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Polar gyroscopic tests of general relativity
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Gyroscopic precession at the terrestrial poles is treated using the original Kerr metric in Cartesian coordi-
nates and an isometry method for treating accelerating observers. The results corroborate predictions for
gyroscopic precession obtained by gravitomagnetic methods and reinforce recent suggestions that ground-
based precession experiments may be viable.

Gyroscopic precession as a test of general relativity (GR)
has been an active theoretical topic for a number of years. '~
The well-known results' of weak-field GR predict that "geo-
detic precession" would be modified by the rotation of the
Earth, giving a small "motional precession, " a gravitomag-
netic effect due to "frame dragging. "

Since satellite gyro experiments will soon be attempted, 4

these GR tests are of substantial current interest. Very re-
cently, several authors' 7 have renewed the discussion of
ground-based gravitomagnetic experiments, some suggesting
terrestrial gyro6 and Foucault pendulum7 tests of GR. The
frame-dragging effects in such environments are predicted
to be a half an order of magnitude larger than in orbital ex-
periments, which suggests that ground-based experiments
be considered in spite of their extreme technical difficulty. '

Here we report precession results obtained using an exact
isometry method8 for accelerating observers. The Cartesian

. Kerr metric avoids coordinate singularities at the poles.
Applied to Earth's exterior geometry, the Kerr solution is
accurate to first order in a= ~J~/mc. Higher multipoles
make negligible contributions in this precession problem.
We calculate exact precession frequencies at the poles for
the Kerr portion of Earth's exterior geometry which are in
excellent agreement with gravitomagnetic treatments of
gyroscopic and Foucault7 precession.

The isometry method8 uses an orthornormal (ON) tetrad
field rather than a local ON tetrad'0 Fermi-Walker transport-
ed along an observer world line x(r). This permits simple
computations of connection coefficients and "boosted"
values for relevant tensors (a", v", and Si') for the ac-
celerating observer. The ON tetrad field Kg(x), and its
dual one-form field K '~b(x), play the role of local rest
frames along the observer path x(r) for the construction of
boost Jacobians for tensors. One first obtains the tetrad
components ub=KQ(x)v„of the covariant velocity and
then uses the spatial components of ub to form a Lorentz
boost matrix A'd(u). The tangent-space boost Jacobians
are then formed by similarity transforming into and out of
the local ON tetrad (Lorentz) frame, that is, by constructing
the inverse Jacobian,

J '~(x) = K~(x) A (u) K-'„'(x),
with A replacing A in J. These maps are isometric be-
cause JTgJ=g due to the orthonormality relation KTgK
= 71 = (+ ———) and the O(3, 1)' isometery A "7iA = rl
Tensors are then boosted on their contravariant(
covariant indices using J '/J. No change has been made in
local coordinate charts but rather a Lorentz-frame change
expressed in local coordinate bases. ' The boost is easily

shown to be independent of the choice of tetrad field. The
Levi-Civita coefficients transform, as does any affine con-
nection, via

I "p = J 'gJ"Jp I''ei, + J 'g J"B„Jp~

For the polar gyroscope problem, we chose Kerr's original
right-handed Cartesian metric with J along the +z axis,
thus avoiding the coordinate singularities in Boyer-
Lindquist" and isotropic coordinates. ' At the poles,
~z~ = + p (Boyer-Lindquist) = + ro(polar radius). A gyro
fixed at either pole has covariant velocity

vi'= (c(p2+ a )'& /(p + a —2m'p)'/ 0 0 0)

with

= (p'+ a')'~'/( '+a' 2' )'~'—
d7'

m'= Gm/c', and a = IJI/mc.
Polar observers have covariant acceleration

a" = (0, 0, 0, I (ov'v')

= (0 0 0 m'(p'- a') c'/(p'+ a')')
because I pp

= I pp =1 pp =0. Note too that p && a =329 cm
gives a = Gm/p2 as the correct Newtonian limit.

Choosing the timelike tetrad vector as Kg = v"/c at either
pole yields g(Ki„v)= u&=0 for I3=1, 2, 3. Thus the boost
is pararnetrized by u=0 giving J=J '=I for any coordi-
nate charts at the poles. Thus tensors are trivially boosted
by the identity and the I coefficients are unaltered.

The gyroscope spin S" satisfies g(S, v) =0 and the Fermi
transport law VS/Br = dS/dr +I'(v, S) = —g(S,a) v/c' in
the absence of torques. With 5 =0 and only v &0 we have
dS'/d, +I'tjvoS&=0 along with

'7Sc/Qr = rII, v'SJ= —(v'/c') (S'a, )

The pertinent I coefficients which are nonzero at the
poles are

I IC3= m"(p'+ a3+2m"p)(p' —a )/(p'+ a')'

and

r(3= —I (3=2m'pa/(p'+a')' .

Equation (1) holds since I II3
= —a'g33/c and g33

= —(p'+ a + 2m'p)/(p'+ a') at the poles. We also have
dS /d v = 0 as expected from axial symmetry since all
I (J=0. From Eq. (2) the precession equations for S' and
S3 are dS'/dr = +I (ivcS3 and dS2/d7 = —I'c3tvoS', which
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yield the proper-time precession frequency

= 2m proc/(pz+ "2)3~ (p2+ az —2m p)t 2

relative to the global right-handed (xo,x,y, z) coordinate
chart (the "fixed stars'*). In vector form, with
p= lzl » rr » m', we have dS/dr=2G(Sx J)/c'p',
which reproduces the "motional precession" result of
Schiff. Relative to rotating Cartesian Earth axes (right-
handed) at the poles, the proper-time precession frequency
is 0J~=co~ —co~, where the proper-time rotation frequency

of Earth could be determined astrometrically at the
south polar station.

It has been suggested recently that co~ may be large
enough to be measurable, given certain technological im-

provements. We echo this optimism because, upon numeri-
cal evaluation of co~ using ~J~ =5.9x1040, m =5.98x 1027,

and ro = 6.37 & 10 in cgs units, we obtain the value
to~=0.22"/yr, in excellent agreement with the gravitomag-
netic value (0.20"/yr) of Ref. 6 and the Foucault pendulum
result (0.218"/yr) of Ref. 7.

While the difficulties' of the terrestrial gyroscopic and
Foucault experiments are clearly formidable (if not prohibi-
tive) at present, the terrestrial south polar gravitomagnetic
effects are five times larger than expected orbital effects
with no competing geodetic effects. Thus serious considera-
tion should be given to the future viability of these delicate
and exacting experiments using present and expected tech-
nological advances.
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