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This paper demonstrates how conditions for the existence of symmetries for particles interacting with

external background gauge fields arise easily from the standard symmetry equations. The general

phenomenon is described by the Lagrangian LUz obtained from Utiyama's original Lagrangian LU by re-

garding the gauge fields A as a given set of fields. An infinitesimal transformation X+ Y, consisting of cer-
tain combined infinitesimal coordinate and local gauge transformations, will be an infinitesimal symmetry of
LU& precisely when the Lie derivative W ~(LU&) yields a Lagrangian with identically vanishing Euler-('+ Y)

Lagrange equations. This Lie derivative is explicitly computed and is shown to contain the expressions
derived recently by several papers in the literature, as well as a new expression with possible physical im-

portance.

I. INTRODUCTION

This Comment provides mathematical details for a gen-
eral treatment, using standard symmetry-theory techniques,
of some special symmetries that recently have received at-
tention by Beckers and Hussin' for particles interacting with
external U(1) gauge fields (electromagnetic fields) and by
Jackiw and Manton and by Forgacs and Manton for parti-
cles interacting with general external gauge fields. The
standard symmetry analysis not only yields, I.n a natural
fashion, the Jackiw-M anton-Forgacs symmetry equation
(JMF equation)~ as a sufficient condition for the existence
of such special symmetries, but also shows that this equa-
tion must be modified with an additional term to cover the
more general. Lagrangians considered here. This additional
term may prove to be of physical importance in elementary
particle and gravitational field theories. The analysis also
indicates to what extent the modified JMF equation is
necessary for the existence of such symmetries.

This paper uses the general Lagrangian LU introduced by
Utiyama in his fundamental paper5 extending the ideas in
the classic Yang-Mills paper. To get LU one begins with a
global gauge-invariant Lagrangian L for the particles P and
introduces the Yang-Mills fields into L to obtain a local
gauge-invariant Lagrangian L'. Adding on an appropriate
Lagrangian M for the free Yang-Mills fields, one obtains the
Utiyama Lagrangian LU= L'+ M The ideas developed in
the cited references' ' (cf. Ref. 1 for further references on
this topic) can be described in this general setting as follows.

By substituting a given gauge field A (x) into LU, one ob-
tains a Lagrangian LUz representing particles Q interacting
with A(x), considered as an external field. In general
some symmetry is lost in passing from LU to L~~, however,
it has been observed that combining an infinitesimal
coordinate-induced transformation X= ((c, rlq) with an in-
finitesimal local gauge transformation I'= ( qO~) will give
an infinitesimal symmetry X+ Y of LU& provided the JMF
equation

DR —WgA =0
holds. The demonstration of this in the particular situations
previously considered has not been given in fu11 detail, but

has been reasoned (plausibly) by working with LU instead of
LU& and obtaining the result for LU~ by the ad hoc imposi-
tion of the JMF equation. There are complicated details
which arise when trying to implement this strategy more ful-
ly, principally due to the fact that LU and LU~ are defined
on different spaces (jet bundles). In addition, it is found
that the JMF equation (1.1) is not sufficient in general, but
rather orle needs the modified equation

D8' —WgA+ [N, A ] =0 (1.2)

For these reasons this paper works directly with LU& and
stresses the fact that, for the types of transformations con-
sidered, the standard symmetry equations for X+ Y arise
directly from the condition that

II. SYMMETRY EQUATIONS

In this section it will prove worthwhile to review briefly
the standard symmetry theory which has developed in
several forms and from various points of view in the physics
and mathematics literature. ~ The main emphasis here will
be placed on the idea that the algebra of a11 infinitesimal
symmetries X of a Lagrangian L is completely determined,
in principle, by a system of partial differential equations, the
symmetry equations, for the component functions of I
This was discussed in several previous papers and originat-
ed in Hermann's works extending Cartan's classical treat-
ment for dynamical systems.

Suppose L (x, P, P') is a Lagrangian depending on the
variables x = (x„j~= ~, the fields p = (Q'j p= ~, and their par-
tial derivatives Q'= tQ„'j„'=='~'.'. '. ~. Mathematically an inflni-
tesima1 transformation Xof the variables and fields is a vec-
tor field on an appropriate manifold E:

(2.1)

(X+ Y)1 UA

be a trivial Lagrangian. An important simplification of this
follows from the observation that since M~ is a trivial
Lagrangian, one can discard it in the symmetry analysis.
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which physicists often write in the heuristic form where

g„(x)= C„„x„+b„

q'(y) =Woyi .

(3.2)

(3.3)

(2.2)

where

(2.3)

The expression for the Lie derivative of L along the pro-
longed vector field is defined by

, (L)=g + ' +X'
x &gx

goal

(2.4)

In some previous work ' it was shown that X i's an infin-
itesimal symmetry of L if and only if W, (L ) + div($) L is a

trivial Lagrangian, i.e., a Lagrangian whose Euler-Lagrange
equations vanish identically. It was also shown how the
condition that W ~(L)+ div(g)L be trivial furnishes the

partial differential equation for the component functions g
and q of I These equations, the symmetry equations, are
exceedingly complex but the restricted class of infinitesimal
transformations X for which

(Notation: Here and in the sequel there is implied summa-
tion over repeated indices. ) The vector field X can be pro-
longed to a vector field X' (infinitesimal transformation of
x, P, and P') according to the definition

Assumption 1. For certain C, N, and b, with tr(C) =0, it
is assumed that

(3.4)

so that X is an infinitesimal symmetry of L One can show
that the collection of all matrices C, N for which Eq. (3.4)
holds with X= X~~ q ~~ forms a Lie algebra. For the Dirac
Lagrangian L, the symmetry equation (3.4) forces C to be a
matrix in the Lorentz Lie algebra, and N = N~ to depend on
C in such a way so as to give a representation of the
Lorentz algebra as transformations on the internal space. In
general, however, C and N need not be related.

Next suppose that (T'},=~ is a basis for a Lie algebra M
of m & m matrices with structure constants g'+:

(3.5)

For any choice of functions ( W'(x)},=~. . . „ let Y= Ya be
the vector field:

(3.6)

where

(3.7)

div(() = 0

W, (L) =0 (2.6) Wt(L) =0 (3.8)

Assumption 2. For any choice of constant functions 8', it
is assumed that

is a subalgebra of infinitesimal symmetries for which the
symmetry equations are evidently Eqs. (2.5) and (2.6). The
one-parameter group (g,},q s generated by such an X pro-
vides the most commonly used type of symmetry of L:

(2.7)

for every t 6 A. While in practice it is often easy to verify
that certain groups satisfy Eq. (2.7) and therefore constitute
symmetries 'of L, it is however the algebra of infinitesimal
symmetries, defined by virtue of the symmetry equations,
which furnishes the most powerful technique in the theory.

Lv= L +M

where

(3.9)

so that Yis an infinitesimal global gauge symmetry of L
With these assumptions then, the Yang-Mills-Utiyama

construction extends L to a new Lagrangian Lv which ad-
mits local gauge symmetries. One introduces a collection of
new dynamical variables A = (A„a}„'==I.'. .'~, representing ad-
ditional fields (gauge fields), together with A'= {Ag„}
representing their partial derivatives. The Utiyama Lagran-
gian is then

III. YANG-MILLS-UTIYAMA CONSTRUCTION
and

(3.10)

X(x, y) =g„(x) +g'(qs)|)xa Q I/I

(3.1)

Throughout the remainder of the paper L(P, P') will be a
given Lagrangian which does not depend on the variables X.

L could be the Dirac Lagrangian for a free electron, a
proton-neutron pair, etc. , and we wish to review briefly
Utiyama's general construction, generalizing that of Yang
and Mills, for introducing the gauge fields into L. First we
need some explicit assumptions abut the structure of the L
we start with.

For any choice of constant matrices C= {C„„},N= (N&&},

with tr(C) =0, and for any constants b„, let X=X~cb~& be
the vector field given by

M(A, A ') = —~F)„Faa"

with

Fa Aa Aa gabe(AbAc AbAc ) (3.11)

Utiyama showed that Lv possesses local gauge symmetries
and in fact any Lagrangian having such local gauge sym-
metries must have the form of Ltr in Eq. (3.9) (with M a
more general type of function of I'„'„ than we have assumed
here). Thus the fundamental contribution of Yang, Mills,
and Utiyama was to achieve local gauge invariance by re-
placing 8„Q~ by what is now called the gauge-covariant
derivative: (D„p)i—= ti„pj—A a Tiffs"
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r i g~/ i V V Jk (3.12)

IV. EXTERNAL GAUGE FIELDS

The notation with the asterisk above is designed for use
in the sequel where, for example,

ponents

(DW)„= + [ WA„]
Qx~

jl4

X~

[N, A ],= [NA„]= (DN)„.

(5.1)

(5.2)

Having reviewed the construction of the Utiyama Lagran-
gian we now consider the Lagrangian L~~ obtained from it
by substituting a given collection of gauge fields {A„'(x)]
into it. These gauge fields, considered as external fields,
will be fixed throughout the remainder of the paper. For
the sake of clarity and distinction it is perhaps best to intro-
duce the following notation for %he new Lagrangians that
arise by fixing A.

Dejiniri on ..(L„')= Bti„y (5.3)

With the preliminary discussion out of the way we are
now in a position to prove the main result.

Theorem. Suppose that assumptions 1 and 2 on L hold
and that {A„'(x)] are given functions. Suppose further that
X=X&cbbO is as in Eqs. (3.1)-(3.3) with tr(C) =0, and
that Y= Ys is as in Eqs. (3.6) and (3.7) with {W'(x)] a
given collection of functions. Then

LA(x, y, y')=L (y, y', A(x)),
m„(x) = M(A (x),A'(x) ),
LUg = Lg + Mg

(4.2)

(4.3)

where

Bti„= (DW WgA + [N,—A ] ),i„
1 *

8" QA'+ ga bcWaAb Ac 0b + gv 8 Tc

(5.4)

Comment. Since M~ depends only on x, it is a trivial
Lagrangian (has identically vanishing Euler-Lagrange equa-
tions). This being the case one can dispense with Mq alto-
gether in the determination of the symmetries and conser-
vation laws for LU~. More precisely, it can be sho~n that
since LU~ = L~'+M~ and M~ is trivial, the symmetries, in-
finitesimal symmetries, and conservation laws for L~~ and
L~ are identical. Consequently, one can work simply with

V. INFINITESIMAL COORDINATE-GAUGE
SYMMETRIES OF I.g

It will be convenient at this point to introduce some nota-
tion commonly used in Yang-Mills gauge theory. Excellent
accounts of the modern formulation are the recent paper by
Daniel and Viallet" and the storks of Hermann. '2 One re-
gards F and A„as the following Lie-algebra-valued func-
tions (values in W= span {T') ):

W(x) = W'(x) T', A„(x)= A„' (x) T'

Then A, the connection form, is the M-valued differential
one-form given by

A (x ) = A ~(x )dx~

Also DWand [N, A ] are the Z-valued one-forms with com-

+ [N,A~T'] J

Proof. The proof is quite straightforward. Since

, (L~ ) =W i (L~ ) +W i(L„)

(5.5)

Since this holds for all choices of Q' and Q„', replacing
everywhere the Q„' by Q„' —A„'Tjjlffi gives [cf. Eq. (3.12)]

r

+(N gati
—C y')t ~~i ii p vp c

f fg

=
(NtiA „' Tjgf" C„„A„'PJ@i), —. (5.6)u a k a

Using this identity and calculating the Lie derivative accord-
ing to Eq. (2.4), one finds

one calculates each part separately and using the chain rule
together with W i(L) =0, W i(L) =0 for constant W in

Y= Y~ one arrives at the asserted identity. The details are
as follows.

(a) In computing the components of the prolongation of
X, one finds the extra components in Eq. (2.3) are

X„' = Niip& —C„„p„'

Consequently the relation W i (L ) = 0 written out is

—QA

~ ! J i
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(b) In computing the components of the prolongation of
Y, one finds the extra components are

Y' = T'Q&+ W'T'QJ
~J (5.g)

V~T Q~ + V~T~QJ =0
il ~~~ ii (5.9)

Since this equation holds for all V', ill', and P'„, in particu-
lar, it holds when Q~ is everywhere replaced by
ill& —A (x) Tbp" and V' replaced by W'(x) where x is
some fixed value. With these replacements Eq. (5.9) be-
comes (suppressing the x)

W&T&yj t)L + WaTapJ t) WaTaTb Aback
re

tl g~i &J p ~~ (j Jk p,

Using this identity, one finds that

(5.10)

gbyb
p, kl

= W T TbAbyk WT TbAb—y&

QW'~ ~ BL

Now for any choice of constants V = ( V'] the relation
W i (L ) = 0 written out gives

Yp

Comment. The conditions for a Lagrangian to be trivial
have been generally described in Refs. 8 and 14. This can
be used to determine precisely when the particular Lagrangi-
an (5.12) is trivial. However, the details of this are not
especially illuminating and so will not be presented. In-
stead, we offer the following example.

Examp/e 1 [SU(l) gauge fields]. With some minor modi-
fications in the customary notation' we write our Lagrangi-
an as follows

L =
2 lq ' p~Q~q —~1/I„Q ' p~q —mq

&~ka+aPg qkP Ig ~ka+aPqkP mqk qka (5.16)

Here, the y„= (yap} are the Dirac matrices and q= (q',
. . . , q') where each q"= [qk ] consists of 4 scalar fields.
This is similar for q. Then p= (q, q) represents the total
collection of 8l scalar fields. Applying the preceding analysis
to this Lagrangian yields two results.

First, the extra term in the modified JMF equation van-
ishes and so the regular JMF equation suffices for the
analysis. To see this, note that L has coordinate-induced in-
finitesimal symmetries of the form X= (Cx,NQ) where C is
a traceless matrix in the Lorentz Lie algebra and N is a
representation of certain 4X 4 matrices Ni, N2 (depending on
C) whose action is

N(q, q) = (Niq', . . . , Niq', N2q', . . . , Niq')

Also the Lie algebra su(l) of traceless l x I skew-Hermitian
matrices [tr( T) = 0, T'= —T] gets represented as infini-
tesimal gauge transformations Y= (O, TQ) where T(q, q)
= ( Tq, Tq). Then it is easy to see that

to 4+ Y is easily computed to be
f t

V~=, g„—[(N+ W)P]' —(~L„' . (5.15)

i f

+ "W~Ab Tqj (5.1 1) [N, T) =0

The theorem now follows by combining Eqs. (5.7) and
(5.11).

Corollary 1. X+ Y is an infinitesimal symmetry of L~ if
and ony if

BL
~Vi ~ (5.12)

r

'W +g ~W Ab —A'& +g ~ =0C v QgC

()x~ Qxy
(5.14)

Furthermore, when Eq. (5.13) holds, the standard expres-
sion'3 for the conserved vector [div( V) = 0] corresponding

is a trivial Lagrangian.
Corollary 2. A sufficient condition for X+ Y to be an in-

finitesimal symmetry of Lz' is that g, W, and N satisfy the
modified JMF equation:

(5.13)

where 8&„ is the expression given in Eq. (5.4). Additional-

ly, if N commutes with every element in the gauge Lie alge-
bra [N, T'] = 0, a = 1, . . . , n, then Eq. (5.13) clearly
reduces to the JMF equation:

Second, for such a Lagrangian L the JMF equation is
both a necessary and sufficient condition for X+ Yto be an
infinitesimal symmetry of Lq'. Here, X= (Cx,NQ) and
Y= (0, W(x)i') with W(x) = W'(x) T'. In fact, a short
computation gives

i(L~') = i&p, [q'y, q'],
and it is easy to see that this is a trivial Lagrangian if and
only if 8&k„=0 for all j, k, and p, .

Example 2. The hypotheses of the theorem also include
the special case when L has infinitesimal symmetries which
are not induced by coordinate transformations: C=O= b,
N=a transformation of the internal space, X= (O, NQ).
The modified JMF equation reduces to DW+ [N, A] =0
and solutions 8'of it yield infinitesimal symmetries X+ Y~
of Lz'. The necessity of an extra term like [N,A] seems
clear since the compensating gauge transformation Y~
should a priori depend in some way on N. The Lagrangian
in the previous example provides an illustration of this. For
simplicity we consider the case l =2 and change notation
slightly writing (P, $) for q = (q', q2). Then
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Now suppose that N is the 16x16 matrix defining an infinitesimal transformation on the internal space according to
N(t[t, qh, tTt, qh) = (EQ, O, G, O) where EP= (Q4, —t[t3, P, —t[tt). The one-parameter group generated by N is N, =exp(sN)
= I+ sW, where I is the identity matrix. It is easy to check that these transformations,

N. (4, 4, 4.4) = (0'+ s4'. 0' s—0'. 4'+ s4'. 0' s—0' 4» A. 4) ~

leave L invariant and in fact transform solutions of the field equations into new solutions. A straightforward computation of
DW and [N, A ] yields the following 16 && 16 matrices:

i W3I (i W„' + W2 )I
(i W„' —W'2 )I —i W3I

(DW)„= —i W3I ( —i W„' + W~2 )I
—(i W„' + W2 )I i W~~I

0

0
[N,A]„= 0

0

0 —2iA 3E

0 ( —tA„'+A„')E
0 0
0 0

( —tA„'+ A„')E
0

Wc —(DW)c t) Wc/t)x + ga~WaAb and I is the 4x 4
identity matrix. Thus, in general one sees that there is no
solution of the JMF equation: DW+ [N, A ] =0 for this ex-
ample. Ho~ever, for the special choice of external gauge
field A with A3 =0, A2 =iA„', and t)A„' /tlx„—BA„'/tix„
= 0 (so that the free field equations for A are satisfied), one
has [N,A]=0. Then a particular solution of DW=O with
W„' =0 can be derived by taking 1l =1, W = iW', where
W' is chosen to satisfy t) W'/tlx„= —2A~t. Then X+ Ys is
an infinitesimal symmetry of L~ and the corresponding con-
served vector is

V„=@ 7„4—0 7„4—2W'0 7„4+ 20 7„EA

Thus, one sees the necessity of the new term [N, A ]. It ei-
ther forces a condition on the exierna1 gauge A, like the one
imposed above, or forces an absence of symmetry (in this
particular example).

VI. CONCLUSION

This paper has derived, from first principles, the formula

„t(Lg') = (DW —WgA + [N, A ])tt„Q', , (6.1)

I

which shows how the modified JMF equation

DW WgA + [N, A—] = 0 (6.2)

arises naturally as a sufficient condition for X+ Y to be an
infinitesimal symmetry of Lq' (and hence also of
LUq=Lq'+Mq). The situation can be interpreted roughly
as saying that the symmetries are altered when the back-
ground gauge field A is switched on: if the particles P in
the absence of background gauge fie1ds have Lagrangian L
with a certain Lie algebra W of infinitesimal symmetries
X= X~~ b ~~, then turning on the gauge fields gives a
Lagrangian L&' with altered Lie algebra of infinitesimal sym-
metries of the form X+ Y, with X 6%, Y= Y~, and H a
solution of the modified JMF equation. The Forgacs-
Manton paper3 shows how to construct solutions of this
equation when the term [N, A ] is absent, which is a com-
monly occurring case for many Lagiangians.

One final remark is that for the sake of simplicity the pa-
per has been formulated along the lines of the classical
Yang-Mills-Utiyama papers, rather than in terms of the
modern principal fiber-bundle approach to gauge
theories. "' The sacrifice has been that our arguments are
local rather than global and that certain details connected
with the underlying spacetime manifold have been implicitly
simplified. The global and intrinsic approach has pretty
much the same development as that presented here.
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