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Deceleration of high-energy protons by heavy nuclei
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Proton-nucleus reactions are discussed in the framework of the evolution model proposed by Hwa.
The longitudinal-momentum distributions of baryons are calculated and compared with the data. A
momentum-degradation length of 5.7 to 6.9 fm is found. These results are contrasted with other re-
cent theoretical analyses. The implication is that the central cores of heavy nuclei such as U and Pb
may stop each other at beam energies up to 25 GeV per nucleon.

I. INTRODUCTION

The creation of quark-gluon plasma in high-energy nu-
clear collisions is a challenging possibility of physics, and
leads to the following question: At which beam energy do
we have the best chance to produce the plasma? The
question is not simple because a very high beam energy
may lead to nuclear transparency and not to the desired
baryon-density or energy-density increase.

The first extended theoretical study of this problem'
was based on experimental proton-proton cross-section
data. However, the collision of hadrons on each other in-

side the nuclear matter may be essentially different from a
free proton-proton scattering. The valence quarks of an
impinging baryon may be separated from its sea quarks
and gluons in the first collision and the baryon, represent-
ed only by its bare valence quarks, may behave very dif-
ferently while penetrating through the nucleus. Thus, re-
cent studies try to extract information on the hadron-
hadron collision in nuclear matter from proton-nucleus
experiments. ' In their analysis based on Ref. 7, Busza
and Goldhaber came to the conclusion that the proton
stopping power of heavy nuclei is far greater than should
be expected on the basis of conventional ideas, although
still less than a naive baryon cascade would predict. Us-
ing the empirical cross-section formula, they estimated
the contribution of the peripheral and central regions of
the nucleus to the stopping power. According to their es-
timate a proton penetrating through the center of a lead
nucleus loses 2.4+0.2 units of rapidity. Thus the
momentum-degradation length of the proton is

A~ = [p(z) 'dp(z)/dz] '=M/by =5.0—5.9 fm,

where p (z) is the momentum of the proton after penetrat-
ing to a depth z in nuclear matter. The momentum of a
high-energy proton penetrating this distance Az in nuclear
matter decreases to p (z =A& ) =p(0)/e, or, in other
words, it loses one unit of rapidity.

In a very different analysis, Hwa proposed an evolu-
tion model to describe the data. He reaches the opposite
conclusion, that the momentum-degradation length in nu-
clear matter is very large, 17 fm. In his analysis, however,
he gave an approximate solution of the model. When the
same experimental data were fit using the exact solution
of the model a momentum-degradation length of 5.7 fm
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FIG. 1. The elementary nucleon-nucleon momentum distri-
bution Q(x) =H(x, 1) as used by Hwa (Ref. 2), Mong (Ref. 5),
and Hufner and Klar (Ref. 4}.

is obtained. Later on, this evolution model was used in
two other theoretical analyses.

Hufner and Klar, although they used a different form
for the probability distribution (Fig. 1) which governed
the momentum loss in a single collision, fitted the same
data and a momentum-degradation length of Az
=7.3—8.8 fm was obtained for the interior of the nu-
cleus. This is somewhat longer than the values mentioned
previously, but in this analysis the first proton-baryon col-
lision was treated separately and assumed to be more in-
elastic than the subsequent ones.

Wong, in his analysis of the same data, used a simpler
probability distribution (Fig. 1) than originally assumed in
Hwa's model, neglecting the contribution of soft and elas-
tic collisions. Thus, having no free parameter in his prob-
ability distribution he could still fit the data quite well,
but with a rather low nuclear density (po ——0. 122 fm ).
The momentum-degradation length using this small den-
sity is shorter (Az ——5.3 fm) in his model and would de-
crease further if a larger (more realistic) density would
have been used.

In Sec. II, the evolution model and its solution will be
presented based on Ref. 6, along with fits to p+A
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—+@+&and p+g~n+X data. In Sec. III, the above-
mentioned theoretical analyses and their consequences are
compared and discussed, and some tentative conclusions
are drawn.

II. THE SEQUENTIAL-SCATTERINCr
EVOLUTION MODEL

All theoretical studies are based on the observation that
in a high-energy p+3 collision the actual process de-
pends very much on the impact parameter and that the in-
clusive data are dominated by peripheral collisions. The
simplest approximation in this respect was used in Refs. 2
and 3, while in Ref. 5 the impact-parameter dependence
was already treated explicitly and in Refs. 4 and 6 fluctua-
tions were also taken into account.

Depending on the impact parameter s the proton col-
lides on the average with

Ng(s)=cr~~ fdzp~(s, z)

nucleons. Here o.NN is the nucleon-nucleon cross section
(taken to be 40 mb), and pz(r) is the nuclear density dis-
tribution. Since we will treat both the elastic and inelastic
collisions explicitly, here we do not restrict ourself to the
inelastic nucleon-nucleon cross section o.;„, as is done in
some of the other theoretical works mentioned. The cross
section for collision on N target nucleons in a line is then
given by integrating the corresponding Poisson distribu-
tion over all impact parameters '

oz(N)= fd s [Nz(s)] exp[ —Nz(s)] .

If we neglect the surface diffuseness of the nuclei and ap-

ply a uniform density distribution of pp=0. 17 fm, Eq.
(2) leads to

' dx'
H(x, N+1)=f, H(x', N)Q(x/x') .

X
(5)

Here Q (x) is the probability that the incident nucleon has
momentum fraction x after a collision with one more tar-
get nucleon. Since baryon number is conserved we assume
that in high-energy collisions the incident nucleon (or its
valence quarks) survive the collision with the target nu-
cleons, so Q (x) is normalized to unity:

If we also assume that the first and subsequent col-
lisions in a tube show the same behavior, Q(x) can be ap-
proximated by

Q (x) =Ax +A, '5(x —1)=H (x, 1) . (6)

The first term is a statement that for hard nucleon-
nucleon collisions the longitudinal momentum distribu-
tion is flat. The second term represents elastic and soft
inelastic collisions. This seems to be a fair representation
of the data in the range 6—405 GeV at least. "' Howev-
er, we do not assume that the fraction of inelastic col-
lisions inside the nuclear matter is the same as in a free
nucleon-nucleon collision where A,r„,=(32 mb)/(40 mb)
=0.8. Due to the normalization condition on Q(x) the
parameters k and A,

' satisfy the relation A, +A, '=1. Evi-
dently they may be interpreted as probabilities.

In Ref. 2 an approximate solution of Eqs. (5) and (6) is
given for N »1. Its applicability is, however, question-
able since even for large nuclei the average collision num-
ber in a tube is only 3 to 4. The complete solution of Eqs.
(5) and (6) can be given analytically for any N by the sim-
ple formula

N+1
oq(N) =(N+ 1)m 1 —e g FJ/J'! 2 2

2&NN PO

(3) (7)

Thus, depending on the impact parameter, the incom-
ing proton collides with a tube containing X nucleons.
crz(N) gives the cross section for the collision with such a
tube after we have integrated over impact parameter. In
this way the contribution of collision tubes is independent
from each other and their geometrical position is
eliminated from the model. This leads to essential simpli-
fication of the problem.

VVe intend to describe the momentum degradation of
the nucleon propagating through the nucleus. %'e denote
the invariant distribution function by H(x, N). This is the
probability that the incident nucleon has laboratory
momentum fraction x after hitting N target nucleons,

x=p~~/p;„. It is normalized to unity in invariant phase
space,

f H(x N)=1 . (4)

In order to determine H(x, N) it is assumed that the
following evolution equation is satisfied:

This immediately gives the inclusive nucleon cross section
as

E d ob /dp =x d o b /(dx dpT )

=go~(N)H(x, N)g(pT) .
N

(8)

We can fit the differential cross section Ed3o/dp3
fixed pT if we assume that 1t factorizes in x md pT. This,
however, either requires the introduction of an unknown
normalization factor g(pT) in Eq. (8) or g(pT) should be
fitted to the data. The experiment of Ref. 7 is for
p+ ~ ~p+»nd p+& ~@+&, with most of the data
taken at pT=0. 3 Ge&/c. The evolution model as formu-
1«ed so far predicts the final baryon distribution in x and
integrated over aB pz-. Concerning the question of the in-
tegrity of the proton we can make the following observa-
tions. First, it is known that the number of antiprotons
and hyperons are negligible compared to the number of
protons. ' This leaves only the neutron. An essential7, 13

point in the analysis is that charge exchange in @+2 re-
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actions should be suppressed relative to p+p reactions.
The reasoning is that the first hard collision separates the
valence quarks from their surrounding sea of quark-
antiquark pairs. Therefore, it is much more difficult for
the valence quarks to find a down quark to form a neu-
tron, i.e., uud+dd~udd+ud. This argument is sup-
ported by the recent experiments of Forest et al. ' where,
in the reaction 400-GeV/c p+A~n+X, the measured
neutron invariant cross sections were essentially smaller
than the proton invariant cross sections of Ref. 7.

We have fit the data of Ref. 7 with a best value of
A, =0.52 and an overall normalization of

do
dx

=A.o.~~ ——20.8 mb, (9)

which compares well with the experimental values 17—22
mb for a compilation' of beam energies from 19 to 405
GeV.

Data has recently become available for the reaction
p+A —+n+X at 400 GeV. ' This is very important be-
cause, without further input, the baryon-cascade models
really can predict only the final-baryon rapidity distribu-
tion.

w~g (pT ——0.3 GeV/c) =0.99 (GeV/c)

See Fig. 2. %'e assume that

E drrz/dp =w&Edob/dp

where wz is the probability that the outgoing baryon is a
proton. wz should not be independent of target isospin
since the number of u and d quarks can be different.
Though the value of A, has been fitted to p +A reactions,
it is sti11 consistent with p +p reactions. In the latter case

If we add up the proton and neutron' cross-section
data assuming a common g(pr ) dependence and factori-
zation in x and pT variables in both cases, a total baryon
invariant cross section can be obtained (Fig. 3). The best
fit to the data is obtained with A, =0.43, i.e., with a small-
er fraction of inelastic collisions. This yields a bigger
separation between the pp and pA cross sections, but the
A,o.&&——17.2 mb is still consistent with the pp data. So a
formal distinction in the model between the first and sub-
sequent collisions is not inevitable at this stage of accura-
cy [g (pr ——0.3 GeV/c ) = 1.28 (GeV/c) gives the
correct normalization to these data]. If we assume that
the change in normalization is caused by the factor wz we
can deduce a value of wz

——0.77 for large nuclei such as
Pb. This value is considerably larger than that of Ref. 4.
For hydrogen targets the comparison of experimental re-
ults in Refs. 7 and 13 irnphes that w

If Feynrnan sealing in a sequential model is assumed, it
is reasonable to introduce an inelasticity coefficient I by
assuming that the mean energy of the impinging proton
decreases in each collision to a fraction (1 I) of its en—er-
gy before the collision:

{E~x i=(1 I){E ~w ~ (10)

In the high-energy limit (p »m), {E~) = {P ) ~p;„{x),
this parametrization leads directly to the conclusion that
the expected value of x after the ¹h collision is
{x)& ——(1 I), and —similarly simple equations apply to
the energy and momentum.

Using the exact solution of the model we can calculate
this expected value:

{x )~ ——f xH (x,%)=(1—A, /2)

I
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FIG. 2. Fit to the invariant proton distribution using Eq. (8)
(Ref. 6). The parameter A, turns out to be 0.52. The data is
from Ref. 7 at p~ ——0.3 GeV/c.

FICx. 3. Fit to the invariant baryon distribution using Eq. (8).
The parameter A, turns out to be 0.43. The data is a combina-
tion from Refs. 7 and 13 at pT ——0.3 GeV/c.
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rapidity is yp « —1. Our model is valid strictly only in
the high-energy limit yp~ —oo, but essential corrections
occur only in higher-order terms of the expansion, i.e.,
when N ~ —yp, so the model is applicable to pA collisions
from about 100-GeV incident laboratory energy and
above.

H'(y, N) is plotted in Fig. 4 (with A, =0.52). We can see
that at high N values (N =5,7) the distribution resembles
the shape estimated in Ref. 3 for the central part of the
lead nucleus. The distributions for 2V=5—7 are clearly
peaked at finite y values and the spread of the distribu-
tions is Ay —=3—4.

III. CONCLUSION
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FIG. 4. Plots of H'(y, N) for several values of the collision

number versus projectile rapidity y.

Consequently, our inelasticity coefficient is I =A, /2. The
advantage of using the inelasticity I arises when we com-
pare models where the assumptions about the probability
distribution Q(x) are different but Eq. (10) is still valid.
Many of the observable physical quantities in the model
depend only on I (e.g. , since Wong's model is a special
case of ours with A, = 1, in his model I= —,

' ).
The momentum-degradation length can be expressed

with the inelasticity parameter if we assume that, in nu-
clear matter, the average number of collisions the incom-
ing proton suffered after penetrating to a depth z is

N(z) =powNNZ (12)
I

Assuming a Poisson distribution' with the mean given by
Eq. (12), and using Eq. (10), we have

oo

p(z) =p(0)e g (1 I) N =p(0)e-
N=p

%'ith the definition of momentum-degradation length A&
we can have the following expression for all sequential-
scattering models satisfying Eq. (10):

1
Ap ——

Ippo ~~ I (13)

where l is the mean free path between two collisions of a
baryon in the target matter.

Using pp
——0. 17 fm our estimated A& lies between 5.7

and 6.9 fm based on the fits to proton and all baryon cross
sections, respectively. Hence, A& is about four mean free
paths. The model gives, of course, the rapidity distribu-
tion of the baryon after each collision, not only the mean
momenta. The distribution in the variable y is given by
H'(y, N)—:H(e~, N) since y =lnx. Now we use the frame3
where the projectiles rapidity is y=O and the target

All models mentioned so far, save one, are based on
the assumption of sequential scattering along straight-line
trajectories. The basic difference in these models is pro-
vided by the choice of the distribution function Q (x) (Fig.
1). Comparing the models by means of the inelasticity pa-
rameter I, however, enables us to disregard the specific
form of the Q function. The other details of its shape are
not apparent in the already measured data anyway. Most
models give I=0.18 to 0.25 and A& ——5.8 to 8.8 fm. The
exception is Ref. 5 where I=0.5 and so A~ is decreased to
5.3 fm. In the last analysis, in contrast to the others,
there is no free parameter introduced other than absolute
normalization. However, in our opinion the fit to the
heavy-nucleus data is less satisfactory than the other
analyses. Furthermore, the density of nuclear matter used
was 0.122 fm, which is less than the accepted value.

The number of free parameters in these models is usual-

ly two: one for the inelasticity I and one for the normali-
zation g (pT ) or wing(pT). If proton and neutron cross sec-
tions are fit separately, the introduction of a new parame-
ter wz is necessary. (Then w„= 1 —w~. ) In Ref. 4 the
number of parameters is effectively doubled by treating
the first and subsequent collisions differently. This seems
to be reasonable physically but at the present stage of
analysis there seems to be insufficient information to fit
all parameters accurately. This is indicated by the fact
that Ref. 4 and the present work essentially agree on the
basic parameter I.

Our conclusion is that the linear baryon cascade model
is consistent with the final-baryon longitudinal-
momentum distribution in high-energy proton-nucleus
collisions. This does not mean that baryon-baryon col-
lisions in nuclear matter are the same as in free space as
evidenced by the possibility that I may be different in the
two situations.

Cautionary remarks are always made when contemplat-
ing the implications of proton-nucleus collisions for
nucleus-nucleus collisions. These are well taken.
Nevertheless, we cannot restrain ourselves from making
the following observations. Essentially all models agree
that an incident baryon loses about 1 unit of rapidity in
every 7+1.5 fm of nuclear matter. If naively extrapolated
to nucleus-nucleus collisions this would imply that the
centers of heavy nuclei such as Pb or U could stop each
other up to a projectile-target rapidity difference of 4



31 DECELERATION OF HIGH-ENERGY PROTONS BY HEAVY. . . 2799

units, or 25 GeV per nucleon in the laboratory system.
This would be a good beam energy to study high-energy-
,density matter rich in baryons. The incident energy
would have to be much higher" to make a baryon-free
environment of high-energy-density matter.
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