting by (n ) the average number of NN collisions, we can write

(n)o„(b)=Bf + d s T„(s"—b) f d s T (s) g cr (s„" s)—
m=1

=MB f d s" f d s Tz(s —b)T&(s)cr&~(s s), —
which after integration over b, turns out to be the well known result

( )
ABo

(3.8)

(3.9),
~AB

Other average values, such as, for instance, (n ), can be easily computed from Eq. (3.3). However the main advantage
of this equation is that it gives us a simultaneous expansion of the cross section in terms of n and Wz. In the
generating-function method of Ref. 8, you cannot do this expansion, because you have two functions which separately
generate averages involving numbers of wounded nucleons and numbers of NN collisions. Therefore one cannot compute
values like (nW&), (nW& ), etc.

Let us calculate (n Wii ) in our method. From Eq. (3.3) it is easy to show that
A A

(nW )o„(b)=8f + d s T (s" —b) f d s T (s) g o (sk —s)[(8—1)F+1]
m=l k=1

A A=8 f + d s"Tz(s~ —b) f d s T~(s) g crz&(sk s)—
m=1 k=1

X (8 —1) 1 —f d s'T (s') + [1—o (s —s')] +1
k 1

(3.10)
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Setting cr~~(s) =o5' '(s) in Eq. (3.10), we obtain

(nWa)= 8+(8 —1) f d bI(b)
&Aa

where

I(b)= Tza(b) f d s Ta(b —s)[l aT—&(s))" ' —o f d s[Ta(b —s)] Tz(s)[1 crT&—(s)]"

(3.1 1)

(3.12)

Keeping the rearrangement of the Crlauber series given by Eq. (2.15), we can also compute the average (n Wz ) by using
the expansion done in the previous section. The result is given by an expression which can be obtained from Eqs. (3.11)
and (3.12) exchanging A~B (see Appendix B).

8'~, 8'~, n
'In the optical approximation a close formula for crea can be found. In fact if we observe that

ij gJ
„[~Tea(»]"[1—oTAa(b)]'J " (3.13)

n=O- .

and inserting this identity in Eq. (2.40), we can write

A8
cr„a (b)= ger„a' '

(b) (3.14)

with

W~, W~, n A
o'~a

A

AW~+ W~ —I —j (3.15)

n can be easily interpreted as the number of nucleon-
nucleon collisions. In fact in the optical approximation
all NN collisions are equivalent and they are weighted by
a factor crT&a(b) Thus, in. Eq. (3.15) we have just a bino-
mial term [oT&a(b)]"[1 oT&a(b)]— " multiplied by a
combinatorial factor which gives us the number of possi-
ble different multiple-scattering diagrams with Wz ( Wa )

wounded nucleons in nucleus A (8) and n NN collisions.
Equation (3.15) contains all the multiple-scattering in-

formation of the optical approximation and is very useful
in order to study the multiparticle production in nucleus-
nucleus collisions. '

IV. CROSS SECTION FOR SELECTED EVENTS

In this section we shall study the cross section corre-
sponding to events characterized by some final-state prop-
erty. This property will be specified by a criterion, in
such a way that only events with final states satisfying
some specific requirements will be counted. In this way
we are going to study the behavior of some hadronic prop-
erties when multiple rescattering on nuclei takes place.

A wide class of criteria for particle-nucleus collisions
was proposed in Ref. 11 and applied in Ref. 12. For
reasons of coinpleteness we include here its fundamentals
and some applications which will be used latter.

Let us consider the scattering of a nucleon X on a nu-
cleus A. The cross section for the scattering of N on n
nucleons of the nucleus is given by'

o"„"= f d b[crT~(b)]"[1 crT&(b)]" " . (4—.1)

Let us now define some criterion C, such that only events
satisfying the requirements of C will be counted; let oc be
the corresponding cross section in NN collisions. Clearly

0 =oc+0NC where o.Nc denotes the cross section corre-
sponding to all events which do not satisfy the require-
ments of C. We can write

(4.2)

Suppose that the criterion C is such that a term in Eq.
(4.2) is counted if and only if i ) 1. Physically this condi-
tion means that the superposition of any number of events
satisfying C, as well as their superpositions with any num-
ber of events not satisfying C, also satisfy criterion C.
The corresponding cross section in NA interaction is then
given by

xA f d 2b xA(b) (4.3)

with

oc (b)= g [1 oT&(b)]"—
n=1

n pg

X g i
[TA(b)] ~coNc

i=1

(4.4)

The formula (4.4) which shows that crc" is only shadowed
by itself, has been applied' to study a large variety of
processes, giving rise (in some of them) to very interesting
unusual shadowing effects.

In order to know if a given selection of events can be
considered as criterion C, one must investigate the super-
position law of these events by looking at the intermediate
inelastic states of the multiple-scattering diagrams. Due
to this fact, unitarity plays a very important role in our
approach.
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I

I

f
IJ.

I

T
I

I

I I

I

As first example of this type of events we are going to
consider t e non i rh ndiffractive events (defined as those events
without any rapidity gap in their final state). Clearly it is
enough to have one hadron-nucleon collision of nondif-
fractive type o o a't btain a resulting nondiffractive event in
the hadron-nucleus collision. Therefore nondi ractive

d ~' a criterion C and their corresponding cross
section is given by an equation of the type o q.

Second, let us consider a collision between an incident
nucleon and a fixed target nucleus. We are interested in
events without fast baryon in their final state. In Fig.
we show that when in a double-scattering diagram we
have an NN collision with a fast baryon, followed by an
NN collision without a fast baryon, the fina s a e o1 state of the
diagram does not contain any fast baryon. Therefore
these events satisfy the superposition law of the criterion
C, as a consequenceC, uence of the intermediate inelastic states o
the multiple-scattering diagrams of the collision. sing
this formalism the well-known phenomenon o attenua-

f fast secondaries' can be easily understood. "
In nucleon-nucleus collisions, the criterion C re ers o

the superposition of collisions of one singin le nucleon with
several nucleons of the nucleus. On the contrary, in
nucleus-nucleus collisions the multiple-scattering struc-
ture is more rich and, in general, two different nucleons of
the beam can collide with different sets of nucleons. of the
target. This fact can modify the naive application of the
criterion C to nucleus-nucleus collisions.

Let us consider first the nondiffractive events in
nucleus-nucleus collisions. As can be easily understood,
in this case the superposition law is the same for all possi-
ble nucleon-nucleon collisions. Then the nondi fractive

cross section can be computed as a trivial extension of Eq.
(4.4). For instance, if we use the optical approximation

o.d = f d'bI1 —[1—oivivT~a(»]" I

where cr~& is the nucleon-nucleon nondiffractive cross
section. Obviously the diffractive AB cross section is
given by

= f d bI[1 c—r" T (b)]" —[1 oT—&~(B)]" I .

o.s+aF, (4.7)

where oz (crs ) denotes the cross section for an NN I' col-
lision ( S collision).

Our goal is to compute the cross sections o; corre-

(4.6)

These results were first obtained (using different methods)

AB ~In Fig. 5 the impact-parameter representation of crd is
shown. We see in this figure the peripheral character of
nucleus-nucleus diffractive processes.

As a second example let us consider the events. o
nucleus-nucleus collisions with a determined number of
fast baryons in the final state. In nucleon-nucleus col-
lisions this kind of events satisfy the criterion C, because
the particle which propagates in the multiple-scattering
diagrams is precisely the incident fast baryon. In

-nucleus-nucleus collisions we shall assume that A is the
incident nucleus and B is the fixed target nucleus. In this
case as each wounded nucleon of A collides, in general,
with a different set of nucleons of B, a variable number of
fast baryons can appear in the final state of the AB co
lision. Thus the events with nonfast baryon in the final
state, satisfy the criterion C only when the different co-
lisions of a fixed nucleon of A with several nucleons of
are considered. Therefore, in this case, the multiple-
scattering expansions developed in the former sections
have a crucial importance.

Let us call F collision (S collision) a nucleon-nucleon
collision which has (has not) a fast baryon in the final
state. Then the XX cross section can be decomposed as

L

I

I

I———
I

C3

FIG. 4. Intermediate inelastic states corresponding to a
double-scattering term of a nucleon-nucleus collisiollision in which
an NN collision with fast baryon is followed by an NX co ision
wit ou as

'
h t f t baryon. In this figure the continuous line corre-

s onds to baryons propagating in the diagram, w ereas e
d h d line corresponds to mesons. In the lowe p

spon s o a
1 er art of this fig-as e

ure we show that the final state of this diagram does not contntain
any fast baryon.

b( fm)

FIG. 5. Impact-parameter representation of the di racttve
cross section for the collision of two nuclei with 2=4 and
B=64.
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sponding to events in which 8'A nucleons of A are
wounded and s of them do not produce any fast baryons
in the final state. These cross sections are very important
because (as we shall show in the next section) the central,
semicentral, and peripheral nucleus-nucleus cross sections
can be expressed in terms of them. In order to obtain
these cross sections, we shall use a method similar to that

w~
used in Sec. II in the computation of ozii. Actually, due

I

to the superposition law of criterion C, we realize that a
wounded nucleon of A appears as a fast baryon in the fi-
nal state only if all its collisions with the nucleons of 8
are F collisions. Therefore the probability of noncollision
of a fixed set of A —Wz nucleons of A and of non-S-
collision of a fixed set of k nucleons of A in an XA sub-
collision is given by

A —W~

T~ ——f d s Tg(s) g [1—o'iv~(sg —s)]
A —W~+k

J =A —W„+1
[1—o.s(s —s)]-A

n =A —W~+1
[1—o(s„"—s)] (4.8)

where we have used the fact that these k nucleons of A (which do not appear as slow baryons in the final state) can only
F-coihde. ~hen W~ nucleons of 8 are wounded, the corresponding probability is obtained by substituting (F) by

( Tii, )
s in Eq. (2.17). After summing over Wz, we obtain

A

I (b)= f g T„(s' —b)[(1 F+T „—) —(1—F) ]
m=1

(4.9)

Let us study the terms which contribute to rw . It is easy to see that rw contains processes with at most O'A nucleons
A

of g, being at most W~ —k slow nucleons in the final state. Let jbe the number of wounded nucleons of A and s (s (j)
the number of nucleons which do not produce any fast baryons in the final state. Clearly these s nucleons can be chosen
among 8'A —k and the remaining j —s nucleons can be chosen among WA —s. Therefore we can write

W W„—k
Ik 2glk (4.10)

j=1 s =0

This formula can be inverted by using the methods of Appendix A; in this way we obtain

w~
W~ —k k L=0

k
1PI.L+k —&

pp=0
(4.1 1)

where [as we had done in Eq. (2.27)] we have included the extra combinatorial factors ( ii ) ( k ). It is easy to see thatA

W~
W~

~w~ —k
k=0

g ( —1)'
s=0

8'A w0
S W —s AB (4.12)

The formulas (4.9) and (4.10) contain the main information for our purposes. We shall use them to evaluate central,
semicentral, and peripheral cross sections, but they themselves give information about the momentum distribution of the
stripping fragments of the A-8 collisions. In order to do numerical calculations of these cross sections, it is necessary to
obtain the formulas for the I ii functions in the different approximations. So in the rigid projectile approximation

I ii„(b)= f d s T~(b —s)[l oT&(s)] "[1 osT—&(s)]— Bf d's Tz(b —s)[1—o.T„(s)]" (4.13)

and in the optical approximation

I (b) =[1 oT„(b)] —" [1—o, T„(b)]+k—[1 oT„(b))"+— (4.14)

We are now going to see how this formalism can be applied to study central collisions. There are many different defini-
tions of central collisions in the literature. Usually it refers to a collision at zero impact parameter. However this defini-
tion is not suitable to compare with experimental data. %'e adopt here an experimental definition a central collision is
a collision in which there is not any fragment of the projectile inside a small forward veto angle. In our formalism this
definition corresponds to the cross section for having 2 wounded nucleons in the projectile and all of them giving rise to
a baryon in the final state which is slow enough not to be seen in the veto angle. Hence, we have that the central cross
section is given by Eq. (4.11) with Wz ——A and k=0:

~~a= g ( —1) (4.15)
L=0
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Notice that when Eq. (4.9) is introduced in Eq. (4.15) the exact Glauber formula for central cross section is obtained.
However, in order to do numerical calculations some approximations must be done. In the rigid-projectile approxima-
tion this equation becomes

A

0AB-
L=0 f d s Tz(b —s)[1—os T~(s)] (4.16)

and in the optical approximation

cr~s= f d bI 1 —[1 osT—„&(b)] I (4.17)

The cross section for Ws wounded nucleons of 8 in a central collision can also be obtained. So, for example, in the opti-
cal approximation

r

o~AB (b)= y ( —1) [1 crTAB—(b)]"' 'I 1 —[1 crsTAB(—b)]'I"
RB (4.18)

and the average number of wounded nucleons in a central collision (( Ws ) ) is (again in the optical approximation)

( W )'= , f d b(I1 —[1—o T (b)] I
—[1—crT„ (b)] Il —[1 o T„—(b)) 'I") .

0AB
(4.19)

By using the method developed in Sec. III we can calculate the average number of NX collisions in a central AB col-
lision, with the result (in the optical approximation)

(n)'= f d'b T~s(b)[1 —[1 ossa(—b)] I 'Io crF[l o—sT~a(»—] ') ~

0AB
(4.20)

Equations (4.19) and (4.20) give us information which be-
comes essential when one tries to compute the rapidity
densities of produced particles and to estimate the energy
densities reached in central collisions between heavy ions
at high energies.

V. CENTRAL, SEMICENTRAL, AND PERIPHERAL
a-NUCLEUS CROSS SECTIONS

=I —2I '+I (5.1)

In the case of a-nucleus collisions we shall use, for nu-
merical estimates, the rigid-projectile approximation (the
a nucleus is very light). In this approximation we obtain

0 B= f d bt1 —2[1 osT a(b)]—
—fl 2osT~s(b)+crsT—, (b)] I (5.2)

with

T~„s(b)= f d s Ts(b s)[T&(s)]" . —(5.3)

A peripheral collision is defined' as corresponding to

Using u particles as projectiles, there are data on semi-
central and peripheral collisions. ' A semicentral collision
is defined as the collision which does not produce any
charged fragment in a small veto angle in the forward
direction. The difference with the central collision is that
the fragments which are not seen in the veto angle are the
charged ones. For u particles, taking into account its
decomposition in two protons and two neutrons, the semi-
central cross section is given by

0aB——02+ 20.2+0.2+ 203+0.4+ 2Cr4
sc 2 3 4 3 4 3

I

fragmentation channels in which at least two nucleons of
the stripping fragments have been observed by a detector
of charged particles. It is easy to prove that

~aB aB 0a8 ~aB ~
P (5.4)

where cruz is the cross section for obtaining only one
charged nucleon in the forward veto angle. Assuming
that when two or more nucleons of a do not collide they
appear in the final state as bound states (and they do not
contribute to cr~s ), this cross section can be written as

OaB =203+402+20 )+203+802+60 )+20 )
1 4 4 4 3 3 3 2 (5.5)

One could ask why the rigid-projectile approximation is
justified for central and semicentral a-nucleus collisions.

' I.et us recall that what we are really doing is computing
the contribution to the imaginary part of the forward elas-
tic amplitude of the intermediate inelastic states that are
central or semicentral.

For this reason it is natural to expect that an approxi-
mation which correctly predicts the elastic o.-nucleus
scattering, ' would also be correct to obtain the central
and semicentral cross sections. In fact we shall see how
the comparison between numerical estimates and experi-
mental results supports this assumption.

In order to make numerical evaluations of Eqs. (5.2),
(5.4), and (5.5) we need the value of o, . This value gives
us the "degree of centrality" of our central events, in such
a way that when o, increases (decreases) our centrality
criterion becomes less (more) restrictive. In this way o,
plays the role of a cutoff parameter which makes the
separation between central and noncentral collisions and
that can be determined from the experimental conditions.
The data of Ref. 19 correspond to an energy of 4.5 Gev
per nucleon and a forward veto angle of 5'. From the
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TABLE I. Calculated values of total inelastic, central, semicentral, and peripheral cross sections for
a-B collisions together with the existing experimental data.

Li
12C

Al

'4Cu

Theory

308
424

705

1131

inel~as
Expt.

320+ 15
410+25
535+27
720+ 30
813+45

1150+50
1380+200

C
Oaa

Theory

15
55

153

373

Theory

51
116

518

SCaa
Expt.

51+5
106+10

248+28

525+50

Theory

221
247

349

467

&aaP

Expt.

208+20
244+26

313+48

412+70

A —Z Q —Z A —Z —L
~~a= g

L=0 n=0

A —Z —L
OA —L —n

(5.6)

Using Eq. (4.12) and after some steps we arrive at

pp ~@Xinclusive spectrum, a value of o, =25 mb can be
estimated, being 28.5 mb the total inelastic XX cross sec-
tion at this energy. In Table I we show the comparison of
the calculated total inelastic, semicentral, and peripheral
cross sections with the experimental data. The calculated
central cross sections are also written (unfortunately there
are not data of 0&z). The very different B behavior of
these cross sections is reproduced and a very good agree-
ment between calculated and experimental values is ob-
tained. In Fig. 6 we show the shape of central, semicen-
tral, and peripheral cross sections in impact parameter.
As we can observe the expected structure in impact pa-
rameter is obtained.

We can also obtain an expression for the semicentral
cross section corresponding to any incident nucleus A. By
definition in a semicentral collision all protons of A must
S-collide. Then

Z

AB
r=0

z
r ( —1)"r"„. (5.7)

In the optical approximation, a closer formula is obtained:

o~a= I d'bI1 —[I—ossa(&))') (5.8)

All possible average values corresponding to semicentral
collisions can be calculated and the multiple-scattering
structure of this type of collisions can be investigated in a
systematic way. These average values can be useful in or-
der to obtain detailed predictions of the different models
for the future high energy nucleus-nucleus experiments.

VI. CONCLUSIONS

We have developed methods to obtain all the possible
information about the multiple-scattering structure of the
Glauber model for nucleus-nucleus collisions. We must
emphasize that this kind of information can be very use-
ful in order to separate what is just a superposition of
nucleon-nucleon collisions from other kind of phenomena.

We have performed the simultaneous expansion of the
inelastic cross section in terms of the numbers of wounded
nucleons and nucleon-nucleon collisions. In this way all

average values involving these numbers can be computed
following a systematic procedure. We have applied these
results to study some specific kinds of nucleus-nucleus
collisions, as, for example, diffractive (and nondiffractive)
and central (and peripheral) nucleus-nucleus collisions. In
this latter case a very good agreement between calculated
cross sections and experimental data is obtained. All
average numbers of central collisions can be also calculat-
ed.

4
ACKNOWLEDGMENTS

We thank A. Capella for encouragements and useful
discussions and the Comision Asesora Cientifica y
Tecnica for financial support.

0' 10

b(tm) Let us define

APPENDIX A

FIG. 6. Impact-parameter representation of central (dashed
curve), semicentral (solid curve), and peripheral (dotted curve)
cross sections for a-B collisions, when B=64.

r, = Jd'br, (s).
From Eq. (2.26) we have

(A1)
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as

WA
1)k

k=o
=0.

WA —k

r~ —w„+k =r~+ J (A2)
WA A —k k A —WA

T

k
( —1) "

A ~ ——( —1)"5k,o 5k—, a
W 1

Equation (A7) turns out to be

(A9)

(A10)

We can write

( —1)"
~ rx w+k

k=0

j=0
1)k

T

WA WA —k
(A4)

g ( —1) "
j 1 k[( —1)"5ko—5k~]

8'A ——1 k=0

(A 1 1)

which is just Eq. (2.28).

by using the equality

WA WA —k

k=0

RA —k
( 1)k

which in the case x = —1, y = 1 is '

WA

J
(+ +y)

(A5)

(A6)

APPENDIX 8

Let us compute the average value (n8'z ), when the
terms of the Glauber series are organized in the form
given by Eq. (2.17). We shall begin by generating all col-
lision probabilities weighted with their corresponding
number of nucleon-nucleon collisions. It is easy to see
that we must substitute in our equations Tw [given by

A

Eq. (2.20)] by
A —WA

TP —— d s TB s 1 —o-&& s; —s

Equation (A4) with the additional combinatorial factor
(w ) transforms into Eq. (2.27). Let us check Eq. (2.28).
We have j=A —8'A+1

ANN(Sj —S) .A

(81)
A p A

AB w„
k =A —8'A

WA
x ~ +k g r

The weighted collision probabilities are obtained by
substituting in Eq. (2.22)

(Tw„) ~WaTw (Tw„) (82)

Following the same steps that are given in Sec. II we can
write

where we have made the substitution A —WA+k~k.
Taking into account the equalities

AB

nope (b) = ~ g ( —1)"
n=1 A k=0

WA

r~ —w„+k(b»

8'A

WA+k —3 A —k (AS)
where

(83)

(84)

Using Eq. (All) we have
A AB

g n W„~„"'"(b)=a [r,(b)
~A ——1 n=1

but

(85)

r =& f Q d s T„(s —b)T„=ABoT„(b),
m=1

(86)
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A B—1

r, (b)=a f ~ d's" T„(s' b—)T„ t f d's TB(s)[1—cTNN(s —s)]
m=1

Setting oNN(s) =cr5' '(s), we finally obtain

(B7)

(nW„)ops A——Bo A+(A —1) f d bI(b)

where

1(b)=T&tt(b) f d s T„(b—s)[1 trT—„(s)] ' —o f d s[T„(b—s)] Ttt(s)[1 trTs—(s)]s

By simple inspection we see that (n Wz ) is given by the same expression as (n Ws ), if we exchange A and B.

(B8)

(B9)
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