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The string-flip model of quark confinement is extended and applied to two-baryon systems with
color, spin, and flavor degrees of freedom. The model avoids a pathological color van der Waals
force, unlike a conventional two-body quark-confining potential model. Resonating-group-method
calculations of the X-X phase shifts are presented for several different color-dependent potentials.
A realistic model with a short-range interquark potential and an effective meson-exchange interac-
tion is proposed and found to reproduce 'So 2V-X scattering data very well.

I. INTRODUCTION

The potential model for multiquark systems provides us
with a useful tool to investigate two- or more-hadron sys-
tems. The short-range part of the nuclear force and other
baryon-baryon interactions- have been studied by such
models. ' The interquark potential contains a confining
term which traps quarks in a color-singlet system. The
conventional form of the confining potential is a color-
dependent two-body interaction. Many previous works
have revealed that the short-range part of the baryon-
baryon (especially nucleon-nucleon) interactions are well
described by a quark-cluster-model approach using a
Hamiltonian with a two-body confining potential and a
short-range spin-dependent inter-quark potential. ' How-
ever, a difficulty of the two-body potential model was
pointed out by several authors. The model gives a long-
range attraction (van der Waals force) between two color-
singlet hadrons which is contradicted by the nucleon-
nucleon scattering data.

Recently in order to avoid the pathological van der
Waals force, an alternative, string-flip model, was pro-
posed. There quark confinement is achieved by strings
connecting quarks according to a certain configuration
rule. The model was first proposed for two-meson or
q q systeins without color, spin, or flavor degrees of
freedom and was developed to include such internal de-
grees. ' A realistic model for two-meson systems has
been constructed which takes a short-range interquark po-
tential into account.

The aim of this paper is to investigate properties of the
string-flip model in two-baryon or six-quark systems and
develop a potential model for use in the many-quark
nuclear-matter system. Csiven the complexity of nuclear
matter, such a model must in practice be a very simple ap-
proximation to @CD. Nevertheless, we find that the sim-
ple string model is still capable of reproducing many of
the conventional-quark-potential-model results' for two-
nucleon scattering. Furthermore, after reproducing two-
nucleon results the string-flip model can, in the future, be
directly applied to nuclear matter. - In contrast, the con-

ventional two-body confining-potential model suffers
from long-range interactions which, if unmodified, would
seriously distort nuclear matter.

In Sec. II we develop string-fiip models with different
color-dependent factors. Although these models reduce to
the same confining potential for three isolated quarks,
they may imply different color, spin, and orbital correla-
tions in nuclear matter.

Full resonating-group-method calculations are carried
out and the results are presented in Sec. III. We will ob-
serve many different features for the various models dis-
cussed in Sec. II.

In Sec. IV we introduce a short-range spin-dependent
potential and calculate the S-wave nucleon-nucleon
scattering phase shifts. We observe that the color-
magnetic interaction dominates over the confining poten-
tial, washing out the differences between the models seen
in Sec. III. Finally, an effective meson-exchange interac-
tion is introduced in addition to the interquark potential
which reproduces the 'So data very well.

Conclusions appear in Sec. V.

II. CONFINING POTENTIAL
FOR TWO-BARYON SYSTEM

The string-flip model of quark confinement was first
proposed for q q systems in Ref. 4. There quarks are
confined by a string potential, which is a rising function
of the distance between two quarks. In a single meson
system, the string connects the quark and the antiquark.
In a multiquark system which is totally color-singlet,
strings connect the quarks according to a certain rule of
string configuration.

A straightforward extension of the string-flip model to
two-baryon systems can be achieved if one ignores the
color degree of freedom for a moment. We restrict our-
selves to a two-body string, which is expressed as a po-
tential u(rj). We assume that U(r)ccr for simplicity.
The string potential for a single-baryon (three-quark) sys-
tern is taken as
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Vco~(three-quark) = g r;~
Vp

i &J

where three strings confine the quarks permanently [Fig.
1(a)]. A color-independent string-flip potential for a six-
quark system is given as

(2)

FIG. 1. String configurations for a three-quark system: (a)
two-body strings and (b) three-body string. {SeeRef. 6.)

where

(Rk ),„—=max Rk
IRX

and k runs over ten possible ways of grouping the quarks
into two clusters, i.e., (1,2,3; 4,5,6) for k = 1, (1,2,6; 4,5,3)
for k=2, . . . etc., and Rk denotes the separation of the
center of masses of the two three-quark clusters for a par-
ticular combination k, i.e.,

2
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..2rij (4)

or in terms of the baryon internal coordinates defined by
r1+r2

2
—r3

The meaning of the potential is simple. Suppose R1 is
the largest for a six-quark configuration, then the poten-
tial reads

tude of the Ak 's. Suppose that a baryon composed of
(1,2,3) quarks approaches another of (4,5,6) quarks. While
R1 is largest, nothing happens. However, when, for in-
stance, R2 becomes larger, the string configuration sud-
denly changes into a new combination (1,2,6)-(4,5,3) (Fig.
2). Thus two baryons can scatter into an exchange chan-
nel. V„„~ is a many-body potential in the sense that a
move of a particle can affect any strings connecting other
particles, even if they are far apart from the moved quark.
We wish to treat the baryon-baryon interaction coming
from the string recombination incorporating quark an-
tisymmetrization.

In order to calculate baryon-baryon interactions for the
Hamiltonian system with the string flip confining poten-
tial, we apply the resonating-group method (RGM). We
take a totally antisymmetric six-quark wave function

%(1, . . . , 6)=g M[PP(1,2, 3)PP(4, 5,6)XP(R123 R456)],
P

(8)
where Xp denotes the relative wave function for a channel
P and Pp(1, 2, 3) is the corresponding internal wave func-
tion of a baryon composed of the quarks 1, 2, and 3. W is
an operator which antisymmetrizes all the quarks. When
we choose a Hamiltonian and an appropriate basis for P~,
a set of equations of motion for Xp's is obtained from the
Schrodinger equation as

0=f Pp(1,2, 3)gp(4, 5,6)(H E) +(I, . . . ,—6)dg

=g f [HI3P (R,R') ENPP(R, R')]XP(R'—)dR', (9)

r4+r5
$3=r4 rS 4=—

2

we get

~conf ="0( 4 kl +7/2 + 4 g3 + 3 g4 )
2 & 2 & 2 & 2 (6)

One sees that V„„~reduces to the potential of,two isolated
baryons V;„„

Vp
V;„,—=

6 i &j&(1,2, 3)

..2
iJ +

i &j&(4,5,6)

. .2rij

Thus for two baryons well separated from each other,
where one of the Rk 's is always the largest, there exists
no interaction between the baryons, while in each baryon
the quarks are confined by the interquark string poten-
tials.

%'hen two baryons are close to each other, the string
conflguration can change according to the relative magni-

FIG. 2. Baryon-baryon scattering into a quark-exchange
channel in the string-flip model.
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where dg denotes the integration over all the internal
coordinates defined by Eq. (5). We solve this integrodif-
ferential equation for bound-state or scattering boundary
conditions.

The baryon-baryon interaction comes from the recom-
bination of the strings and is nonlocal due to the antisym-
metrization of the quarks. The local part of the interac-
tion V (R), or direct potential, is defined by

Vpp(R)= I Pp(1, 2, 3)/p(4, 5,6)(V,o„f V;„,)5(R —(R$23 R456))Pp(1, 2, 3)Pp(4, 5,6)dfd(R&23 R4—56) . (10)

The RCrM equation of motion (9) contains in addition to
V an exchange interaction coming from the antisym-
metrization. The exchange potential is nonlocal and ener-
gy dependent. It is short ranged because it requires the
orbital wave functions of the baryons to overlap. We will
see that the exchange potential induced by the quark con-
finement is relatively weak (although the short-range po-
tential gives a strong exchange interaction in Sec. IV).

The direct baryon-baryon potential for the color-
independent string-flip model, Eq. (2), is shown in Fig. 3.
The multidimensional integral (10) was evaluated by
Monte Carlo techniques. Here we take for the ground
state of the internal wave function, an orbital part

y(1,2, 3)=~exp 1 2 1 2 .
4b 3b

full ROM calculation as is seen later.
In order to make a realistic quark confinement model,

we have to consider a color-dependent potential, because
color-nonsinglet subsystems should be confined. In fact
any three-quark system including a color nonsinglet can
be free under the color-independent potential (2).

For a q2q system, a color-dependent string-flip model
was proposed in Refs. 4 and 5. There the authors intro-
duced a color projection operator to guarantee the separa-
bility of color-singlet mesons and the confinement of
color nonsinglet systems. The same idea can be applied to
the present case. A color-dependent potential is intro-
duces as (model A)

One sees that the direct potential is strongly attractive. [It
is always attractive because the maximum Rk is subtract-
ed in Eq. (2).] The attraction gives a bound state in the

where I'k is a projection operator which vanishes for the
color-nonsinglet three-quark states in the kth cluster com-
bination, for instance,

&~ ~(1,2, 3)~(4,5,6)t)= ~(1,2, 3)~(4, 5,6)&),

P, i
(1,2, 3),(4,5,6), ) =0 .

(13)

Remember that the k = 1 combination is defined as (1,2,3;
4,5,6). The parameter e controls the strength of the non-
singlet confinement: @=0 reduces to the color-
independent version, ' which does not confine nonsinglet
three-quark systems, and @=1 gives the maximum con-
finement, where every pair of the quarks is connected by a
string (Fig. 4). Here, fifteen (6X5/2X1) strings are con-
nected compared with six strings for the @=0case. When
0 & e (1, the nonsinglet three-quark system is confined.

Figure 3 shows direct potentials for several choices of e.
One sees that the attractive potential observed for the
color-independent confinement gradually turns to a repul-
sive one as e goes from 0 to 1. One can understand the

2 '-6

R/b
FIG. 3. Direct potentials for the color-independent model

(a=0) and the colored model (A) for various values of e. Model
(B) and the two-body confining potential (T) give V =0.

FICr. 4. String configuration for two color-nonsinglet
bar yons.
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V„„r= g r,J 9max (Rk— a.Ak)— (15)

where

A)=(X)+Az+A3) +(A4+A~+A6)

A, =(X,+X,+X,)'+(X4+X,+Z, )',
(16)

etc. , (17)

and A,; denotes the color SU(3) generator for the ith
quark. Because Ak &0 for a noncolor-singlet combina-
tion, the limit a —+ ao forces the maximum for k to choose
only color-singlet combinations. This new choice of the
color-dependent confining potential gives a vanishing
direct potential, because all Ak's but A& are positive for
the nonantisymmetrized wave function. So the maximum
over k gives R& and V„„rEq. (15) reduces to V;„, Eq. (7)
giving zero in Eq. (10).

It should be noted here that the difference between the
above models will be observed only in the six- (or more-)
quark system. Both potentials given above will reduce to
the same one [Eq. (1)] for a color-singlet three-quark sys-
tem. We, however, find that the N Neffective inte-rac-
tions for the various models are qualitatively similar after
introducing short-range inter-quark potentials in Sec. IV.

long-range repulsion for large E as follows: When two
baryons approach each other, the wave function begins to
contain significant amounts of components where R~ is
no longer largest. These components have a significant
probability of being color nonsinglets, i.e.,

~

(1,2, 3)~(4,5,6)~) = —,
~
(1,2,6)~(4, 5, 3)&)

+ i
(1,2, 6)s(4, 5,3)s) . (14)

vS
3

For large e in Eq. (12), the potential energy for the color-
octet (Pk =0) component is very large.

We will try another possible choice of the color-
dependent confining potential. Instead of using the color
projection operator, we impose a condition that only three
quarks which make a pure color-singlet state are com-
bined by strings. A potential which satisfies the condition
is (model B)

in this section. ) The internal wave function of a single nu-
cleon is taken as

where y is given by Eq. (11) and [3] represents that the
spin-isospin part is totally symmetric, while the color part
is antisymmetric.

Figure 5 shows S-wave scattering phase shifts obtained
by solving the RGM equation for the N Nsy-stem. Note
that the (S,I)=(0,1) (spin-singlet) and (1,0) (spin-triplet)
states are degenerate because the Hamiltonian is indepen-
dent of spin and isospin. (We introduce spin-dependent
interactions below. ) The unit of energy is co=+DO/m
and that of length is b = (muo)

' . The behavior of the
phase shifts is expected from the direct potentials shown
before. The string-flip model (A) with e =0 (color-
independent) gives strong attraction to the N-N interac-
tion and there exists a bound state at EJJ ——0.36%co. [The
model (A) potential with @=0 cannot confine the color-
nonsinglet three-quark clusters and seems not realistic.
However, it confines if e is greater than zero by any small
amount and therefore we may consider this choice as an
extreme case.] On the other hand, the phase shift for
E= 1 (fully colored model) shows strong long-range repul-
sion. The scattering length is 1.66b. The a=0.5 potential
gives a weak effective interaction. One sees a resonantlike
structure both for @=0.5 and @=1.0, which shows the ef-
fect of the attraction at the inner part of the direct poten-
tials.

The model (B) happens to give an almost identical re-
sult, where the confining potential contributes very little
to the N-N interaction. It is consistent with the weak
direct potentials seen before. The dashed curve in Fig. 5
shows the phase shifts for the conventional two-body con-
fining potential (model T),

3 2V f — Uo g (A' Ai)1 J48
(21)

P~(1,2, 3)=y(1,2, 3)
~

(spin= —,', isospin= —,
' [3];color= 1 ),

III. CONTRIBUTION TO NUCLEON-NUCLEON
INTERACTION

Resonating group method calculations for the nucleon-
nucleon (N N) system are carried ou-t using the string flip
models presented in the previous section. We solve the
equation of motion (9) for the Hamiltonian given by

A 4~0.5

H=E+V, „g,
2.

Pr' 1

2m 2(6m)

(18)

(19) -2
0 0.5 f.5

A single channel approximation is used here, which re-
stricts the sum of P in Eq. (8) to the N Ncluster state. -

(The validity of this approximation will be discussed later

E /cu

FIG. 5. S-wave scattering phase shifts for the various
models.
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where the numerical factor (—3/48) guarantees the same
Hamiltonian for a single-nucleon (three-quark) system.
The direct potential for the two-body potential model van-
ishes because the expectation value of the color operator
(A,; AJ) for two color-singlet baryons vanishes, although
the exchange interactions does not vanish. One sees very
similar behavior for (T) and (B). It should be noted here
(as was stated in Sec. I), the two-body confining potential
induces a long-range color van der Waals force, although
this is not manifest in the present RGM calculations.
The color van der Waals force may disturb the results of
the model (T) especially at low energies.

In the present calculations, we take only the N-N clus-
ter state into account. It may couple with other two-
baryon channels such as b-b„"hidden-color" (two-color-
octet-baryon cluster state), and other excited two-baryon
cluster states. ' We, however, know for the two-body po-
tential model that the contributions from the other chan-
nels are small and make no qualitative difference. For the
string flip models, the situation may change. In Ref. 5,
hidden-color (HC) states were found to play an important
role for meson-meson interactions when we take a model
which confines the HC states very weakly. Many sharp
HC-dominant resonances came out of such a model. For
the present baryon-baryon problem, the choices of the

colored confining potential are different from Ref. 5. For
the model (8), the HC state is not favored at all and there-
fore no significant effect of the coupling is expected. For
the model (A), the HC state feels more repulsion than the
N Ns-tate, although for small e the interbaryon interac-
tions for HC and N-N become almost the same. We ex-
pect little effect for large e, while the results may be dis-
turbed for small e.

In conclusion, the full RGM calculations show the re-
sults expected from the behavior of the direct potentials.
In other words, the exchange interaction is not strong for
the confining potential.

IV. NUCLEON-NUCLEON SCATTERING

We have examined the contribution of several kinds of
quark-confirung potentials to the nuclear force We. have
seen a large variety of results from strong attraction to
strong repulsion, although all the models have the same
potential for a single nucleon system.

To make the models more realistic, we introduce a
short-range interquark potential, the so-called one-gluon-
exchange (OGE) potential, ',,which is motivated by QCD,
0

-I.e.,

V,g,„—— g (A,;.A,J )
j~j EJ

'lj 2[1+—,(o;.~ )]5(r; )—
mm2 J.

1
S,JPlg NlJ

(22)

where 5;j is the tensor operator for the particles E and j.
Many authors have studied the hadron spectrum' ' and
baryon-baryon interaction' using the same kind of short-
range potential. We already know that OGE can explain
the low-lying baryon spectrum. ' ' In previous studies of
the nucleon-nucleon interaction, ' we see the following
features of the OGE potential: (1) The color-magnetic in-
teraction (CMI),

g(Ag AJ )(o.;.o~ )5(rgb ),
gives the mass difference of the nucleon and the b, and
contributes significantly to the N-N interaction. (2) The
spin-independent part is less important than CMI. (3)
The tensor interaction contributes much less. (4) Low-
energy N-N scattering is little affected by the change of
the range of the color-magnetic interaction.

In the calculation of the N-N scattering, we choose the
following values for the parameters m =350 MeV,
Uo ——230 MeV/fm, and a, =1.77. The internal wave
function of the nucleon is approximated by the Gaussian
form (11)with a condition of'

Figure 6 shows the 'So N-N scattering phase shifts ob-
tained by the RGM calculation for Hamiltonians with
various confining potentials and the short-range potential
Eq. (22). One sees that the results are qualitatively the
same for all the models considered. There exists no bound
state and the effective N Ninteraction-s are strongly
repulsive. The range of the repulsion is quite short, i.e.,
0.41 fm for (A) @=0, 0.52 fm for (A) a=1, and in be-
tween for the others. It is somehow surprising to see that
the large differences observed in the previous sections
have been washed away by the short-range potential.

(23)

where M& is the expectation value of the three-quark
Hamiltonian in the nucleon state. Equation (23) deter-
mines b=0.59 fm. The strength of OGE is chosen to
give the correct N-b; and N-N*(1440) mass differences
for the harmonic oscillator wave functions.

E (MeV)

FIG. 6. 'So X-N smttering phase shifts for the various
models with the short-range potential.
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The results obtained by the present calculation are com-
parable with previous investigations' using the two-body
confining potential (21). There the quark-exchange in-
teraction coming mainly from the color-magnetic interac-
tion explains the origin of the N-X short-range repulsion
and the experimental data of the N Ns-cattering were
reproduced by the quark-cluster model supplemented by a
meson-exchange attractive force. Because the present re-
sults with the string-flip model of quark confinement are
qualitatively the same, a similar approach is promising.

As an example, we calculate the 'SD scattering phase
shift by introducing a semiphenomenological meson-
exchange interaction. We introduce a local N-N effective
potential' F (R), which is expanded by Gaussians as

P (R)= Vaexp[ —(R/a0) ]++V„exp[ (R/a—„) ] .

05—

-0.5—
I

100

E (Mev}

0

I l

200

(24)

The parameters V„and a„(1& n & 8) are chosen so as to
make the potential F'(R) coincide with the one-pion-
exchange potential at R)2 fm, while VD and a0 are
phenomenological parameters. In order to incorporate the
effective potential F (R) in the RGM equation, we add to
the Hamiltonian integral kernel H(R, R') the correspond-
ing RGM kernel V(R,R ') defined by'

V(R,R')= f N' (R,R")1 (R")N' (R",R')dR" . (25)

Figure 7 shows the 'SD scattering phase shifts for the ex-
treme cases, i.e., (A) e=O and (A) e= l. Here a0 ( =0.9
fm) is fixed and V0 is chosen so as to reproduce experi-
mental 'S0 scattering length. We obtain Va ———274 MeV
for e=O and —491 MeV for a= 1. One sees that the cal-
culated phase shifts nearly reproduce the data points. The
values of V0 suggest the difference of the strengths of the
short-range repulsion obtained without the effective
meson-exchange potential. We wish to stress that despite
the big difference in the V0 value, the behaviors of the
high-energy phase shifts are very similar and indicate the
existence of the short-range X-X repulsion. Furthermore„
the six-quark wave function (8) at a particular scattering
energy for e=O and e= 1 are very similar (except a small
discrepancy coming from the difference of the phase
shifts). The wave function also coincides with that for the
two-body confining potential, although the results for the
latter may be modified by the color van der Waals force.
Thus, we cannot find any sign which indicates a qualita-
tive difference between the various models discussed
above. The primary effect of the confining potential is on
the single nucleon internal energy. Therefore the confining
potential has less effect on the phase shifts than the short
range (color-magnetic) interaction. '

V. CONCLUSION

We have examined several choices of the string-flip
model for two-baryon systems. They show quite different

FIG. 7. SD N "N scattering phase shifts for the models (A)
@=0 and (A) e = 1 with the effective meson-exchange potential.
The dots are the result of the phase-shift analysis by MacGregor
et al. (Ref. 18).

N Neffectiv-e interactions with each other. However, the
differences coming from the quark confinement are al-
most eliminated by the short-range interquark potential
and an effective meson-exchange interaction. Because the
latter is phenomenologically determined for each confine-
ment model, a more fundamental approach including the
meson-exchange potential might give a criterion to choose
a particular model. The string-flip models have achieved
similar success as the two-body potential model in ex-.
plaining the short-range N-N interaction without suffer-
ing from a color van der Waals force.

Without the color van der Waals force, the string-flip
models can be applied to nuclear matter. Furthermore,
the different color-dependent models may allow one to in-
vestigate the complex color, spin, and orbital correlations
expected in hadron matter. In fact, some preliminary cal-
culations have already been done. First, color-
independent versions have been applied in both one and
three space dimensions. ' Also, work is underway to
describe quark matter using a simplified version of model
(B) where a cluster must have three different colored
quarks (if not necessarily a color-singlet). '7 Thus, string-
flip models which describe the N Ninteraction m-ay be
useful to investigate quark degrees of freedom in nuclei.
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