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Possible stabilizing lever for the phase-shift analysis of hyperon-nucleon scattering
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Incomplete and error-affected data, coupled with a large number of phase shifts and coupling pa-
rameters, have made the phase-shift analysis of hyperon-nucleon scattering an ill-posed problem in
the sense that one can always get equally reliable different sets of solutions. We conjecture that op-
timal exploitation of the analytic structure of the helicity amplitudes can possibly act as a stabilizing
lever and help to distinguish between the equally reliable solutions. To this end we used the
accelerated-convergent-expansion technique of Cutkosky and Deo and, as an example, applied it to
X+p ~X+p scattering at 150 MeV. We obtained a definite economy in the number of free parame-
ters and, using changes in P as an indicator of the stability of the fit, observed that our procedure is
very sensitive to changes in the solutions of the free parameters.

I. INTRODUCTION

In hyperon-nucleon scattering one is handicapped by
the absence' of a hyperon beam of fairly long lifetime.
Even for those hyperons directly produced in a bubble
chamber, the path length is so short that scattering is a
rare event. In fact, Berkeley experiments show about one
Ap scattering per 1000 pictures taken. Thus, only insuffi-
cient data are available in the cut t plane and the problem
one is faced with is to obtain from this incomplete and
error-affected knowledge all the phase shifts and coupling
parameters which are likely to be excited at the energy
considered. With six independent helicity amplitudes,
the number of these free parameters, even at low energy,
is quite large. This is, in general, an ill-posed practical
problem in the sense that minute changes (errors) in the
input data may provide uncontrollable responses" in the
output (i.e., phase shifts and coupling parameters). If,
however, the differential cross section is uniquely deter-
mined (in the mathematical sense) by the values (i.e.,
data), then, of course, this difficulty will not appear.
Nevertheless, as soon as one admits of the thinnest error
corridor around these data values, one is already able to
slip inside it amplitudes differing among themselves as
much as one might wish. And this becomes more pro-
nounced in the case of phase-shift analysis of hyperon-
nucleon scattering as even the number of these error-
affected data is scanty and the number of free parameters
is large. This is perhaps the cause of the equally reliable
different sets of phase shifts and coupling parameters ob-
tained by earlier workers in single-energy phase-shift ana-
lyses of hyperon-nucleon scattering, wherein they have
used a multichannel ND ' formalism in the framework
of the one-boson-exchange model, or have used various
forms of potentials by drawing their inspiration from the
success of such attempts in describing XX scattering. '

To control this defect of a possible whole set of tauto-
logical solutions, one has to choose a stabilizing lever. In

the background of scarcity of high-statistics data, the
number of equivalent solutions can perhaps be reduced by
reducing the number of free parameters appearing in the
analysis. To this end, optimal exploitation of the analyt-
ic structure of the helicity amplitudes using conformal
mapping can possibly be a stabilizing lever. While
respecting the analytic structure of these amplitude and so
taking into account the forces responsible for the scatter-
ing, this technique is likely to reduce the number of free
parameters needed for the phase-shift analysis of YIV

scattering.
Recently Marker, Rijken, Bohannon, and Signell, in at-

tempting to reexamine Chao's phase-shift analysis of
medium-energy pp scattering using conformal-mapping
techniques, have observed that there is not sufficient
physical information contained in the analytic properties
of the amplitudes to significantly reduce the number of
free parameters in pp phase-shift analysis in Chao's form
of the method. This overrules the strong optimistic con-
clusions of Chao. However, Marker, Rijkin, Bohannon,
and Signell have also commented that the technique
seems to provide a smooth transition between low-L,
"searched" and high-L "nonsearched" phases. Apart
from these efforts to extract the phase shift of pp scatter-
ing, this technique has yielded fruitful results in the
phase-shift analysis of other processes. ' We plan in this
paper to extend the technique to the helicity amplitudes of
the hyperon-nucleon scattering.

The plan of this paper is the following. In Sec. II, we
review the conventional phase-shift-analysis method for
hyperon-nucleon scattering. Sec. III contains the formu-
lation of our method of phase-shift analysis. In Sec. IV
we apply our technique to the simple case of X+p elastic
scattering to examine whether our conjecture that optimal
exploitation of the analytic structure of the helicity ampli-
tudes could be a stabilizing lever is correct or not. 'In Sec.
V a brief discussion of the results and the conclusion is
presented.
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II. REVIEW OF CONVENTIONAL
PHASE-SHIFT ANALYSIS

In hyperon-nucleon scattering, one analyses primarily
the processes

AX~AX,
XIV ~XX,
AX—+XN .

The scattering process is described in the center-of-mass
system by a matrix @ in spin space, defined in such a way
that the differential cross section is given by
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where A, 'Y and X~ represent the spin states of the outgoing
hyperon and nucleon, respectively, and A, Y and k&, the
corresponding values of the incoming hyperon and nu-
cleon. For the scattering of spin- —,—spin- —,

' particles
there are 16 possible helicity states; i.e., @;, i =1, . . . , 16.
However, parity conservation and time-reversal invari-
ance
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reduce these to eight independent helicity amplitudes.
Following the formalism developed by Jacob and Wick, '

they are

N; Y Y ——partial helicity amplitudes,

d ~ ~ ——reduced rotation matrix,

A, =difference in helicity in the initial states,

A, =difference in helicity in the final states .

kY and kY are the lengths of the three-vectors corre-
sponding to the four-momentum of the Y' hyperon and Y
hyperon, respectively, in the c.m. system, where Y' and Y
designate the outgoing and incoming hyperon. These
equations differ from those of Lettessier and Tounsi by a
factor (2) '~ in the definition of a. Thus for the pro-
cesses (1) and (2), Y = Y' and 4's Y Y

——C&7Y Y and
+6Y' Y +8Y' Y

The differential scattering cross section is then given by

2 16 oo oo

g p p ( —l)~ @;4&; g (JJ',k' —A,
I

10)(JJ',X' —A,
I
10)P1(cos8), (15)

d 0 (2SY+ 1 )(2S~ + 1 ). ; 1 J 0 g

where SY and S& are the spins of Y hyperon and the nucleon. This equation differs from that in Ref. 3 by the spi»ta-
tistical weight. '

For a phase-shift analysis one is then interested in the transition amplitudes between states of given orbital momen-
tum. Let us denote these eight amplitudes as

R1 ——RsY Y, transition in the singlet states

R2 ——RTY Y, transition in the triplet states with l =J
J J=lR 3 =RSTY'Y
J J=lR4 RTSY'Y .

J l =J+1R 5 RTTY'Y

J l=J —1R 6 =RTTY'Y
J J—1,J+R 7 =RTTY''Y

J J+1,J-R 8 =RTTY''Y

transitions between singlet and triplet states

transitions between triplet states with l&J . (17)
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Following Lettessier and Tounsi, we give the relation between the R matrix and the partial helicity amplitudes:
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where

aJ —— , bz ——[J(J+1)]'~, and cJ ——J+1 .2J+1 '

The elements of the column matrix on the left-hand side of Eq. (18) which represent the partial transition amplitudes for
l =J (R

&
to R 4) and for l&J (R 5 to R 8 ) may be written as the elements of an 8 X 8 matrix R:

R ~AA R 3AA R ~XA R 3XA
J J J J

R4AA R2AA R4XA R2XA 0 0 0 0I J J J

R)xA R4xA R )xx R3xx 0 0 0 0J J J

R 3xA + 2xA R 4xx R 2xx
J J J

R5AA R7AA RSXA R7XA
J J J

8AA R6AA R8XA R6XA
J J J J

0 0 0 0 R5xA R8xA R5xx RJ J J J

R7xA R6xA R8xx R6xxJ J J J

The R matrix is related to the scattering matrix S,
which is symmetrical and unitary, by the relation

{Ark~~S ~Ark~) 5~, , =i(krA~~R ~Ark~) .

(20)

de Swart and Dullemond a simpler representation is

(23)

where the coupling matrix is real and antisymmetric. For
the simple case of n =2, where one needs only one cou-
pling parameter e, the coupling matrix is represented by

0 —tan(e/2)
tan(e/2) 0 (24)

III. METHOD OF PHASE-SHIFT ANALYSIS

In passing we note that, although by convention, the
eigenphase shifts are labeled by one hyperon and by well-
defined values of J, I, and 2S+1, still the labeling does
not mean that the phase shifts contribute to the channel
with only the same quantum number. ' However, such a
convention is helpful in the bookkeeping of the large
number of phase shifts one is likely to encounter in a mul-
tichannel phase-shift analysis of hyperon-nucleon scatter-
ing.

This symmetric and unitary matrix S is characterized
by n (n +1)/2 real parameters, where the value of n de-
pends upon the number of coupled channels excited at any
particular energy. Being symmetric and unitary it can be
diagonalized by a real unitary matrix U:

An essential property of all the helicity amplitudes is
that the analytic structure of all of them is same; i.e., they
are analytic in the cosH =x plane except for the cuts

S=U 'AU,

where

(21) and

b JJ
=exp(2i5) ) (22)

and 6J. are the real eigenphase shifts and account for n
real parameters. The other n(n —1)/2 parameters are
used to characterize the matrix U. These n (n —1)/2 pa-
rameters define the coupling between various channels
and as such for, say n =4, one will have six of these "cou-
pling parameters. " Following Lettessier and Tounsi and

where x+ and —x correspond to the two-particle
thresholds of the t and u channels, respectively. We wish
to express these helicity amplitudes as polynomials in x or
in some suitable variables such that the expansion is high-

ly convergent. This will help us to approximate the heli-

city amplitudes by only a few terms in the expansion; thus
we will be using only a few parameters, the coefficients of
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and

W=(x+X +x X+ )/(X+ +X ) (25)

the expansions, and the problem of handling a large num-
ber of parameters can be minimized. This can be
achieved if the domain of convergence of the polynomial
coincides with the entire domain of analyticity of the heli-
city amplitudes.

To this end we first symmetrize the cuts by mapping
the x plane onto a auxiliary m plane in which the cuts run
along ( —0D, —8') and ( W, ao), where

formidable because of the existence of an infinite number
of them in Eqs. (31) and (32), in actual practice when one
is supplied with a limited number of error affected data
points, one can truncate these expansions and still get a
tolerable fit to the data. One then has to handle only a
few coefficients. However, since the expansions in (31)
and (32) are accelerated convergent expansions, these suit-
ably truncated series will still then be the best approxima-
tions to the actual helicity amplitudes in so far as a fit to
the cross section data is concerned.

X =(x —I)'i (26)
IV. APPLICATION TO X+@SCATTERING

The mapped plane w is defined by

w =(x —xo)/(1 —xxo),

where

(27)

xo ——(x —x+ )/(x+x +X+X —1) . (28)

We then map the w plane to a unifocal ellipse in the Z
plane such that x =+1 maps onto Z=+1, and the cuts
are mapped to form the boundary of the ellipse. Z is
given by

Z =sing(w, ko),

P( w, k) =mF(arcsinw, k)/2K(k),

(29)

(30)

where, F(g, k) and K(k)=F(m. /2, k) are, respectively, the
incomplete and complete elliptic integrals of the first
kind. Their modulus is ko ——1/O'. We construct the real
and imaginary parts N; ' and N; of the helicity ampli-
tudes as expansions in Chebyshev polynomials T„(z), be-
cause the domain of convergence of T„(z) is an ellipse and
coincides with the domain of analyticity of N; in the Z
plane: 1

@;' = g a;„T„(z), (37)

We now proceed to test the degree of stability of our
method of phase-shift analysis by applying it to X+p
scattering. For this energy-dependent phase-shift analysis
we choose the energy 150 MeV for three reasons: (i) the
energy is low enough to be free from interference from
other two-particle channels; (ii) however, it is high enough
to excite partial helicity amplitudes with large J values so
that stability in the framework for a least —X fit can be
judged; and (iii) the Coulomb-interaction effect is also
negligible at this energy. For this scattering of
X+p~X+p the number of helicity amplitudes reduces to
six only; i.e., from Eq. (7) to (12). These helicity ampli-
tudes are analytic in the cosO=x plane except for the cuts
x+ &x & —ao and —x)x) —m, where

x+ ——1+4M' /2K@ (35)

x = —1 —(Mg+M~) /2ECx (36)

In our analysis we observed that only two terms in each of
the expansions for C;~x and N;zx are enough to give a
good fit to the differential-cross-section data at 150 Mev;
i.e., in this analysis

@ r'y ——g a;„T„(z),
n=0

(31) n=0
1

N;'xx ——g b;„T„(z) . (38)
4&,'yy ——g b;„T„(z) .

n=0
(32)

Once the helicity amplitudes are constructed from (31)
and (32), any partial helicity amplitude is easily projected
out by exploiting the orthogonality of the reduced rotation
matrix:

g a &„T„(z) sinOdood0=I & 1A

n=0 2
(34)

Values for these partial helicity amplitudes, thus obtained,
can also be calculated using the phase shifts 5J., the cou-
pling parameters e, and the transformation matrix be-
tween 4&;z ~ and R;. One then obtains a relation between
the coefficients of the expansions (31), (32) and 5J, ej. Al-
though the problem of evaluating these coefficients seems

1T J JJ

0
sinOd~~ d~~ dO= 2J+1 JJ'

As an example, it is easy to note from Eqs. (7), (31), and
(33) that

n=0

Consideration of more terms in these expansions did not
exhibit any perceptible improvement in the fit.

The specific computational procedure for the phase
shift analysis was the following. In the absence of any
published numbers for the differential cross section, we
took (since our aim was to test our prescription) the
differential-cross-section curve of de Swart and Dulle-
mond as our input data and took 10% of these input data
at each point considered as their error bar. Using the
equations (37) and (38) we tried to fit these data and thus
obtained an estimate of the coefficients a;„and b;„. Then
using Eq. (34) we computed the values of the various par-
tial helicity amplitudes, which form one of the matrices in
the product of Eq. (18). The elements of the R matrix
were then written in terms of the phase shifts and cou-
pling parameters using Eqs. (20)—(22) and (24). Thus on
the left of the matrix Eq. (18) we had terms containing
phase shifts and coupling parameters and on the right of
the Eq. (18), we had just numbers and so the order of
magnitudes for 5; and e; were easily obtained. To per-
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10

150 MeY
TABLE I. Values of the a;„and b;„appearing in Eqs. (37)

and (38) as obtained in this analysis.

ai' n

6—

b[& 4-

I
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I

120 1800 90 $50

e(de g r e es)
FIG. 1. Differential-cross-section curves at E1,b ——150 MeV

for X+p —+X+p. Dot-dashed curve, our analysis; solid curve,
analysis of de Swart and Dullemond. '

1

2
3
4
5

6

1.389 5

0.350 78
—0.928 67

0.348 91
0.127 67
0.11637

1.067 4
—0.959 46
—0.621 74

0.342 77
—0.256 76
—0.259 95

—0.476 52
0.468 04
0.638 41
0.303 88

—0.1502
—0.126 02

0.368 92
0.361 05
0.433 1

0.232 2
—0.054 515
—0.033 299

form the phase-shift analysis we then did the following.
(i) We used values for 5; and e; around the estimates we

had obtained.
(ii) We calculated the values of the coefficients a;„and

b;„by now treating them as unknown.
(iii) We obtained @;~x and N;xx, which now closely ap-

proximate the actual helicity amplitudes. Then we calcu-
lated the cross section using Eq. (15) and fitted it to the
data. Our curve is given in Fig. 1 along with the curve of
de Swart and Dullemond, which we took as the input
data for our analysis.

In our analysis the first 12 phase shifts and coupling
parameters were the input parameters as they were
enough to obtain the 24 coefficients (Table I) appearing in
Eqs. (37) and (38). In Table II we give the best values for
these 12 phase shifts and coupling parameters as obtained
from our analysis (X /DF=0. 133) along with those of a
few earlier workers ' ' for comparison. For this compar-
ison we have taken care to convert' the nuclear bar phase

shifts and coupling parameters of Nagels, Rijken, and de
Swart to eigenphase shifts and coupling parameters. Al-
though the results of Lettessier and Tounsi and Nagels,
Rijken and de Swart are not exactly for an incident X+
laboratory energy of 150 MeV, still, as they are very close
to it, we have also included them in Table II. A look at
the table demonstrates that these five sets of values of ear-
lier workers, ' ' which are the predictions of different
models, vary significantly among themselves sometimes in
magnitude and sometimes in sign which we mentioned as
a possible apprehension as one is asked to extract the
values of a large number of parameters from incomplete,
error affected knowledge. However, one can still see some
pattern. Except for the recent works of Nagels, Rijken,
and de Swart, others ' have obtained values around
25—35 degrees for 'So as we do. Similarly, except for
I.ettessier and Tounsi (who got a negative sign for 'P& ),
other workers reported a large positive value for 'P& and
we have got 21.9 degrees. Our values for P& and e2 are
of the same order and same sign as those in Refs. 5 and 6.
We obtained very small values for 'D2 and it is hearten-
ing to note that de Swart and his group, with their modi-

TABLE II. Single-energy solutions with 12 phase shifts and coupling parameters at E1,b ——150 MeV.
The phase shifts and coupling parameters are in degrees. The results of Refs. 3, 5, and 6 are also given
in comparison.

Phase
shifts and
coupling

parameters

's'0
1pX

1

3pX '

1

1DX
2

3DX
2 '

3pX

3S'
1

3 X

D 1

3pX
2

F2

3~X
2

Our
analysis

35.6
21.9

—27.5
0.024
1.5

25.1

—11.5
17.1

2.3
4.4

—30.05
—2.97

Analysis
of

Lettessier
and Tounsi

(1971)

33.5
—33.0

14.0
10.0
7.0

19.5
—4.0

14.0
—10.0

18.0
21.0

—0.5

Analysis
of

Bryan
et al.
(1958)

22.6
26.6

—18.4
6.4

—6.7
17.5
52.7
0.9

—1.8
19.5

—12.3
—2.7

Analysis
of

de Swart
et al.
(1977)

25.6
32.2

—17.7
5.8

—5.5
6.6

—35.2
11.8
3.4

18.4
—10.9

0.4

Analysis
of

Nagels
et al.
(1977)

5.66

74.55
—12.54

5.79
—3.75

4.39
—30.77

9.68

3.05
10.05

—16.02
0.29

Analysis
of

Nagels
et al.
(1979)

7.07
66.4

—18.46
4.62

—5.47
3.91

—44.12

9.77
2.67
5.62

—36.0
—1.46
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TABLE III. Predicted values for phase shifts and coupling
parameters E~,b ——150 MeV. The phase shifts and coupling pa-
rameters are in degrees. See text for meaning of asterisks.

70

60—
150 MeV

Phase shifts and
coupling parameters

Predicted
values

50-

'e~ (+)
'e~ (*)
1FX

3

'+g (*)
3~X

3

1GX
4

'e& (*)
3@X

'H
5

(gc)
3aX

5

6

'e~ ( + )

6

(a) J =1
' —0.24

0.86

0.002
—2.0
—0.76

0.00006
0.6
0.46
0.001 8

—0.18
—0.3
—0.003 7
—0.85

0.22

3DX
3

3

3GX
3

3~X

3

3IIX4
3@X

5

3

5

3IIX6.
3

3JX
6

(b) E,'~&1)
—1.0
11.8
0.32

1.0
4.6

—0.59
—0.4

14.6
0.11

—5.3
—2.7

5.5

fied potentials, have also got small values for 'D2. Our
value of I'o, although it compares well with that of Let-
tessier and Tounsi, is a bit larger than those in Refs. 5
and 6. A comparison of the values of S& as obtained by
Lettessier and Tounsi and those in Ref. 6 shows that our
value of —11.5 could be correct. Our values for D~ and
Pz match well with those of Nagels et al. , although

they are at variance with those in Ref. 3. The —0.5 for
I'2 as obtained by Lettessier et al. , —2.7 by Bryan

et al. and —1.46 for Nagels et al. compare well with
our value. Moreover, we have also predicted 26 more
phase shifts and coupling parameters which are likely to
be excited'at that energy. Our predictions are given in
Table III. It is interesting to note that we have obtained
values for the coupling parameters between the two spin
states for J=I, marked with an asterisk, for which de
Swart et al. ,

'

Bryan et al. , and Nagels et a/. in their
second paper have not reported any value. As regards
the other 20 parameters, in some cases our values differ

40

30—

10—

0-15 -10 -5 0 5

Percent change in
X

10

FIG. 2. Graph g of versus change in phase shifts. Dot-
dashed curve, our fit and solid curve, the analysis of de Swart
and Dullemond.

V. CONCLUSION

The absence of accurate differential-cross-section data
and the presence of a large number of free parameters in
the phase-shift analysis of hyperon-nucleon scattering
have always with them the inherent problem of obtaining

from others in magnitude and also sign. But with incom-
plete, error-affected knowledge (data) it will not be possi-
ble to comment positively on the degree of correctness of
our predictions, except that (i) these values are predicted
from a fit with a 7 /DF value as low as 0.133 and hence
are possibly more reliable and (ii) these values are stable
against small changes in the input parameters. We used
an averaged error of 10% at each data point and so even
if one uses an averaged error of 5%, still X jDF will be
only 0.532 and hence quite reliable.

After we obtained these values, we addressed ourselves
to the crucial question of how far this economy in the
number of free parameters, obtained by exploiting the an-
alytic structure of the helicity amplitudes and by using the
accelerated-convergent-expansion technique, helps the sta-
bility of the phase-shift analysis. We proceeded in the fol-
lowing way. We went on changing the first phase shift
(i.e., 'So ) gradually and noted the corresponding change
in 7 in our procedure. We applied the same test to the
phase shifts of other workers. We note (Fig. 2) that, due
to changes in the first phase shift, g changes in a much
sharper way in our procedure than in those of earlier
workers. When we applied the same test with other
phase shifts and coupling parameters, the same result was
obtained. This shows that, even if we have error affected
scanty data, in our procedure it seems to be difficult to
obtain various sets of solutions giving the same reliability
of the fit; in other methods, due to the relative flat mini-
ma of the X parameter g-raph, one can possibly squeeze in
a large set of solutions into the error corridor without in
any way affecting the goodness of the fit. This observa-
tion can perhaps be interpreted as improving the stability
of the phase shift analysis.
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a set of equally reliable solutions, as can be seen from the
values (Table II) obtained by various groups of work-
ers, ' ' out of the predictions of their respective models.
We proposed to improve the situation by exploiting the
analytic structure of the helicity amplitudes. As a test
case, we applied our procedure to X+p —+X+p scattering
and observed the following.

(i) There is definite economy in the number of free pa-
rameters and this is essential in the background of scanty,
error affected knowledge (data). This observation, cou-
pled with the comments of Marker, Rijken, Bohannon,
and Signell indicates that in FX scattering the analytic
properties of helicity amplitudes perhaps contain suffi-
cient physical information for use to advantage in phase-
shift analysis. (ii) Our fit is very sensitive to changes in
the free parameters and thus shows greater stability of the
fit.

So we conjecture that this optimal exploitation of the
analytic structure of the helicity amplitudes could possi-

bly act as a stabilizing lever for a phase shift analysis of
hyperon-nucleon scattering. However, the acid test of this
conjecture could be a multichannel phase-shift analysis at
higher energy. The procedure has the added advantage of
predicting the phase shifts and coupling parameters for all
the J values which are likely to be excited at this energy.
We hopefully expect that this aspect of our method will
be more pronounced as data at higher and higher energy
become available.
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