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Comment on the anharmonic oscillator and the analytic theory of continued fractions
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It is shown that the analytic-continued-fraction method may lead to wrong results for the eigenvalues of
the anharmonic oscillators of the type ax + bx + ex6 with c ) 0.

Anharmonic oscillators of the type ax +bx +cx with
c & 0 have been studied extensively by Singh, Biswas, and
Datta' using the theory of continued fractions and the
method of the Hill determinant. They have considered the
eigenvalue equation

tion

(2n + 2+ v) (2n + 1+v)a„+~ + [E +p(4n + 1+2v) ]a„

+ [p' —a —(4n —1+2v)n]a„~ =0 (6)

+ V(x) y(x) = Ey(x)
dx

with the potential energy given by

V(x) = ax2+ bx + cx, c & 0 . (2)

It is well known that there are an infinite number of
discrete energy levels if the potential energy V(x) increases
to infinity as Ix I ~, and there cannot be any energy level
smaller than the least value of V(x). The potential (2) is
always bounded from below for all values of a and b, and
therefore all the energy eigenvalues cannot be negative for
this problem. The WKB approximation gives positive-
energy excited states for this potential. It is shown here
that for some values of the parameters a and b, the Hill
determinant method of Singh et a/. ' fails to produce positive
eigenvalues for the potential (2). It is necessary that along
with the eigenvalue condition the condition of normalization
of the wave function should also be imposed. The implica-
tion of the boundary condition P(x) 0 as Ix I

m is dis-
cussed here.

The Schrodinger equation (1) is transformed to the form

d2&
2

+2( —o'x +px) + [(p —a —3n)x +E+p]/=0
dx dx

by making the substitution

y(x) = exp( —
~ nx'+ —,

' px')@(x), (4)

y(x) = X a„x'"+",
n =0

where v = 0 for the even-parity solution and v = 1 for that of
odd parity. The coefficients a„satisfy the difference equa-

where a=c'i & 0 and p= —abc 'i2. It is clear from the
differential Eq. (3) that x = 0 is an ordinary point and x = ~
is an irregular singular point of the differential equation.
Therefore in the region IxI ( ~ Eq. (3) admits convergent
series solution

With n =0, 1, 2, . . ., and a 1=0.
The necessary and sufficient condition that nontrivial a„

exist is that the infinite Hill determinant vanishes:

b11 b12 0

b22 b23 =0, (7)
b32 b 33 ~ ~ ~

where the nonzero tridiagonal matrix elements b~ are given
by

b;; '= E + (4i —3 + 2y )p,
b;;+ ) ——(2i + v) (2i —1+v),
b;; t= p —a —(4i —5+2m)n .

(8a)

(8b)

(8c)

b„+ ) „=p —a —(4n —1+2v) n = 0

the infinite Hill determinant (7) reduces to the form

(10)

C
0 ~ = I& I I&l,

where IA I =D„ is an n x n determinant and IB I is a deter-

If D„denotes the first n x n determinant then

Dn bnn Dn —1 bn —1 n bn n —1Dn —2 ~

By repeated application of Eq. (6) we can express all the
coefficients in terms of ao.

a„= ( —1)"aoD„/(2n+ v)! .

According to Singh et al. ' the zeros of D„ in the energy
parameter E wi11 determine the energy eigenvalues of the
problem when n ~. It has been pointed out that all
the eigenvalues should not be allowed since the boundary
conditions P(x) 0 as x +~ are not incorporated into
the method. Since x =~ is an irregular singular point of
the differential Eq. (3) the series (5) may not be valid at
x = + ~. The boundary conditions are satisfied when the
series (5) terminates.

When
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minant of infinite order:

bn + l,n + 1 bn + 1,n + 2

bll+2II+j bll+p, II+A bg+gg+3

Now the vanishing of the Hill determinant means either (i)
[~ (

= 0 or (ii) [8 f
= 0.

(i)
~
3

~

= 0. The n number of roots will appear from the
vanishing of D„whence a„=0 follows. It is clear from the
recurrence relation (6) that if a„=b„+I„=0, then
a„+I= a„~q= . =0 and @(x) reduces to a polynomial in
x. This feature immediately raises the question as to what
happens to the remaining eigenvalues as we must have in-
finity of solutions. Singh et al. conjectured that the
remaining infinity of solutions are obtained from the zeros
of the infinite determinant B. We would like to show that
this conjecture may lead to wrong results.

(ii)
~
8[ = 0. The zeros of (8( given by Eq. (12) should

be examined with respect to the constrained values of the
couplings which satisfy (10). Let us take the simplest case
in which bq1= 0 or

P' —a —(3+2v)«=0 (13)

8„= $ p, (P)E",
r=0

(15)

with p„(P) =1. It can be easily checked that for P & 0 the
coefficients of successive powers of E alternate in sign,
showing that there are no real negative zeros of 8„. When
P ~ 0 all the coefficients p, (P) are non-negative indicating
that B„will never vanish for any real positive values of E.
But we already know that all the eigenenergies cannot be
negative for this problem. Thus, the Hill deterrhinant
method may be applicable for P & 0 and the method fails to
produce all the correct eigenvalues for P ~ 0, which is con-
sistent with the earlier observation made by Znojil. 8 By
constructing the auxiliary continued fraction in terms of
T„=a„/a„~, n = 1, 2, . . . , Znojil has shown that the

.Green's function G(E) of Singh et ai. ' is unphysical for
P ) 0. He has further shown that for P & 0 the poles of
G(E) coincide with the anharmonic binding energies. Our
method is completely different from that of Znojil in the
sense that we have examined here the zeros of the Hill
determinant directly and have shown that the method may
fail when P ~ 0. It is also true, in general, when b„+I„=0
and P ~ 0. The correct eigenvalues may be obtained by an
analytic continuation of the continued fraction accomplished
with the aid of modified approximants.

~A ~
is then a 1 && 1 determinant which produces the eigen-

value E = —(1+2v)P. The corresponding unnormalized
eigenfunction (apart from the exponential x factor) is

@(x)= aox". If B„denotes the first n && n determinant of 8
we have the following difference equation satisfied by B„:

8„=[E+ (4n + 1+2v)P]B„

+ 4(n —1) (2n + v) (2n —1+ v )nB„

with Bo = 1 and BI = E + (5+ 2v)P. If we expand 8„ in
terms of the parameter E, we find that B„ is a polynomial of
degree n,

L ~( /4)P( P/2)»+ I —2P

p!(K + 1 —2p)!
(17)

where I. =K/2 or (K+1)/2 whichever is an integer. The
corresponding bound on D~ is

~ (2K + v )!(n/4)'( —P/2)
(18)

p —0 00 p!(K +1—2p)!

For each eigenvalue as determined by the vanishing of the
Hill determinant the normalization condition (17) or (18)
should be checked. .

It should be mentioned that our proof of nonapplicability
of the method of the Hill determinant applies only to those
values of the couplings for which P & 0 (b & 0) and which
satisfy the conditions of constraint such as to cause the ap-
propriate Hill determinant to factor and not for all P & 0.
However, the bounds on a» and D» as given by (17) and
(18) are true for all values of the couplings. When the Hill
determinant is factored into two determinants, the zeros of
the determinant of finite order give the correct eigenvalues
and well-behaved eigenfunctions, whereas the zeros of the
determinant of infinite order may give rise to spurious
eigenvalues. A particular feature of the eigenvalues of the
potential ax +bx +cx is that Rayleigh-Schrodinger pertur-
bation theory may not be applicable for negative b. This po-
tential has been discussed by a number of authors ' in the
context of negative b. Recently, Banerjee and Bhattachar-
jee" have developed a scaled Hill-determinant technique
and equivalent harmonic-oscillator model for the potential
V(x) = +x + Xx for all values of the coupling parameter

The Hill-determinant method also works extremely well
for the x +A.x™anharmonic oscillators. One should be
cautious in applying the method of the Hill determinant for
the doubly anharmonic oscillator of type given by (2) partic-
ularly when some of the couplings of the potential are nega-
1ve '"

For the even-parity solutions we choose a = —2, b = —2,
and c = 1 so that the condition (13) is satisfied and at the
same time P ) 0. We compute the first two even-parity
eigenvalues by solving the Schrodinger equation (1) numer-
ically and obtain the results —1.000 and 3.628, which clearly
show that the conjecture of Singh et al. ' is not correct.

We have examined here the vanishing of the determinant
B„and have shown that B„ for any finite value of n will
never vanish for any real positive value of E when P «0.
From the difference equation (14) we find that if B„and
8„ t are positive for E ) 0 and P ~ 0 then 8„+Iis also pos-
itive for E & 0 and P ~ 0. In this way we assume that the
proof constructed here is applicable to the determinant B„as
n ~. It is further assumed that the zeros of finite trun-
cations of an infinite determinant in the energy parameter
converge to those of the infinite determinant.

Along with the eigenvalue condition (7) the condition for
the normalizability of the wave function should also be im-
pos'ed. We consider the absolute series for @(x). From (4)
we find that P(x) is normalizable when

@(x)«M exp(~ux' ——,'Px')/x' " as x ~, (16)

where M is a constant. By making the series expansion and
comparing the coefficients of x +' we get the following
bounds on a~.'
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