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Kaluza-Klein theory is derived from the hypothesis that the four-dimensional space-time is local-

ly and isometrically embedded in a high-dimensional space which presumably originated at the big
bang. For mathematical simplicity the high-dimensional space is taken to be a flat, Minkowski
space with 14 dimensions assumed to be the ground state of the theory. The resulting metric is more
general than the usual zero-mode metric ansatz but it reduces to the latter in the low-energy sector
of the theory. The compactification of the internal space results from the existence of the second
quadratic form of the embedded V4. A simple model of spherical compact space is considered as a
working example, where the spontaneous compactification is a hyperbolic function of the strength
of the gravitational field. The symmetry group of the embedding is a combined symmetry which
breaks into P4& SO(10) in the flat limit of the space-time.

I. INTRODUCTION

The modern versions of Kaluza-Klein theory assume
the existence of a (4+ n)-dimensional space with topology
V4 &B„,where V4 is the four-dimensional space-time and
B„ is an n-dimensional compact coset space G/H for a
given gauge group 6 and-a maximal subgroup H. In this
construction the functions defined in V4 &B„depend
periodically on the internal variables so that they can be
harmonically expanded in these variables. The field equa-
tions are derived from the Einstein-Hilbert action for that
space with a metric ansatz for the zero mode. The ex-
treme high-energy levels associated with the theory sug-
gests that the unification of the gravitational and Yang-
Mills fields is effective near the big bang. With the ex-
pansion and cooling off of the universe the compact range
of the n extra dimensions becomes sufficiently small so
that they become "invisible" at low energies. The ground
state of the theory is tentatively assumed to be M4 &B„,
where M4 is the Minkowski space. The basic difficulties
of the theory are the inexistence of a more fundamental
principle leading to the metric ansatz, the compactifica-
tion of the space B„,the problem of vacuum stability for
the ground state M4&B„, and the large fermion masses
which appear in nonzero modes. '

The purpose of the present paper is to present a geo-
metrical approach to the theory with the hope that some
of the mentioned difficulties could be solved. The basic
postulates of the theory such as the existence of the high-
dimensional space and the low-energy sector are retained.
However, the topology V4&(B„and the metric ansatz are
derived from a more fundamental principle stating that
the four-dimensional space-time is a subspace locally and
isometrically embedded in a space V4+„which presum-
ably emerged at the big bang. In fact, V4 is a subspace of
V4 &B„,but in this case, with the usual metric ansatz the
embedding of V4 is trivial in the sense that the second
quadratic form of V4 vanishes. In a more general embed-
ding this quadratic form cannot be neglected, and it as-

sumes an important physical role when regarded from the
point of view of Kaluza-Klein theory.

The derived metric structure differs from the usual
metric ansatz by the presence of the second-quadratic-
form coefficients and as such it possibly represents not
only the zero-mode metric but the full metric. The pres-
ence of the second quadratic form in the metric is also re-
sponsible for the compactification of the space of internal
coordinates so that locally the structure V4 )&B„ is
recovered. By use of the low-energy sector of the theory a
simple model of spherical B„ is implemented whose ra-
dius varies with the curvature of the space-time. In the
limit of weak gravitation the zero-mode metric is re-
covered.

The gauge potentials (and the gauge group) are also de-
rived from the embedding assumption. The dynamics of
these fields and of the second quadratic form is left to a
subsequent paper where the analysis of fermion masses is
also studied.

The geometry of the high-dimensional space is subject-
ed to the Einstein-Hilbert action so that in principle we
could start with an arbitrary pseudo-Riemannian space
V4+„. However the embedding of V4 in an arbitrary

curved space Vq+„ is a problem of difficult solution. In
particular the physical interpretations of the integrability
conditions are not simple. For this reason we have chosen
to start with a simpler case where V4+„ is the Minkowski
space M4+„ for which at least some embedding results are
known. Physically this choice may be explained in the
following way: If an observer sitting in V4 approaches
the big bang he will become aware of the surrounding
space by the impossibility of separating gauge and space-
time symmetries (Sec. III). Such a situation prevails even
if the observer performs experiments which are sufficient-
ly local so as to neglect the curvature of V4+„but not that
of V4 itself. The separation of gauge and space-time sym-
metries occurs in the flat limit of V4. Following the ex-
ample of general relativity M4+„ is taken as the ground
state of the theory so that no problems with vacuum in-
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stability arise. Contrarily to what may seem, the results
obtained with the flat space M4+„are not trivial. To a
great extent the standard Kaluza-Klein theory results
from the embedding of V4 into M4+n r

For reasons of clearness, Sec. II includes some embed-
ding basics with the appropriate notation.

II. EMBEDDING THE SPACE-TIME

Assuming that V4 is a pseudo-Riemannian space-time
with general metric g;J, we can always regard it as a hy-
persurface locally and isometrically embedded in M4+„
with metric signature r(+)+s ( —) and with a sufficient-
ly large dimension. In order to avoid dimension and sig-
nature ambiguities the embedding is also assumed to be
minimal in the sense that no dimension is taken in excess.

The embedding is realized when a point in V4 with ar-
bitrary coordinates x', i=1, . . . , 4, can be described by a
set of 4 + n Cartesian coordinates X"(x'),
p= 1, . . . , 4+n in M4+„with respect to an arbitrary ori-
gin. Then the isometric condition is expressed by

Here x are n parameters which together with x' define a
natural V4-based Gaussian coordinate system
Ix I

= Ix',x"I, in which V4 is defined by x"=0. The
expression (3) is then a transformation between Gaussian
and Cartesian coordinates in M4+„so that tensors are re-
lated by its derivative map. Thus, for example, the metric
of M4+„ in the V4-based Gaussian frame is

f~p —Z ~Z pxJpv o (4)

Xz (x') orthogonal to each other and to V4..

&A&BnI v=gAB

where in the present case gAB
——5AB (for different embed-

ding signatures gAB
——EA5AB, EA ——+1). Equations (1) and

(2) are the basic equations for the embedding. In order to
derive the integrability conditions for these equations con-
sider a point of M4+„not necessarily in V4 given by the
Cartesian coordinates

Z "(x',x ) =X"(x ') +x "XA~ (x ') .

Making use of (1)—(3), it follows that
(1)gfJ X f X J gPv

A A B p
ptj gij 2X ~ij A +X X +A,i+B,j 9@v ~

where q„denotes the Cartesian components of the metric
tensor of M4+„. Thus g;J is induced by g& via the
tangent vectors X;" which act as generalized vierbeins. '

When the functions X&(x') are analytic the embedding of
V4 into M4+„requires that 4+ n is at most 10. On the
other hand, if the functions X"(x') are differentiable, then
4+ n is at most 14." These theorems refer to a general
metric g j For so.me specific cases the number of dimen-
sions required to embed V4 is smaller than the above lim-
its. For example, all space-times with constant curvature
can be embedded in M5 [either M5(3,2) or M5(4, 1)].
Since we are assuming that the space M4+„emerged at
the moment of the big bang, then it is reasonable to sup-
pose that the dimension 4+ n reached the differentiable
limit of 14 dimensions. This is compatible with the idea
that a space-time admitting a point singularity like the big
bang would not exhibit any specific symmetry except
perhaps moments after the big bang itself. As is known,
the minimal embedding dimension decreases as the
space-time becomes more symmetric. "On the other hand,
the pointlike character of the singularity also suggests
that the metric signature of M4+„ is (3+n)(+ )+1(—).
Although there is no general proof of this result, the ex-
ample of Schwarzschild space-time serves as an indica-
tion: The minimal isometric embedding space of
Schwarzschild space-time is M6(4, 2). However if its
singularity is removed to the origin —by means of a non-
isometric transformation leading to the Kruskal rqetric-
the embedding space changes to M6(5, 1).' From the
point of view of physics, the signature (3+n)(+ )+1(—)

is important and even if the other signatures are
mathematically possible, in what follows we restrict to the
above case.

The index convention is as follows. All greek indices
run from 1 to 4+ n. Lower-case latin indices run from I
to 4 and capital latin indices run from 5 to 4+ n.

In a neighborhood of the embedding point of V4 con-
struct n unit vector fields XA with Cartesian components

ViA x +A~E, i 9p, v& 3 AB gAB
p

where we have used the notation

representing the coefficient of the second quadratic form
of the embedded V4. It is also convenient to denote (go is
a constant to be later identified with the Yang-Mills cou-
pling constant. For pure geometrical considerations we
may take go ——1 or absorb go in A;AB)

~i AB gO~iAB +A,i +B9@v
p

From (2) and (3) it follows that b,j„bj,A and A——;AB
= —A;BA. Using (5) and (6), XA; can be expressed as

(7)

where g gcB ——5B and g' gkj ——5j. Replacing (6) and (7)
in (4), it follows that

1 ij gij 2x ijE+x x (g bimEbjnF+g ~iME~jNF) r

ViA X ~iAE

The Lorentz group of M4+„, SO(3+ n, 1), has as a nonin-
variant subgroup the group of rotations SO(n) of the
space X„generated by XA. The Lie-algebra generators of
this subgroup can be described as

i." = —,(x "5/BxB —x 8/BxA)

k AB I AB( ) [A5B)

Therefore for the Lie-algebra-valued quantities
A; = A;AB I. , the Killing basis components are
3;c——A;ABkc ——A;Acx . It follows that

E F—MN —MN
MME jNF g ~iM ~jN

and the Killing vector field basis of the space generated
by x" are
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so that y p can be expressed as

gij +g ~iM~jN ~iA

where

g~J @J 2x ~&JE+x x g ~imE~'nF . (9)

~V+ (x =a(p))
tf

( )(4 O)

As can be seen, Eq. (8) resembles the Kaluza-Klein metric
ansatz where A;~ plays the role of the gauge potentials
for SO(n) in the Killing basis. In Sec. IV we shall see
that these quantities, or rather A;~ii, in fact, transform as
gauge potentials.

III. COMPACTIFICATIQN

The real difference from (8) to the Kaluza-Klein metric
is that g,j as given by (9) is not the space-time metric.
The coefficients b;jz cannot be neglected in the general
embedding picture and they are responsible for the com-
pactification of the coordinate space B„generated by x
In fact, Eq. (9) can also be expressed as

det(g; —x "b; ~)=0. (10)

It happens that (10) is the definition of the local curvature
radii p~ of V4 corresponding to a normal Xz and a prin-

m'O
cipal direction dx (see also the Appendix).

Since we have started with an observer in V4 for which
x =0, then the coordinates x are limited to an interval
x"E[0,ap ], a&1. Therefore at each point of V4 there
is a bounded coordinate space B„generated by x . It
would be desirable to eliminate the dependence on the
principal directions. This can be achieved by introducing
a curvature radius for each direction Xz defined by

—mn

which is an invariant with respect to the coordinate
transformations of V4. In this case the bounded interval
becomes x E [0,2map "], where a is chosen so that

2m' &p for all values of 2 and m. Since the various
directions Xz are mapped into one another by the action
of SO(n), the space B„can also be constructed in a more
invariant fashion by use of the invariant curvature radius

p (see the Appendix) and the interval [O,a(p) ], with
a(p)=2~ap&p~. Following the Einstein tube construc-
tion, we may assoicate to each point I' of V4 a closed
space B„generated by x . In such a construction the
physical space considered is the 1ocal slab lim. ited by
V4(x"=0) and V4(x =a(p)) and such that P coincides
with certain P' of V4 (see Fig. 1). In particular. , B„may
be taken to be the n-sphere

S„=SO(n)/SO(n —1),
with radius a(p)/2~ and equation

gij g (gim x imA )(gjn x bjnB ) ~

Since dety ji
——detg;jdetg„ji&0 it follows that detg;j&0.

Therefore x cannot be a solution of

FIG. 1. The local Einstein tube.

g(x ~)' —4~a+x "p"=0 .

Therefore even though M4+„ is not compact a local struc-
ture line V4)&B„ is specified at each neighborhood of V4.
Consequently, as in the usual Kaluza-Klein formulations,
functions defined in the local slab may be expanded har-
monically in terms of x".

In order to achieve the size of Planck's length
Ro=10 cm for a(p) one has to appeal to the low-

energy sector of Kaluza-'Klein theory which requires that
in the limit of weak gravitation (that is, for large values of
p), a(p) tends to Ro. ' This suggests that the factor a
cannot be constant, but a function of the space-time cur-
vature. Thus, a(p) may be represented by a truncated
asymptotic expansion gi, OCklp" with Co ——Ro. The
remaining coefficients may be adjusted to meet other con-
ditions of the low-energy sector. A simple example of
compactification may be obtained with two terms in the
asymptotic expansion of a(p) with C& ——Ro . In this case
B„compactifies hyperbolically

(a (p) —
R o)p ='Ro

where the diameter of S„becomes of the order of Ro in
the very early universe when p=RO. Now the compact
local coordinate space B„can be identified with the inter-
nal space corresponding to the internal symmetry SO(n).
The energy required to observe or excite the internal states
of radius a(p) depends on the strength of the gravitational
field represented by p: E(p)=hc/a(p). Physically this
means that the gravitational environment contributes to
the excitation of the internal states. In the simple hyper-
bolic example the excitation energy is

E(p)= P
p+Ro Ro

so that when p=RO (a very strong gravitational field) only
half of the energy is required as compared to an observer
in Minkowski space-time.

Notice that the metric given by (8) is exact in the sense
that the dependence on x is complete. If we wish we
may expand y Ii(x', x ) harmonically in x" in the period-
ic Einsteiri tube construction of B„. However this is not
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necessary and (8) possibly represents the full Kaluza-
Klein metric. To recover the zero-mode metric we
remember that there is a coupling constant go absorbed in
the definition of A;Aa and that x is limited to a(p).
Therefore if the gravitational field is sufficiently weak so
as to neglect the terms containing x" in (9) but not
neglect the factor (gpa(p)) in (8), then the metric (8)
reduces to the usual Kaluza-Klein metric ansatz. It is
now clear why the compactification of Bn has to be postu-
lated in the usual Kaluza-Klein theory formulations: The
zero-mode metric ansatz does not give any information
concerning the existence of the second quadratic form
which responds for the compactification of 8„.

IV. THE EMBEDDING SYMMETRY

Previously we have described a compactification of the
space of internal coordinates x to a sphere
S"=SO( n)/SO( n —1), by examining the conditions for
the metric (8) to be invertible. In the limit of vanishing
gravitation the radius of the compact space tends to Rp.
Such compactification can also be associated to a symme-
try breaking which is triggered by the limit of vanishing
gravitation. We shall see that in this limit the group of
invariance of the embedding as seen from V4, breaks into
I'4)& G where P4 is the Poincare group, and 6 is SO( n)

The embedding coordinates XN(x') are determined up
to an isometry of M4+„. Therefore the local isometric
embedding is invariant under the homogeneous group of
isometrics SO(3+ n, 1) of M4+„(besides the manifold
mapping group of V4). In particular the infinitesimal
transformations of this group relating two V4-based
Gaussian systems is

X' =Xa+@(X',X A), g( 'B)=0 (fiXed Origin),

where the covariant derivative is calculated with respect
to y ~. An observer in V4 will read the Killing equations
as

(13)

where
I v means the restriction to V4. x =0. The corre-

4

sponding group is denoted by SO(3+n, 1). Explicitly, the
first equation (13) reads

gM(Aga)
I

g(A, B)
I

0

Notice that the particular transformations which send
space-time points to space-time points require that

0. From (14) and (15) it follows that these

particular transformations correspond to isometrics of V4

(if they exist). In the general case, however, the transfor-
mations generated by g' and g are not independent.

The Lie algebra of SO(3+n, l) can be obtained from
the projection of that of SO(3 + n, 1) given by

['~. 'F-] =&~F'- +&-'~. &~-'—" &F'~—- .

In the Gaussian frame the generators of SO(3 + n, 1) are

I. p
——Z~ Z pl@

and a straightforward calculation shows that

[L p, Lys]=Z)' Z pZF yZ a[1„„,1 ]

CaPy& 8)) &

eP

where the structure constants are

(18)

Using (8) and denoting Laa Lap I v, ,——the projected Lie

algebra is

EF
[Lij &Lkl ] CijklLmn& [LAB&LCD] C ABCDLEF &

[Lij & kA ] gikLj A gj kLiA & [ ij &LAB ]
(19)

[LiA &LjB l gjlLAB +gABLij

[L A Lac]=gAcLa gAaL—;c,
where C,z~~ and C zzcD are obtained with the projection
of (18).

In complete analogy with the de Sitter group the above
algebra can be contracted into another algebra in the flat
limit of V4. ' ' For that purpose modify the basis of (19)
with ihe introduction of the operators

(20)

where a"= 1/p". In terms of y7;, (19) reads as

[Lij &Lkl ]=C ijklLmn & [LAB&LCD] =C ABCDLEF
EF

g (i;j ) —k(ig j )nb g
M (14) [L j ~k] =g k~j gj'k')r '[~ 'irj]='gAa& (21)

where g "J' denotes the covariant derivative of g'=g'
I v

with respect to g;~ and where g"=g
I v . The second

equation (13) is equivalent to

2g k, k I v, + zg k, M I v, + 2g g kDM~

Therefore

k, M I v, — gMAg (k, k+—g

Finally the last equation (13) gives

( +a( Aga) ++a(AI B) gy )
I

0

so that

[~ Lac]=& gAcLa —& gAaLc

Notice the existence of two noninvariant subgroups: The
10-parameter subgroup E generated by L,J, Fk, and the
n(n —1)/2-parameter subgroup 6 generated by LAB

[E,E]=E, [E,G]&SO(3+n, 1), [6,6]=G .

Now taking the flat limit of V4, p ~oo then a —+0 so
that (21) gives

[ L;, , Lkl]= C;,kl Lm„,
o o o o o o[ L,q, hark]= gik ~j —gjk )rl

['~, , '~j]=0,
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['~, ,'L„]=0,
[ LAB, LCD]=[LAB,LCD]=C ABCDLEF,
0 0 EF

where the presuperscript zero indicates the flat-limit situ-
ation. It follows that the flat limit of E is isomorphic to
the Poincare group P4 which now becomes completely
disconnected from G:

SO(3+n, l)
~
ri„~P4XG .

The above symmetry breaking suggests an alternative
explanation for the nondirect observability of the internal
states at low energies and weak gravitational field. In the
presence of gravitation the orbits of the subgroups E and
G belong to the same space M4+& so that an observer sit-
ting in V4 under the action of SO(3+n, 1) does not neces-
sarily remain "confined" to V4 provided he can use
probes with sufficient energy E(p) as, for example, given
by (ll) in our hyperbolic model. In the case where a very
strong gravitational field is present the awareness of the
extra dimensions would require probes with less energy.
On the other hand, in the limit of vanishing gravitation
the orbits of P4 and G belong entirely to separate sub-
spaces M4 and B„ofM4+„so that in theory an observer
of M4 could not "look" into B„.

Now we are in position to formally identify A;AB (or
A;A) as the gauge potentials for the group 6=SO(n).
The general solution of Killing's Eq. (16) is

g"=8,"(x1)+8B(xJ)x

where the parameters 8~(x') depend only on x' [so that
SO( n ) is a local gauge group] and are such that
8' '=r ' 8 '

~, =0. Under an infinitesimal transfor-

mation x' =x +p of SO(3+ n, l), 3;AB ——Br;AIBx

transforms as

~icBP,A ~iAcP, B ~kABk, i g, Arik, B
C k k

—r kkAi BrAck—, B rkk, AB ——k, ABr;c
k C k C

Using (22) and introducing the structure constants of the
subgroup G,

~iBCA ~iACB ~iEFC ABCD
C C —EF

It follows that

V. CONCLUSIONS

%e have shown that if the space-time V4 is locally and
isometrically embedded in a high-dimensional space V4+„
which originated at the beginning of the universe, then a
geometric form of Kaluza-Klein theory is derived even
when a simpler case of flat-space M4+„ is considered.
The space B„generated by the n extra variables is natur-
ally compact as a consequence of the second quadratic
form. Various forms of compactification of B„can be
implemented with the help of the low-energy sector of
Kaluza-Klein theory. The resulting metric is more gen-
eral than the traditional zero-mode metric ansatz. More
interesting and puzzling however is the fact that the gauge
potentials are geometric entities derived from the embed-
ding. In order to understand the physical idea behind this
we need to work out the integrability conditions for the
embedding, the Gauss-Codazz-Ricci and Einstein's equa-
tions, to be dealt with in a subsequent paper.

It should be mentioned that the present analysis would
also apply to local gravitational fields embedded in flat
spaces with lower dimensions and possibly with noncom-
pact gauge groups. The theory does not give gauge poten-
tials in the five-dimensional case (A;5~ ——0) so that they
have to be postulated. In the present case 4+ n =14 was
taken to be the limit of differentiable embedding so as to
accommodate the very irregular gravitational field near
the big bang. This choice leads to the gauge group SO(10)
which makes the theory compatible with more recent
grand unification schemes. On the other hand it exceeds
the dimensionality limit of supergravity.

APPENDIX: THE CURVATURE RADII OF V4

Consider an infinitesimal displacement dx in V4. The
variation of the coordinates Z"(x',x ) given by (3) corre-
sponding to that displacement is

b, Z=(X";+x NA;)dx' (no sum on A) .

The points of M4+„which remain fixed, AZ"=0, are the
centers of curvature of V4 with respect to the displace-
ment dx'.

(X";+x "NA; )dx'=0 .

Contraction of this equation with X Jg@ gives

(23)

~iAB +iAB+C ABCD8 ~iEF 8ABi ~kABki,-&F CD k

rik, B(,A rikk, AB rkA k, iB
k k k

(g;~ xb;JA )dx'=0—
and contraction with NBq& gives

A.ABdx =0 .

(A 1)

(A2)
The first three terms in (23) correspond to a local gauge
transformation of 3;AB where the gauge group is
6=SO(n). The remaining terms appear because we have
used the full combined symmetry SO(3+ n, 1) and in gen-
eral G is not an invariant subgroup of the latter. To ob-
tain a pure gauge transformation either take g"=0 (no
space-time transformations) or take the flat limit of V4
where, as we have seen, the Lie algebra of 6 decouples
from that of P4. Therefore the functions 2;AB (or A;I in
the Killing basis) which appear in (8) in fact transform as
gauge potentials for the gauge group G= SO(n).

Equation (A2) only tells that in order to have hZ" =0 the
variation of XA must be orthogonal to 2VA. Qn the other
hand, Eq. (Al) determines the conditions for the existence
of the displacement dx'. Equation (Al) admits a non-
trivial solution dx', called a curvature line of V4 when,

det(g;~ —x b;~A ) =0, (A3)

which is a polynomial equation in x . Its solutions
x"=p,". are the curvature radii of V4 corresponding to
each curvature line dx' and to each normal XA. There
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are at most four independent orthogonal curvature lines
through each point in V4, corresponding to the nondegen-
erate solutions of (A3). These solutions are invariant
under the manifold mapping group of V4. ' With these
solutions we may construct the 10 quantities

2 — 3 8
Pmn =SwaPmPn .

The diagonal terms p =p are the inverses of the four
eigenvalues of the %'eyl tensor and in a sense they are the
fundamental observables of the pure gravitational field.
An invariant quantity called the gravitational length (or
curvature radius) may be defined by

p2 g 77lPlp 2

On the other hand, for each normal direction Xz a curva-
ture radius may be defined by

Therefore, when gzz ——5&~,
—mn ~

P =Swag Pmgn =Swag P

The behavior of p near a space-time singularity depends
on the topological nature of that singularity. In the case
of a pointlike singularity all values of p tend to zero so
that p also tends to zero. On the other hand, in the flat
limit of V4 at least one of the quantities p tend to ao so
that the flat limit of Vq implies that p~ co and p ~ oo.
Reciprocally when p ~m, then V4 is Aat.
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