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Improved wave functions for large-N expansions
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Existing large-N expansions of radial wave functions $«(r) are only accurate near the minimum of the
effective potential. Within the framework of the shifted 1/N expansion, we use known analytic results to
motivate a simple modification so that the improved wave functions are accurate over a wide range. of r
and any choice of quantum numbers n and l. It is shown that these wave functions yield simple and accu-
rate analytic expressions for certain quantities of interest in qu'arkonium physics.

The large-N expansion, ' where N is the number of spatial
dimensions, is a useful new technique of solving the
Schrodinger equation. Ho~ever, problems of physical in-
terest are in three dimensions and one only obtains results
of modest accuracy from the first few terms in the 1/N ex-
pansion for these cases. One way of getting accurate results
is to compute many orders in perturbation theory, and
indeed this has been done for low-lying states for many
potentials. ' ' An alternative recently developed approach,
called the shifted 1/N expansion, 2 consists of using a shift-
ed expansion parameter. It provides an excellent analytic
approximation to the energy eigenvalues of the radial
Schrodinger equation —simpler, more accurate, and applica-
ble to a much wider class of problems than other currently
available approximation schemes. However, the shifted-
1/N-expansion wave functions, although accurate around
the minimum of the large-% effective potential, have poor
behavior for both very small and large values of the radial
coordinate r. In this note, we modify the leading term in
the wave-function expansion by (i) incorporating known
results about the limiting behavior in r of solutions of the
radial equation and (ii) requiring that the analytic expres-
sions for the wave functions of the harmonic oscillator and
Coulomb potentials be exactly obtained. The incorporation
of known analytic results is effectively a way of including
important pieces from higher-order corrections into the
leading term. This new leading-order wave function is a
substantial improvement and can be used to calculate im-
proved leading-order energies for any choice of quantum
numbers n, l. Finally, we show how it is possible, with the
aid of previous results, to obtain higher-order corrections
in the shifted expansion parameter 1/k (defined below) to
the new zeroth-order results.

Initially, let us only consider attractive power-law poten-
tials V(r) = sgn(v)Ar", A )0. The radial Schrodinger
equation in N spatial dimensions is

d2 + It2(k+ a —l)(k+ a —3) +
2m dr2+ 8mr2

two important special cases for which a complete analytic
solution is known.

Harmonic oscillator (v = 2):

4„t(r) ~ r'" "I'exp [ —(r/r, )'/2]

x L" I ((r/r ) )

En, I= Eck

Coulomb potential (v = —1):

(2)

(3)

Q„t(r)~ r " ' exp[ —(r/r, )/k]L„" (2r/(r, k)), (4)

E„,= —E,/k 2
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Furthermore, from our previous work on the shifted 1/N
expansion, we know the behavior of $„t(r) near the
minimum of the effective potential at large k,

Vktt "(r)m, +sgn(v)A7)"
8mq2

where q = rk {"+ . The minimum is at r = fo
= (k t2/4~v )Am) t "+2 . The shifted-1/N-expansion wave
function is expressed as a series in powers of (1/k)' 2. The
leading term in this expansion is

where r, —= (t2/2mA)t "+2), E,= Ar," are the —characteristic
length and energy involved in these problems and the I.„
are the generalized Laguerre polynomials. 5

For general values of v, the behavior of @„t(r) as r 0
and as r ~ can be readily obtained from Eq. (1),

0(r)~ r(k —1)/2

@„"t'(r)~e " 'H„(Jnx)

where k = k —a, k = N+2l, a =2 —2(2n+1)(mto/tt ),
to=itto/2m, to=&'v+2, n=0, 1, 2, . . . is the radial quan-
turn number and I = 0, 1, 2, . . . is the orbital angular
momentum quantum number.

Although Eq. (1) cannot be solved in general, there are

where n= mto/It, x= k 'I2(r —r0)/r0, and the H„are the
Hermite polynomials.

To sum up, if we could find a function that reproduces
Eqs. (2) and (4) when v=2, —1, respectively, that pos-
sesses the limiting behaviors shown in Eqs. (6) and (7),
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and, when k is large and r near rp, reduces to Eq. (9), it
should provide an excellent approximation to the eigenfunc-
tions of Eq. (1). We make the simple choice

ties:6

L„(q)~ e~q (e ~q" + ), H„(q)ne~ (e I )d:

$ „I (r)~ r " ' e L„" 1~(2g(r/rp)~) . , (10)

where A. = k/2', which satisfies all the above criteria except
the r ~ behavior [Eq. (7)]. Although Eq. (7) is not sa-
tisfied, we obtain a much improved large-r behavior over
Eq. (9). Note that Eq. (10) reduces to Eq. (9) when k is
large and r near ro by virtue of the following crucial proper-

and, for q large, (n —q) small,

e ~q 1 exp[ —(q —n)'/2n]
n! J2mn

(12)

The expectation value of the energy corresponding to Eq.
(10) for n =0 can be easily calculated. The result for
power-law potentials is

E(p) kt (2X) "
cu 1. k k I k + —1

4 " I'((k+2 — )/ ) 2, ( 2 —2) (2A, )" (13)

Equation (10) is easily generalized to any sufficiently well-behaved spherically symmetric potential V(I). The only
changes are that

QJ= 3+ (14)
V'(rp)

and ro is determined from the equation

1/2 f

rp V"(rp) 4mrp' V'(rp)
V'(r, )

(15)

It is possible to calculate higher-order corrections in 1/k to Eq. (10). For n -0, Eqs. (A19), (13), and (14) in Ref. 3 give
corrections to order 1/k to Eq. (9). Our modified wave function Eq. (10) has taken into account some of these terms into
the new leading-order expression, the leftover terms can bc obtained after some straightforward algebra. %e display the
result for power-law potentials:

T r

~ p)(„) I (co 1) (Qi —2) + |'ux

6
(ru —2) (- ) 2 co(o) —19)x o) (o) —1)x 1

24k I/'2 6 18
(16)

A similar technique can be applied to Eq. (3) in Ref. 3 to obtain corrections to the energy in Eq. ,'i3). The result is
1-

ip) (cu —1)'(cu —2)'(cu 2 —2) (geo 4 —69') 3+ 59co 2+ 96cu —76) — 1

36(ka) )' 6k') k
(17)

Of course, by construction, Eqs. (16) and (17) yield the ex-
act results for the Coulomb and harmonic-oscillator poten-
tials.

We have examined the accuracy of Eqs. (10), (16), and
(17) for various potentials and found them to yield excel-
lent results. The energies computed from Eq, (17) are com-
pared with those obtained from an accurate numerical in-
tegration m' the Schrodinger equation~ in Fig. 1 for various
values of v (n= 1=0). The new leading term E'p) [Eq.
(13)] is always substantially better than the corresponding
leading term from Eq. (3) in Ref. 3. However, when
corrections are included in both expressions complete to the
same order in 1/k, Eq. (17) does only slightly better for the
range of physically interesting potentials —1 & v & 4. Thc
accuracy of the ground-state (n 1-0) wave function for
V(r) = r3, calculated from Eq. (16), is apparent from Fig. 2.
Note the substantial improvement of our new leading term,
Eq. (10), over the old, Eq. (9). For states with n ) 0, we
find that the leading-order wave function, Eq. (10), yields
results which typically agree within 10% with "exact" nu-
merical results. Also, as before, '»4 the accuracy of the ener-
gies and wave functions increases as I increases.

We now give an application of our improved wave func-

r(V'- 1+1 )M' ~&v(0)~-
I'( V 1+1 ) M, ~P t (0) ~

(19)

The leading-order improved total wave function in the

I

tions in quarkonium physics. The shifted I/W expansion
has already been shown to yield superior results for the en-
ergy eigenvalues of potentials of interest in this area. In
addition, one can calculate the leptonic decay width of a
heavy neutral vector meson V- (QQ) using the familiar
Van-Royen-Weisskopf formulas

r(V- 1+1 ) =16vrt'net'M, '~y(0) ~'[I+ O(n, )],
(I&)

where Mq is the mass of the meson and P(0) is the total
wave function of the composite system evaluated at the ori-
gin. P ( r, 8, @) is related to P ( r) in Eq. (1) by
P(r, 8, $)-r ' 12$(r) YP(8, $), where the YP(8, $) are
the spherical harmonics.

It is customary to eliminate the uncertainties about the
nature of QCD corrections and quark charges by considering
the ratio of leptonic widths of two mesons with the same
quark content:
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FIG. 1 ~ Plots of the percentage error in the calculated value of
the ground-state energy of power-law potentials V(r) =Ar" vs the
power v. The solid line comes from energy calculations using the
leading term in Eq. (3) of Ref. 3. The dotted line is drawn using
Eq. (13), and corresponds to our improved leading-order wave
function Eq. (10). After incorporating corrections up to O(1/k3),
one gets Eq. (17), which yields the dashed-line curve,

FIG. 2. Plots of the percentage error in the calculated wave func-
tion for the ground state of the potential V(r) = r as a function of
r/r, . The solid line corresponds to Eq. (9) and is clearly not satis-
factory. The error is much reduced when our improved leading-
order wave function Eq. (10) is used, as can be seen from the dot-
ted curve. When further corrections in 1/k are made, one gets the
dashed-line curve corresponding to Eq. (16), which is remarkably
accurate throughout the region where the wave function is large.
On this scale, the dassical turning point is at approximately 1.5.

shifted 1/N expansion can be obtained from Eq. (10). In
%=3 dimensions it is

(r, e, y) r'e IP'(e, y) I„" &/ (2) (r/ro)")
(20)

ing the identitya'0 ( l = 0)

i~(o)ip m (Bv) (21)

For power-law potentials, V(r) = Ar", which are common-
ly used in quarkonium studies' we compute ltd„'t, '~(0) I' us-

For small values of n, the expectation value in Eq. (21) is
readily calculated. For example, one finds the simple result

lyIQ(0) l' k '" "' '"'"'"(-'—m' —~'+2~+ I)
lq drab(0) I', k, (ttt to + 4)

(22)

which only depends on the po~er v. Here k~ —= X—2+32m,
kc ——N —2+ta. Equation (22) yields the exact known ana-
lytic results for v= —1, 1, 2 (this will be true for ratios of
the wave functions at the origin for any choice of quantum
numbers). Below we give the results from Eq. (22) and ex-
act numerical resultsa for two other potentials (N = 3):

V (r) = Ar c 8 = 0.311 R'""'=0.297

V(r) =A jn(r/$), g( ) =0 521 ~exact () 510
(23)

These results are more accurate than those obtained using
the %KB approximation which is the method most com-
monly used to calculate quantities of interest in quarkonium

physics. Also, one can include higher-order terms in 1/k in
our improved wave-function expansion [see, e.g. , Eq. (16)],
so there exists a systematic way of obtaining corrections to
quantities such as Eq. (22). This feature does not exist in
the %KB scheme.

%e have also tested these improved wave functions for
the Yukawa (screened Coulomb) potential V(r) =Ae ""/r,
which is useful in essentially all branches of physics. De-
tails can be found in Ref. 4.
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It is more straightforward to simply normalize P in Eq. (20) and
evaluate it at the origin. However, we employ Eq. (21), since
even though Eq. (20) yields the exact analytic results for
v = —1, 2, it does not give the exact known P(0) for v =1: The
use of Eq. (21) trivially assures this result, thereby improving the
accuracy of results for potentials with v near 1.


