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Cancellation of higher-order anomalies
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It is demonstrated that the gauge-anomaly coefficient in high-dimensional space-time manifolds is closely

related to the indices of representations studied earlier by the authors. The cancellation in the superstring

theory of Green and Schwarz based on SO(32) is discussed in detail.

The importance of gauge anomalies in high-dimensional
space-time has recently been discussed by many authors. '

In particular, Green and Schwarz described a remarkable
anomaly-free superstring theory2 3 based on the SO(32)
group and another possible one with E8& E8 as the underly-
ing group. A crucial condition for the existence of such
theories is a cancellation of higher-order anomalies. The
traditional formulation of this requirement is geometric in
its nature and offers only a limited answer to the question
of what happens when the underlying representations
and/or groups are changed. The purpose of this Brief Re-
port is to demonstrate that the conditions imposed on the
anomaly coefficients are precisely conditions on higher-
order indices (6th-order index in Ref. 2) studied extensively
before 5 and that such a formulation naturally answers the
above questions.

Let L be a simple Lie algebra whose basis t j,t2, . . . , t~ sa-
tisfies the commutation relations

P]P2' ' 'Pp
Jp = g t„,t„ t„

P
(2)

~ ~ ~

where g ' is completely symmetric in indices
p, ~, . . . , p,~ and satisfies the orthogonality relations4 such as

(3)

for the special case7 p =4. An explicit form of J~ for p ~ 6
is given in Refs. 4 and 7. Note that J~ is identically zero for
any value of p other than those in the following list:

SU(n + I)
SO(2n + I) and Sp(2n)
SO(2n)
G2

F4

E6

E7

E8

:2, 3, . . . , n+1;
:2, 4, . . . , 2n;
:2, 4, . . . , 2n —2,n;
:2, 6;
:2, 6, 8, 12;
:2, 5, 6, 8, 9, 12 ;

:2, 6, 8, 10, 12, 14, 18;
:2, 8, 12, 14, 18, 20, 24, 30 .

(4)

Next let $(L) be a generic representation of L. Then in
general, the pth-order index D~($) of @(L) is defined4 as

[tp. tv] = cputi

It is known that any simple L of rank n possesses exactly n

fundamental Casimir invariants. By J~ we denote the pth-
order Casimir invariant of the form

D, (y) =0, (6)

the index D~(@) can differ from zero only if it corresponds
to one of the entries in the list (4). However, if J~ is not
identically zero, then there exists at least one irreducible
representation of L, say 0, such that

D~(z ) w0

In general, we can choose o to be one of the lowest-
dimensional representations of L except for SO(2n) with
p = n, where Q should be the fundamental spinor represen-
tation for the index D„(a). The dimension of this
representation is 2" '. Since the normalization of D~(a ) is
not fixed (it is given by the length of simple roots of L), it
is convenient to introduce the quantity

D, (y)
g, (@)= (7)

Dp 0

and to extend the definition (7) by requiring that g~(P) = 0
whenever J~ is identically zero. The values of g~(P) for
SU(n +1), SO(k), Sp(2n) are found in Ref. 4. In particu-
lar, for the adjoint representation p(L), one has

[1+( —1)t']N for L = SU(N)
gt, (p) = N —2~ ' for L =SO(N)

N+2~ ' for L =Sp(N), N even
t

(8)

for p listed in (4).
Let t be a generic element of L,

t = g"t„ (9)

with real or complex parameters g". Corresponding to (9),
one has

x = @(t)= g~y(t„) g~x, , = (10)

where X„ is the matrix representing t„ in P(L). In the par-

the trace

D, (y) = tr~J, .

Here tr@I' denotes the trace of I' in the representation @. It
follows from (4) that D~(@) is unique up to normalization
for any p except in the case of L =SO(2n) with even n

Then there are two indices D„(@) and D„(@)of the same
order n. Since from J~ = 0 it follows that
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ticular case @=—0, we write (10) as

x = U (t) = g"x~

zero implies that D»(@)= 0 and thus

Q (@)=0 (21)

We define f»(g) by

fp(() = g ' (12)

tr~2= c2f2(g)D2(y)

tr~'= c~,(g)D, (@),
(13)

where c~ and c3 are constants independent of the represen-
tation @(L) and the parameters $". Using (7) and (11) in
(13), one has

tr+ = Q2(@)trt2x

tr+ =Q2($)troX

(14a)

(14b)

Equation (14b) is recognizeds as the triangle-anomaly equa-
tion in four-dimensional space-time. For higher-
dimensional space-time we have to consider higher-degree
traces tr~».

Next consider the case p = 4. We have4 7

Now we can express the trace tr~» in terms of trox» as fol-
lows. Consider first the simplest cases p = 2 and 3:

tr+4= (N +8)trox4+3(trox2)2, (22)

tr@6= (N + 32) trox + 15 trox2 trox4

for L being Sp(N) (upper sign) and SO(N) (lower sign).
For L = SU(N), one has

tr@2=2N tr~x

for the appropriate value of p given in Ref. 1 corresponding
to a given dimension of space-time. As we have already
noted, Eq. (21) is automatically satisfied whenever we have
J~ = 0. For example, consider p = 6. Then we have
D6(P) = 0 and consequently also Q6(@)= 0 for any qb(L),
L = SU(2), SU(3), SU(4), SU(5) as well as L = Sp(4) and
Es. However, for other L one can also have Q»(@) =0 for
some particular representations Q.

Let us now restrict our attention to the superstring theory
of Ref. 2. In this case p is the adjoint representations p of
L and p =6 and the trace identities (14a), (18), and (19)
with coefficients given in Eq. (8) coinciding with those of
Ref. 2:

tr@2= (N +2)tr~x2

tr~'= c4f, (g)D, (@)+X (@)(tr4, X')2,
for any irreducible P, where

1

(15) tr»X"=2N trox +6(trox2)2,

tr+6= 2N trox6+ 30 tr~x2trox4 —20(trox2) 2 .

(23)

6 d(p)
2[2+d(p) l d(y)

Q2(p)
Q2(e)

(16)

and d(co) is the dimension of the representation co(L).
Note that any exceptional Lie algebra as well as SU(2) and
SU(3) have no fourth-order fundamental casimir invariant
J4 so that D4(@)=0 for any @. Therefore, (15) reduces to
the quadratic trace identity7

traX4 = lC (@) (tr+2) ' . (17)

In terms of R4(@) defined in Ref. 4, we can rewrite (15) as

tr~ = Q4(qh)tr x +24(@)(trt2x2)2 (18a)

tr~ = Q6(@)troX6+ A 6($) troX2 troX4

+ B6(g) (tr&x2)'+ C6(@)(trox')', (19)

where A6(@), B6(@), and C6(@) are functions of Q2(@),
Q2(p), Q4(p), Q6(@), and of the dimension d(@) but not
of Q»(@) (p & 6). Explicit expressions for these functions
are found in Ref. 4 for all L except SU(N), N ~ 3. The
general formula for tr+» in terms of trox» could also be
derived. Indeed, following Ref. 4, one has

tr~»= Q»($) trox»+ 3» (@)trox2 trox» 2+ . (20)

Let us emphasize that (20) is valid for any representation
P(L) which does not have to be irreducible. Since the
dominant term trox» in (20) cannot be canceled by another
mechanism in general, the requirement that the anomaly is

~ 4(f) Jt (f) [Q2(@)l + (+ )Q4(@)= 3R4($), (18b)

provided J4e0. When J4=0 identically, Eq. (18a) is still
valid for an arbitrary value of Q4(@). It is natural then to
define Q4($) =0. The method can readily be applied to
higher orders. For example, we find

Let us point out that similar trace identities were also dis-
cussed by Cvitanovic. 9 It is clear from (8) that Q6(p) =0
for SO(32) although in general Q6(@)e0 for that group.
For the exceptional Lie algebras Gq, F4, E6, and E7 we have
computed Q6(p) to be equal to —26, —7, —6, and —2,
respectively. For L =E8, we have p=G and J4= J6=0 so
that the trace identity ' is

tr~'= D (@)(tr4X2)',

15
[d (p) + 2l [d (p) + 41

d(p) 1 d(p) Q2(p) 1 Q2(p)

, d($) 2 d(y) Q2(@) 12 Q2($)
(24)

We may notice that (24) is valid also for SU(2). For the
particular case L = E8 and @ being the adjoint representa-
tion, @=p, one can simplify (24) and (17) to give

trQ =,oo (tr»X )', trQ =
72oo (tr,X') (25)

in agreement with Ref. 2.
Summarizing our results, we conclude that the dominant

anomaly coefficient Q6(p) for p = 6 is absent only when the
Lie algebra consists of the simple one. of types SU(N),
N=2, 3, 4, and 5, Sp(4) =SO(5), SO(32), and E8. Now,
adoption of SU(N) (N & 3) is known to lead to an incon-
sistency in quantized theory. Moreover, cancellation of the
mixed anomaly requires the validity of

Tr»X6= 48 Tr»X Tr»X ~44pp (Tr+ )' (26)

which is satisfied by Ea and SO(32) in view of Eqs. (22) and
(25) but not by SU(2) and Sp(4). In a realistic superstring
theory, one has to cancel also the gravitational anomaly.
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The condition requires' that the dimension d(p) of L is
496. These conditions are satisfied only by SO(32) and
E8& E8 as has already been noted in Ref. 2.

In conclusion, we see that the anomaly coefficient is
nothing but the general index 0~(@) defined in Ref. 4, and
that various trace identities are intimately related to these
indices.
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