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Factorization of the Drell-Yan cross section in perturbation theory
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We develop, through detailed one- and two-loop examples, a procedure for expressing the
leading-twist Drell-Yan cross section in terms of the factored form proposed by Collins, Soper, and
Sterman. We then show that this factorization program can be implemented to all orders in pertur-
bation theory. The factored cross section takes the form of an on-shell qq annihilation cross section
(less certain collinear subtractions) convolved with structure functions, for the incoming hadrons.
The structure functions contain all the collinear singularities and spectator interactions. They are
shown to be simply related to those that occur in deep-inelastic lepton scattering. We also demon-

strate that the qq cross section minus the collinear subtractions is free of infrared singularities if one
integrates over the transverse momentum of the lepton pair.

I. INTRODUCTION

The Drell-Yan model' for lepton-pair production in
hadron-hadron collisions has as its conceptual basis a
parton-model picture: a quark from one hadron annihi-
lates against an antiquark from another hadron to pro-
duce a timelike virtual photon of momentum Q, which
then decays into a lepton pair. In the very first discussion
of the model, it was pointed out that, in a complete field
theory, the exchange of soft partons could destroy this
simple picture. Subsequently, it was realized in the more
specific context of quantum chromodynamics that one
could make use of asymptotic freedom in order to carry
out a perturbative calculation of the lepton-pair cross sec-
tion only if the effects involving quanta with small invari-
ant momentum squared could be decoupled from the per-
turbative calculation. Politzer suggested that the col-
linear singularities associated with the vanishing of the ac-
tive quark or antiquark mass could be absorbed into a
structure-function factor. He further proposed that the
collinear singularities in the Drell-Yan process and in
deep-inelastic scattering have the same structure, so that
one could construct singularity-free quantities by compar-
ing the Drell-Yan cross section with the deep-inelastic
cross section. Early treatments of factorization in the
Drell-Yan model discussed the organization of the col-
linear singularities into the factored form, but did not ade-
quately address the question of soft exchanges with both
initial and final-state spectator partons.

More recently, Bodwin, Brodsky, and Lepage (BBL)
resurrected the issue of soft exchanges with spectators by
showing that in QCD there is contribution to the Drell-
Yan process due to exchange of a gluon between an active
quark and a spectator quark that persists even in the limit

Q ~oo (leading twist). Their calculation was restricted
to the "semiclassical" or "Glauber" region of the gluon
momentum, in which the quarks scatter from near mass
shell to near mass shell.

Subsequently, Lindsay, Ross, and Sachrajda carried
out a calculation of spectator interactions in quark-meson

do.Dg(A) =3 doDI(H) . (1.2a)

[Here we are neglecting corrections on the order of 20%
due to the European Muon Collaboration (EMC) effect. ' ]
Then for the Drell-Yan process with, say, a pion beam,
strong factorization implies that

scattering up to the two-loop level that included contribu-
tions from outside the Glauber region. (Their calculation
omitted only the "very soft" region of momentum space.
See. Sec. IV.) They found, on comparison with the deep-
inelastic cross section, that the spectator contributions
canceled —but only at the final step of a rather laborious
calculation. This result was extended to meson-meson
scattering by Lindsay and both results were verified by
BBL.

At about the same time, Collins, Soper, and Sterman
(CSS) suggested a more general approach to the problem.
Their proposal consists of two parts. The first, which we
call "weak factorization, " is the statement that at large
Q, dcrldQ Qi is a convolution of a hard subprocess
with structure functions %~i~(x,ki); Here x is the ac-
tive quark longitudinal-momentum fraction, ki (a two-
component vector) is the momentum of the active quark
transverse to the collision axis, and the subscript q/3 in-
dicates that this is the structure function for finding a
quark in a hadron A. In the CSS proposal, Hq/Q con-
tains all of the collinear singularities and all of the specta-
tor interactions. The second part of the CSS approach,
which we call "strong factorization" is the statement that
the Drell-Yan and deep-inelastic structure functions are
related. That is, with a suitable definition of the struc-
ture functions

f„d kiHq~~(x, ki)=fqg~(x), (1.1)

where f~i„ is the deep-inelastic structure function.
As was pointed out by BBL, the concept of strong fac-

torization is somewhat counterintuitive. We know that
for deep-inelastic scattering on a nucleus of mass 2, the
cross section is about a factor of 3 larger than that for
protons:
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do Dv(m —A) =A der Dv(n —H) . (1.2b) MESON 1 MESON 1

Thus, it seems that quarks on the back face of a nucleus
are just as likely to be annihilated as those on the front
face. That is, the nucleus is "transparent" to the incom-
ing pion beam. Of course, we know that this picture must
break down for a macroscopic target, since in that case
there is measurable depletion of the beam as it traverses
the length of the target. This is a constraint on any proof
of factorization: in the limit of a very long target it must
break down so that the classical picture of depletion of the
beam is restored.

In this paper we discuss the proof of factorization of
leading-twist contributions to all orders in perturbation
theory. " The remainder of the discussion is divided into
three parts. In Sec. II we introduce a model for the per-
turbative calculation in meson-meson scattering, give the
definition of the structure functions proposed by CSS, and
illustrate the basic concepts with a discussion of factoriza-
tion (weak and strong) at the one-loop level. We also
derive the target-length condition for the validity of fac-
torization that was written down by BBL. In Sec. III we
give a demonstration of weak factorization at the two-
loop level. This discussion (combined with the proof of
strong factorization) allows us to recover the result of
Lindsay, Ross, and Sachrajda, without the need for an ex-
plicit calculation. Finally, in Sec. IV we give the all-
orders proof of weak factorization, discuss the effect of
the very soft" region of Landshoff and Stirling, ' demon-
strate the cancellation of soft divergences in the Drell- Yan
cross section, ' and present an all-orders proof of strong
factorization.

II. BASIC CONCEPTS AND FACTORIZATION
IN THE ONE-LOOP LEVEL

We focus our discussion of factorization in the Drell-
Yan process on the simplest example that contains all the
essential features: meson-meson scattering. Our results
can easily be generalized to the case of hadron-hadron
scattering. We take as a model for the meson a scalar ver-
tex (MP*P for scalar quarks, M+%' for spin- —,

' quarks).
The meson is assumed to be stable against decay:
2mq„„k &m „,„. In explicit discussions of power count-
ing, propagator denominators, and numerator factors, we
always have in mind scalar quarks, but all of our results
are valid for spin- —,

'
quarks as well. We work in the

center-of-mass frame of the colliding mesons, with the z
axis, the collision axis, taking meson 1 to have momentum
P& ——(P~+,P, ,P&~) =(O,P, O) and meson 2 to have momen-
tum P2 ——(P2+,P2, Pzq)=(P, O, O). The diagrammatic no-
tation for the basic Drell-Yan cross section is indicated in
Fig. 1. For simplicity, we drop the meson "blobs, " the
photon lines, and the lepton lines in subsequent diagrams.
The analysis is carried out in the Feynman gauge.

A. The CSS structure functions

The structure function proposed by CSS is defined di-
agrammatically in Fig. 2. It has the form of the interac-
tion of an eikonal "test charge" (double line) with the

MESON 2 MESON 2

FIG. 1. The contribution of the bas'ic Drell-Yan process to
the meson + meson~lepton++lepton cross section. We use
straight lines to represent leptons, wavy lines to represent
gluons, and a saw-toothed line to represent the virtual photon.
The incoming mesons have momenta P~ and I'2. The active
quark (antiquark) has longitudinal momentum fraction xq(x ).q y
In diagrams to follow, we drop the virtual photon- and lepton-
pair lines and the meson blobs.

Yang-Mills field of the meson. The Feynman rules for
the eikonal line are

n I+is (2.1a)

for an eikonal propagator carrying gluon momentum I,
and

Egn~ Ag, (2.1b)

for an eikonal vertex. Here g is the coupling constant, A,,
is an SU(n) matrix in the adjoint representation, and n is
a spacelike vector, which, for definiteness, we take to be
along the collision axis:

n =(n+,n, nz) =(—1, 1,0), (2.2a)

I
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FIG. 2. Contributions to the meson structure function

H(x, k&). The double line represents an eikonal, and the vertex
and propagator for it are indicated in (a). (a)—(d) are O(a, )
contributions, while (e) is a schematic representation of a contri-
bution of arbitrary order. The routing of real gluon momenta
through the active-quark line is indicated in (b) and (d).
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where

n -+ =n'+n'. (2.2b)

(a) Ultraviolet:
l 1& l

&~P.
(b) Hard: 1&-P.
(c) Soft: m &

l l„ l
&&P.

The incoming eikonal line carries only gluon momentum,
which is conserved at the eikonal-quark vertex. There is
no diagrammatic factor associated with this vertex.

The structure functions contain no interactions that are
one- or two-particle reducible with respect to the eikonal
lines. Such interactions would lead to a linear divergence
proportional to the length of the eikonal line

1 4 1 ] d lqdl,

(n i+ie) lo 1+—ie 2
l

1 l,

(2.3)

They never appear in the perturbation analysis of the
cross section in the Feynman gauge.

The structure functions can be written formally as an
operator matrix element:

Hqgg(x, k~)

1
dy d yzexp —i —,xpz+y —k& yJ2(2~)'

&«p~ l
pDY(o x yi))'"pDY(o) Is'~ &

(2.4)

where

ODY(x")

=path-ordered
0

&&exp ig f d—l, n.A(x'+An) %'(, x ) .

f e ' 9(z)dz =
I, +is (2.5)

B. Regions of momentum space

It is useful to establish a terminology for certain regions
of momentum space. These are as follows:

(1) Central: l -i -lq, which contains certain special
regions of particular interest:

Here 2 is the Yang-Mills field, and the expression has
been written in terms of spin- —, quarks. The deletion of
interactions that are one- and two-particle reducible in the
eikonal lines is understood. This deletion can be regarded
as part of a regulator scheme for the operator matrix ele-
ment (see Ref. 14). The path-ordered exponential makes
the structure function manifestly gauge invariant. In
terms of the diagrammatic definition, the terms n A give
the eikonal vertices, whereas the path-ordering gives the
eikonal propagators:

(d) Very soft:
l i„

(2) Collinear to +:
l

(3) Collinear to —:
l

(4) Glauber:
l

i+i

Here I is the hadronic mass scale that sets the size of
the hadron. (In this model m is a function of mq„„k and
m „,„.) A given propagator can, in general, carry a
momentum that is a linear combination of momenta from
any of these regions.

We dispense with the ultraviolet region by subtracting
the appropriate counterterm graphs. Since the counter-
term graphs are obtained by contracting higher-order ver-
tex or propagator corrections to a point, the counterterm
subtractions in a given order in perturbation theory al-
ways have the form of a lower-order graph. Thus, if we
have proven factorization for ordinary graphs through a
given order, we have proven it for the counterterm graphs.
We do not discuss the counterterm graphs further, but
simply keep in mind the fact that their inclusion removes
the ultraviolet region.

The very soft region is the one that is responsible for
the off-shell —on-shell ambiguity in the QCD corrections
to quark-antiquark annihilation. ' In order to streamline
our initial discussion of the essential features of Drell-Yan
factorization, we defer the treatment of this region to Sec.
IV, where we find that its effect can easily be incorporat-
ed into the general analysis. We also postpone the discus-
sion of the very soft collinear regions (those with

lq &&m ) until that point. Thus, in our initial analysis,
one can think of the collinear regions as

collinear to +: l+-P, I -m /P, /q -m
collinear to —:l -P, l+-m IP, lz -m

The Glauber, collinear to + or —,and soft regions
potentially destroy factorization by driving perturbative
calculations into regions of small invariant (momentum)
(Ref. 16). The treatment of these regions is at the heart of
our demonstration of factorization. First we deal with the
Glauber region of gluon momentum. This region corre-
sponds to the kinematically allowed range of momentum
transfers for the case of two opposite-moving relativistic
quarks scattering from a nearly on-shell initial state to a
nearly on-shell final state —that is, semiclassical scatter-
ing. We show that, by a suitable deformation of l+ and
l contours into their complex planes, the leading contri-
butions from this region can be eliminated. The collinear
to + and —contributions can then be disentangled from
each other and from certain central contributions through
the use of Ward identities. All the collinear contributions
and spectator interactions and some central contributions
are seen to reside in the meson structure functions, which
depend only on the properties of the meson in question.
The remaining central contributions attach only to the ac-
tive quark (or antiquark) lines. For these, the soft (and
very soft) contributions cancel via the Block-Nordsieck
mechanism. The hard contributions are perturbatively
calculable.
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C. The factored farm

In order to demonstrate weak factorization, we must
show that the Drell-Yan cross section for meson-meson
scattering takes the form

trcentral~q/1 ~q/2 &
(2.6a)

where o.„„„,~, to be defined later, has connections only to
the actiue quark and antiquark lines, and Hq» and H /2
are the CSS meson structure functions. (The subscripts I
and 2 indicate meson I and meson 2.) Hq» and H /2
contain all the collinear contributions and all the spectator
interactions. This weak factorization form is illustrated
in Fig. 3.

The general scheme by which we organize the collinear
contributions into the factored form is as follows: for each
set of Feynman graphs 6'"' of nth order in the square of
the @CD coupling (g ), we construct a set of collinear
subtractions S ",such that

D. Ultraviolet regularization
of the structure functions

The structure functions and the subtractions from
which they arise of course contain ultraviolet divergences,
which must be regulated. (The usual UV counterterms
render the original graphs G finite. The counterterms for
the subtractions S are somewhat more complicated be-
cause of the dependence of S on the vector n. ) One can
think of the regularization as a cutoff on the range of in-
tegration of the lq's. Then, if p is the regulator scale, the
subtractions contain only those collinear contributions for
which Iz (p, which includes the divergence at Iz ——0.
A more elegant approach is to use a covariant regulator
scheme such as dimensional regularization. '

The regular scale p must be chosen so that

(n) (n) (n) (O) (O)=central q/1 q/2

(integrations over x,k implied) (2.6b)

Pl ((P (2.7)

—=S'n'+ - - +S'n' (2.6c)

(n) (n) (O) . (O) (n)= ~q/t ~;/Z+ + ~q/t ~;/2 ~r (2.6d)

It turns out that all the gluons that attach to the specta-
tors have momentum collinear to the corresponding
meson, so o.„„„,~ has connections only to the active quark
and antiquark. We shall see that cr«„„at takes the form

(n) (n) (n)
Ocentral =aqq

—
~qq (2.6e)

where o. is the nth-order contribution to the qq annihila-
tion cross section, and S'-"' is the corresponding set of col-
linear subtractions.

has only central contributions. Equation (2.6b) is the defi-
nition of o'ce„'„at. Then we use Ward identities to show
that

(n) (0) (n) . . . (n —& ) (1)=~central + + ' ' +ce tnr la+

in order to include all contributions involving spectators
in the structure functions. Condition (2.7) also ensures
that the evolution of the structure function with p is per-
turbatively calculable. p can be chosen to be identical to
the renormalization scale for the original graph G, but
this need not be the case. The dependence of the structure
functions on p is of course compensated, in the usual
renormalization-group way by the dependence of
trcentra]=G/(~q/t~q/2), so that the cross section is in-
dependent of tM.

Suppose that 6 and S have both been dimensionally re-
gulated (though not necessarily with the same regular
scale) in 4-e dimensions. Then the poles in e correspond-
ing to the collinear singularities (regulated by e &0) cancel
in 6-S. There remain poles corresponding to soft singu-
larities, which ultimately cancel in the'inclusive cross sec-
tion through the Block-Nordsieck mechanism, and UV
poles in 6 and S (regulated by e &0), which are canceled
by their UV counterterms (or dropped in the case of
minimal subtraction).

E. Factorization in one loop

lllllv'IIIIIIIIIIIIIII(()L
ENTRAL

) 3)l L(((IIIIIII!/III/
FIG. 3. Schematic representation of the factored form for a

contribution to the Drell- Yan cross section of arbitrary order.

In order to illustrate some of the basic techniques we
employ in proving factorization, let us demonstrate fac-
torization at the one-loop level. ' As always, we are con-
cerned only with the limit Q ~ cc (leading twist). We be-
gin with a subset of graphs that involves only an active
quark and a meson.

(I } The active-spectator graph.

The graph involving exchange of a virtual gluon be-
tween the active quark and the spectator quark is shown
in Fig. 4. The various propagator denominators labeled in
Fig. 4 are given, to leading order in I' by
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Furthermore, if JU is the current with which the upper
end of the gluon is contracted and JI the current with
which the lower end is contracted [JU 2x——qP, + I,
JL, ——2(1 —x )P2+I], then the leading part of the numera-
tor factor (convection current) is given by

2 UJI+. =xq ( I+. I.—)= x, L, . (2.11b)

Combining the factors (2.11a) and (2.11b) we arrive at the
eikonal form

n JL
n. i+is ' (2.11c)

FIG. 4. The 0 (a, ) virtual active-spectator diagram.

1

(x~P /+ )( ——I ) l+—i e

which is illustrated in Fig. 2(a).
Another way to arrive at this result, which can be gen-

eralized in order to discuss more complex examples, is as
follows. First, we define a collinear to + subtraction, a
contribution to S

&
', by making the crammer- Yennie' re-

placement

[(1 x)P +—/+](I ) i+—i e
l„nv

g l.n+ie (2.12)

1C-
(xqP+I )I+ I +—ie

1

I+I li +i—e

E=l

(2.&)

The symbol j,which has a different meaning in each line
(2.8), stands for any quadratic form in transverse com-
ponents of momentum plus terms proportional to
(masses) . First we notice that the denominators A and B,
corresponding in our model to the meson wave function,
pinch the / contour at / -l /P. By closing the I
contour (or more simply by power counting), we see that
the result of the I integration is of the form

in the original graph. Here, the index p is on the active-
quark line and the index v is on the spectator line. We
call a gluon in which a replacement like (2.2) has been
made a "subtraction gluon. " The subtraction is indicated
diagrammatically as shown in Fig. 5(a). The arrowhead
of the broken line symbolizes the factor I„, and the n

symbolizes the, factor n (In sub. sequent diagrams we
often suppress the label n. ) The replacement (2.12) gives
the correct leading contribution provided that

(JU /)(n JL)=(JU JL )(/ n) . (2.13)

Since the active-quark momentum has only a large
component and the spectator-quark momentum has only a
large + component, (2.13) is satisfied if / is collinear to
the spectator momentum:

(2.14)

That is, in this case, the original graph (Fig. 2) less the
subtraction (Fig. 4) vanishes to leading order as P~ao.
Next we apply the quark-gluon vertex Ward identity to
the subtraction. This Ward identity is written out di-
agrammatically in Fig. 6. On the right-hand side, the cir-
cle on the q —g vertex stands for a scalar coupling
(A„J"—+1) and the hash marks on a propagator mean
that the propagator factor has been canceled. Application
of the Ward identity to the subtraction leads to the two
terms shown in Fig. 5(b). The first term gives a contribu-
tion that is suppressed by powers of 1/P relative to the
second term. That is, the canceled propagator E is off-

(2.9)

Power counting then yields

l -m, l+&P . (2.10)

In fact, it is easy to see that we can eliminate the I+ «P
(Glauber) contribution altogether. We simply deform the
l+ contour into the upper half of the complex l' plane
(uhp) until I+-P everywhere along the contour. The
only pole in the I+ complex plane within 0 (P) of the ori-
gin is in the denominator C, but it is in the lower half-
plane (lhp), so we avoid it. Thus, we find that the entire
leading contribution comes from the region l collinear to
+ ~

Now,

d /d/+
xqPI+ i +i e (/+)(i /P) Iz +ie—

1

2xqP(n I+iE) (2.11a)

1 1C=
xq P/+ + i e xq P (/+ I ) +ie— =0

(a) (b) (c)
FIG. 5. Transformation of the active-spectator collinear sub-

traction into. the eikonal form.
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mass-shell by O(J. ), whereas the canceled propagator C
is off-shell by O(P ). The incoming active quark is "ef-
fectively on-shell. " The second term in Fig. 6 is equal to
the structure-function contribution shown in Fig. 5(c).

(2) The active-active graph

Next let us examine the graph containing a virtual
gluon exchanged between the active quark and active anti-
quark (Fig. 7). The relevant propagator denominators are

1

(x P+l )l+ l +—iE

FICi. 7. The O(a, }virtual active-spectator diagram.

» /+, /z. At this point we can see the motivation for
choosing n spacelike. In

1B—
(x P —l+-)(l ) l2+—i e

(2.15) 1 2
I n+ie I+ —I +i@

(2.18)

1C=
/ I —/q +is

Now there is no "wave-function pinch" to limit the com-
ponent of momentum l to be small. However, we can
still deform contours to eliminate the Glauber contribu-
tion. We deform the l+ contour into the uhp and the /

contour into the lhp. If l+l « /j (i.e., if we are in the
Glauber region), we can drop the terms l+/ in A and B,
so that the pole in A is in the lh of the I+ plane and the
pole in B is in the uh of the l plane. The contour defor-
mation avoids these poles. The pole in C is of course at

(/„n„+1 n~)I' P J Jv
I n+ie

—,(l+JU JL+ —l JU JL+, )

I n, +is

the term I suppresses the collinear to + subtraction in
the region I ~~I+ and the term I+ suppresses the col-
linear to —subtraction in the region I ~~/ . That is,
the subtractions have been constructed so as to avoid dou-
ble counting of the collinear contributions.

Note that the collinear subtractions also contain some
of the leading central contributions. In fact, in, the soft
central region (/+-l -/j -m), JU=(O, J&,0) and
Jl -(Jl+,0,0), so

I+I —/q (2.16)

It blocks the contour deformation, but only at a point out-
side the Glauber region.

Now I can be collinear to + or —or central. We re-
move the collinear to + contributions by making a col-
linear subtraction, which is obtained from the original
graph by making the replacement

l„n
Spv~ I-n +ie

(2.17a)

I np
Rpv I n+ie (2.17b)

which gives the correct leading contribution for

in the gluon propagator. Here p is the index correspond-
ing to the attachment of the gluon to the upper quark line
in Fig. 7. From (2.13) we see that the replacement (2.17a)
gives the correct leading contribution for I+ ~&l, /z.
Similarly, we construct a subtraction that accounts for the
collinear to —contribution by making the replacement

=g„.JPL, . (2.19)

That is, because the currents JU and JL are collinear to
+ or —,the subtractions account completely for the soft

central contribution. This is not the case in general. For
I in, the hard central region, JU and JL are not purely col-
linear; and for more complicated graphs JU and Jl are
not necessarily collinear, even if some of the gluon mo-
menta are soft. Then the difference between the original
graph and the collinear subtractions contains a central
remainder. We call the sum of all such remainders o.„„„,~

[see Fig. 8(a)].
As a final step, we use the q-g Ward identity to show

that the collinear subtractions can be put into the CSS
form. The procedure is identical to that employed in the
active-spectator diagram (see Fig. 9). For the collinear to
+ subtraction, I is collinear to + or central, so the term

in Fig. 9(a) in which the propagator D is canceled is
suppressed by powers of I/P relative to the term in which

(I )

CENTRAL
('a I + H. c, + REAL EMISSION + SELF-ENERGy

FKJ. 6. The q-g Ward identity. Here, in anticipation of the
introduction of subtraction gluons, we represent the gluon by a
dashed line. The arrow indicates that a factor of the gluon
momentum is contracted into the gluon's Lorentz index at the
vertex; the open circle indicates a scalar coupling; hash marks
indicate that a propagator has been canceled.

.c. + REAL EMISSION
SELF-ENERGy

(b)
FKJ. 8. O(a, ) contributions to o.„„„,~ (a) in terms of the col-

linear subtractions and (b) in terms of the eikonal form.
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hag t I

1

n l+ic

=0

(a)

t

n ~ i+i&

(b)

FIG. 9. Transformation of the O(a, ) active-active collinear
subtractions into the eikonal form.

the propagator A is canceled. That is, the active quark is
effectively on-shell. Then we immediately obtain a contri-
bution to the lower meson's structure function. Similarly,
for the collinear to —subtraction, the active antiquark is
effectively on-shell, and we obtain a contribution to the
upper meson's structure function [Fig. 9(b)].

1 -J /P,
and the denominators 3 and 8 pinch /+ at

I+-J. /P .

(2.20a)

(2.20b)

That is, /+ and / are trapped in the Glauber region.
The gluon propagator then is given by

{3)The spectator-spectator graph

The graphs in which a virtual gluon is exchanged be-
tween the spectators are shown in Fig. 10. In Fig. 10(a)
the propagators C and D pinch / at

imaginary and it is canceled by the contribution of Fig.
10(b).

In evaluating Fig. 10(a), we have picked up the residues
at both spectator poles. That is, we have cut the spectator
lines. In terms of time-ordered perturbation theory, this is
equivalent to picking up the residue at the pole in the en-

ergy denominator X for the final-state interaction shown
in Fig. 11. The cancellation between Fig. 10(a) and Fig.
10(b) is then just a manifestation of the fact that the sum
over all cuts of the final-state interaction (qq scattering) is
zero. As we shall see, this sort of final-state unitarity
cancellation can be used quite generally to eliminate con-
tributions in which momentum contours are trapped in
the Glauber region. It is, in essence, the cancellation not-
ed by Cardy and Winbow, and DeTar, Ellis, and Land-
shoff (in Ref. 1) in their pre-QCD discussions of spectator
interactions.

{4)Real emission graphs

So far, we have discussed only virtual gluon contribu-
tions to the one-loop Drell-Yan cross section. However,
the treatment of each real emission graph follows closely
that given for the corresponding virtual graph. One im-
portant difference is that the on-shell condition for the
real gluon gives /+/ =/z . Thus, we need not deform
contours in order to eliminate the Glauber contribution.
In the case of spectator interactions, the on-shell condition
combined with the lower meson wave-function pinch [Eq.
(2.20a)] yields I+-P, l -J. /P, so we see without hav-

ing to make a contour deformation that the real gluon is
collinear to + . The real gluon graphs and their contribu-
tions to the structure functions are shown in Fig. 12.

(2.21) (5) The faetorized form in one ioop

We carry out the /+ and / integrations, closing the /+
contour in the uhp and the / contour in the lhp. Then
the graph has a factor, relative to the basic process

At this stage we have succeeded in putting the one-loop
contributions into the factorized form (2.6a). That is, we
have shown that

(;)s J. l (0) J.2 (0)f d /j
ll J. l (12) J 2 ( —lj )

(2.22)
and

(1) (1) (1) (0) (0)tr central ~q/ l +q /2 (2.23a)

where J. l (Ij ) is the quantity obtained by evaluating the
propagator denominator 8 at the pole in A, and J.2 (1~) is
the corresponding quantity obtained by evaluating the
denominator C at the pole in D. Since the mesons are
stable against decay, l1 and l2 are negative definite.
Thus, we see that the contribution of Fig. 10(a) is purely

(1) (0) (1) (0) (0) (1)= tTcentral( +q /1 ~q/2+ q/l +
q /2 (2.23b)

(a) (b)

FIG. 10. The 0 (a, ) virtual spectator-spectator contributions
to the Drell- Yan cross section.

FIG. 11. The final-state interaction associated with the dia-

gram of Fig. 10(a). X indicates the final-state energy denomina-
tor.
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G. Identity of the Drell-Yan
and deep-inelastic structure functions

I

/ i

Finally, let us demonstrate that the Drell-Yan and
deep-inelastic structure functions are identical at the one-
loop level. Contributions to the deep-inelastic structure
function (Fig. 13), differ from the corresponding contribu-
tions to the Drell-Yan structure function only in that the
eikonal factor

0

—l+ —l +ie
(2.27)

I (c) I

FIG. 12. 0 (cz, ) real emission diagrams and their correspond-
ing contributions to the meson structure functions.

o,', ', ,~ is, of course, just the bare qq cross section and

H&& „,„ is the bare-meson structure function (square of
the meson wave function). The virtual gluon contribu-
tions to

(2.23c)
1

are shown in Fig. 8, and the virtual gluon contributions to
H~~ „,„(excluding self-energy graphs) are shown in Figs.
5(c), 9(a), and 9(b). Note that the subtractions S'" can be
written in the eikonal form [Fig. 8(b)].

F. Breakdown of factorization

As was mentioned in Sec. I, we expect factorization in
Drell-Yan models to break down for a sufficiently long
target. In order to see this breakdown at the one-loop lev-
el, let us reexamine the discussion for the active-spectator
graph (Sec. IIE). There, in order to arrive at the eikonal
form, it was necessary to deform contours so that the
quantity / n lay in the uhp and was everywhere O(P).
This deformation relied on the fact that, in our model, the
meson wave function is insensitive to the quantity l.n.
For a target of length L (in the target rest frame), we ex-
pect the target wave function to be sensitive to / n for

1

l+ =0. (2.28)

The analysis of the active-active contributions is slight-
ly more involved. In the region l collinear to +, the
difference between structure functions is nonleading, as in
the preceding example. The region l collinear to —is
power suppressed in each graph. In the region l central
there is, for each virtual graph, only one pole in the l
complex plane —namely, the gluon pole. We carry out the
l integration for the region l central by picking up the
residue at that pole. It is precisely canceled by the contri-
bution of the corresponding real emission graph, provided
that we can route the momentum / from one eikonal-
antiquark vertex to the other. [This routing is shown for
the deep-inelastic case in Figs. 13(b) and 13(d) and for the
Drell-Yan case in Figs. 2(b) and 2(d).] Now, /+-/ -/~,
so the momentum / has no significant effect on the longi-
tudinal components of the antiquark's momentum (i.e., /

affects the virtual gluon mass by relative order 1/P) if

The relative signs in (2.27) reflect the fact that one must
replace an incoming quark with an outgoing antiquark in
going from the Drell- Yan case to the deep-inelastic case.

For the active-spectator graphs, l is collinear to +
(/+ » / ). Thus, the leading contribution to the differ-
ence between the Drell-Yan and deep-inelastic structure
functions is proportional to

/ n —[L (M/P)] (2.24)

where M is the target mass. L(M/P) is the Lorentz-
contracted length of the target in the center-of-mass
frame. For L large enough, then, / is trapped in the
Glauber region, and we observe semiclassical scattering, as
expected. In order to obtain the eikonal (factored) form,
we must have (b)

+ H. c.

(xqP)(/. n) ))/i
Substituting (2.24), we find

xqI' &&LMlz

(2.25)

(2.26)

I

I

(c)

+ H. c.

Q »x LM/i-
which is the BBL target-length condition.

+ SELF-ENERGY GRAPHS

FIG. 13. O(a, ) contributions td the deep-inelastic meson
structure functions.
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Q'»ij',
or equivalently

Q2 ))p2
(2.29) + SEAGULL5

1~ affects the antiquark's transverse momentum k~, but
this is not observable, provided that we consider the in-
tegrated structure function

H(x, k~)d k~, (2.30a)
I&g I &Q

(o) (s) (c}
FIG. 14. 0 (a, ) double virtual active-spectator contributions

to the Dre11-Yan cross section.

Q2)/ 2

Q'»p' .

(2.30b)

[Note that the definition of fq~z (x) contains a similar in-
tegration over k}.] Therefore, we have demonstrated
that, in one-loop, the Drell-Yan and deep-inelastic struc-
ture functions are related by (1.1).

III. FACTORIZATION IN T%'0 LOOPS

In this section we demonstrate that the two-loop contri-
butions to the Drell-Yan cross section can be put into the
factorized form {2.6}. The procedure we outline here is
somewhat more elaborate than is necessary for this exam-

ple, but our aim is to give a discussion that generalizes
directly to higher orders. The basic strategy is the same
as in the one-loop case. First we make use of the analy-
ticity properties of the amplitudes, power counting, and
contour-deformation arguments to eliminate the Glauber
contributions and to show that gluons that attach to spec-
tators have momentum collinear to the corresponding
meson. Then we define a set of collinear subtractions S' '

that removes the collinear contributions from the original
graphs G' '. FinaHy, we use Ward identities to put the
subtraction into the factored form.

Our analysis begins with the graphs that appear in q-
meson scattering, which we discuss in Secs. IIIA, IIIB,
and III C. In Sec. III D we discuss the additional graphs
that appear in meson-meson scattering.

A. The double active-spectator graphs

The easiest examples to analyze are the graphs involv-
ing a double gluon exchange between an active quark and
a spectator quark shown in Fig. 14. The analysis of the
graph of Fig. 14(c) follows precisely (with l —+l & + l2) the
analysis of the one-loop active-spectator graph given in
Sec. II. Let us concentrate, then, on the analysis of the
graphs of Figs. 14(a) and 14(b). We will show that the
leading contribution as P ~oo comes from the region
where both gluons are collinear with the lower meson, i.e.,
l; —l /P, l; —P. First note that the 1ower wave-
function pinch puts a restriction on the sum of the minus
components of the gluon's momenta:

see that one of them, l;, is large and positive. This
means that the pole in the l; gluon propagator is in the I;+

lhp, so we can deform the 1;+ contour into the uhp out to
i;+-P to obtain a contribution that vanishes as 1/P.
(The poles in the active-quark propagators within P of the
origin are in the lhp, as in the one-loop example; there are
no poles within P of the origin in the spectator propaga-
tors or active antiquark propagator. ) We conclude that
l& and l2 must both be small if we are to obtain a lead-
ing contribution. Then the l ) and l2 contours can be de-'

formed into the uhp out to I;+-P, so that the 1; are col-
linear to +.

The collinear subtraction that we use to remove these
collinear to + contributions is obtained by making the
substitution

n"g"'~ . (gluon 1),
li n +LE'

(I(+12)I'n'
gp, v (gluon 2)

(l~+l2} n+ie

(3.2a)

(3.2b)

for the gluons' polarization sums [see Fig. 15(a)j, where p
is the index corresponding to the attachment of the gluon
to the upper quark line in Fig. 1S.

Implicit in the substitution (3.2) is a choice of ordering
of the two collinear gluons. With the momentum routing
that we have chosen, it is convenient to order the gluons
from the outside in along the quark hne. By construction
the numerators that result from these substitutions cancel
the active-quark denominators and give the eikonal form
illustrated in Fig. 15(b), which contains a contribution to

More generally, this procedure can be understood
as an application of the q-g Ward identity (Fig. 6). In
particular, for the first diagram of Fig. 15(a) one can ap-
ply the Ward identity first to gluon 1 to obtain the result
shown in Fig. 16(b). Then one can apply the Ward identi-

ty to the combination of gluons 1 and 2 in Fig. 16(b),
treating them as one gluon with momentum l&+l2. The
numerator structure of (3.2b) is, of course, exactly the

l) +l2 -J /P . (3.1)
{Zti/&} n+iq

Now let us show that I& and l2 are individuaHy small.
Suppose one of /~, 12 is large (-l }. Then, from (3.1) we

{O) {b)

FIG. 15. Identification of the active-spectator interactions
with an eikonal contribution.
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1

~ n+ iE (g +g } n+ iq
2

(a) (b) (c) (d)

FIG. 16. The use of the q-g Ward identity to transform the
double active-spectator collinear subtractions into the eikonal
form.

form required for this application of the Ward identity.
The result, Fig. 16(c), is equal to the eikonal form, Fig.
16(d).

The concept of "ordering" of gluons is rather awkward
to implement in higher orders. Therefore, let us describe
an alternative to the procedure given in the preceding
paragraph, which can be generalized more easily. Rather
than introduce an asymmetry between the gluons by mak-
ing the substitution (3.2), we construct the main collinear
subtraction, denoted by M, by making the substitution

C

x a ( g, p, , a; g t, b}

I;pn
gpv~ l;.n+ie

for both gluons. In order to apply the Ward identities to
obtain the eikonal result, we also need to make an auxili-
ary subtraction, denoted by A, which is shown in Fig. 17.
The auxiliary subtraction is proportional to

(3.3)

p, , a v, b

FIG. 17. A two-gluon auxiliary subtraction. l& and I2 are the
gluon momenta, p, y, cr are Lorentz indices, and a, b, e are.
color indices. A' ili, a;l2, v, b) is defined in the text [Eq. (3.4)].

lz n&n„[A,„A&], (it+12)~n&nv[la At, l.a' (It,p, a;12,v, b) = — . . +
(1& n+ie)(12 n+ie) (1, n+ie)[(1&+ Iz) nixie]

=—a'(1 t,p, ,a;12,v, b)+a "(lt,p, a;12,v, b), (3.4a)

(1, l~ n 12 1) )n[A,„—A, ],tnn,
(lt n+ie)(lz n+ie)[(l, +12) n+ie]. '

(3.4b)

which is symmetric under interchange of gluons 1 and 2.
From (3.4b) we see that the auxiliary subtraction vanishes
in the region 1t and 12 both collinear to + (and of course
for 1t and 12 collinear to —) so that there is no overcount-
ing of the collinear to + contribution: the main subtrac-
tion accounts for all of it. In (3.4a), the term a' has the
form of a commutator between subtraction gluons of the
type (3.3), as shown in Fig. 18(a). The term a", has the

where the A,; are the generators for the color group in the
fundamental representation, and the Lorentz indices p, v,
o., and the color indices a, b, e are specified in Fig. 17. It
might appear from (3.4a) that the auxiliary subtraction
destroys the symmetry between gluons 1 arid 2. However,
by combining the terms a' and a", we obtain the form

r

, form of a commutator between a subtraction gluon with
momentum l] and a subtraction gluon with momentum
I]+l2. It can be written in terms of the trigluon vertex,
as shown in Fig. 18(b).

Now we can apply the Ward identities to obtain the
eikonal result. First we apply the q-g Ward identity to
gluon 1 in the main subtractions [Fig. 15(a), but with
denominators (1~ n+iE.) and (12 n+ie)] Of th. e three
leading-twist terms that appear, two give just the negative
of the commutator term a' in the auxiliary subtraction.
Thus, if A' is the part of the auxiliary subtraction corre-
sponding to a', then M+ A ' gives the result shown in Fig.
19(a). Application of the Ward identity to gluon 2 leads
to the result shown in Fig. 19(b). We can also apply the
q-g Ward identity to the part A" of the auxiliary subtrac-
tion that corresponds to the term a". The result is shown
in Fig. 19(c). Now, the contributions of Figs. 19(b) and
19(c) combine as

[A,„k,t, ] kg kQ A,b k+

(I, n+ie)(12 n+ie) (1 nt+ie)[(l~+l )2n+ie] ( ,1. n+ie)[(l t+z1) n+ie] (12 n+ie')[(1&+lz)'n+ie']

(3.5)

A A

(a) (b)

FIG. 18. Decomposition of the auxiliary subtraction into (a)
a commutator term, which we call 3' and (b) a term involving
the sum of the gluons' momenta, which we call 3".

(a) (c)

FIG. 19. Application of the q-g Ward identity to one of the
active-spectator main subtractions and the corresponding auxili-
ary subtraction.
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This last expression is in the eikonal form [Fig. 15(b)].

B. The active-active —active-spectator graphs

1

(P +I, )(I-+, +l2+ ) J'+i—e. (3 6)

so that the poles are in the lower half of the complex lz+

plane. [In the case P +l& &0 we can deform the l~+

contour into the lower half-plane —avoiding the pole in
the l]-gluon propagator

1

l] l )
—l]q +~@

(3.7)

so that
~
l,+

~

is O(P) along the entire contour. Then, the
amplitude is suppressed by powers of P.] The propaga-
tors along the active-antiquark line are of the form

(b) (c) (4)

(e) {g)

(m)

FICi. 20. The 0 (a ) virtual active-active —active-spectator
contributions to the Drell- Yan cross section.

The two-loop graphs involving one virtual active-active
exchange and one virtual active-spectator exchange are
shown in Fig. 20. Their analysis is somewhat more com-
plicated than the one for the double active-spectator case,

. since it turns out that the active-active gluon momentum
l& can be collinear to +, —,or central.

Again it is easy to see that the lower meson wave-
function pinch gives lz -l /P. We wish to show that
the lz+ contour can be deformed into the upper half-plane
so that

~

l2+
~

is of order P everywhere on the contour. In
order to do this, we must address the possibility of en-
countering poles in the complex lz+ plane due to the lz+

dependence of the various propagators. Since lq -I /P,
the lz-gluon propagator has a pole only at lz -P. The
propagators along the active-quark line present no prob-
lem since these are of the form

1

(xqP+ —1
&

—l2+ )( —1, ) I—+i@
(3.g)

so that the l2+ contour can be defomed out to ~12+
~

-P
before the l z+ dependence becomes important
[(x~P+ —l+)-l is too small a region to matter]. The
propagator

1

(l) —l2) +lE (l)+ —l2 )I) —(1)J 12() +Et
(3.9)

in the trigluon graphs has a pole in the upper half-plane
only for l

& ~ 0. Furthermore, this pole presents an obsta-
cle to the lz+ co' tour deformation only if

~
l&

~

is
&

~

J. ~. In that case we can deform the l&+ contour into
the upper half-plane —avoiding the pole in the l ~ -gluon
propagator and the active-quark propagator —until

~

l+
~

is 0 (P) along the entire contour. The result is then
suppressed by powers of P (since

~

l&
~

&
~

l
~

). In sum-
mary, we are able to carry out the deformation of the lz+

contour without picking up any pole contributions. Thus,
lz is collinear to + .

Suppose we attempt a similar deformation of the l&+

contour into the uhp. Then we encounter poles in the
gluori propagators carrying the momentum l ~ at
1~+ ——l /l~ . Thus, we conclude that we can deform the
l,+ (or l& contours) such that l~+l& -1. everywhere on
the l

&
and l

&
contours. %'e have eliminated the Glauber

region, so l] can be collinear to + or central. This defor-
mation of contours out of the Glauber region is essential,
since the collinear subtractions we are about to describe
would not be a good approximation to the original graph
in the collinear region if a subtraction gluon were to at-
tach to a gluon with momentum in the Glauber region.

Our goal now is to account for the various collinear
contributions by constructing the appropriate subtrac-
tions. We begin with the subtractions for the regions of
momentum space in which l~ and l2 are collinear (l2 col-
linear to + and l~ collinear to +). This set of subtrac-
tions is denoted by Sz ', ~here the subscript indicates the
number of independent gluon momenta that are collinear
to + or —.

Consider first the contribution to Sz ' for the case in
which both l] and lz are collinear to + . The main sub-
tractions (contributing to M2 ') are shown in Fig. 21 and
the corresponding auxiliary subtractions (contributing to
2'2 ') in Fig. 22. In constructing these subtractions, we
have observed two general principles. The first is that
there are no subtraction gluons internal to a subgraph that
is potentially entirely collinear to + (or entirely collinear
to —). That is, the subtraction gluons always run from
the boundary of a potentiaHy collinear subgraph to its ex-
terior. Thus, there is no subtraction of the type shown in
Fig. 23(a). Note that the substitution (2.12) is a bad ap-
proximation even for l in the collinear region if both ends
of the gluon in question attach to lines collinear to the
same direction. The second important principle is that all
the subtraction gluons have their n ends attached to a
line that is purely collinear to + . Thus, there is no sub-
traction of the type shown in Fig. 23(b). It is easy to see
that for l] and lz both collinear to +, all three denomi-
nators on the active-quark line are —1/P, and the contri-
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(a) (b) (c) (d)

+ SEAGULLS

(a) (b) (c) (d)
FIG. 23. Examples of diagrams that are not allowed accord-

ing to the rules for constructing collinear subtractions. {a) con-
tains a subtraction gluon on the interior of a potentially collinear
subgraph. In (b) and {c)a subtraction gluon is not connected to
a potentially collinear subgraph. (d) is power suppressed.

(e) (g)
FIG. 21. The main subtractions for the active-active —active-

spectator diagrams for the case of both gluons collinear to + .
The asterisks indicate potentially large propagator denomina-
tors, as explained in the text.

bution is power suppressed. In general, if such a power
suppression is to be avoided, the region of the graph that
is collinear to + (or —) must be connected

Now it is a straightforward matter to apply the q-g
Ward identity to the main and auxiliary subtractions in
Figs. 21 and 22. The analysis is identical to that for the
double active-spectator case. The resulting contribution
to H~&, is shown in Fig. 24.

Next let us take up the case 72 collinear to +, l& col-
linear to —.The subtractions for this case (also contribu-
tions to Sz ') are shown in Fig. 25. Again, in construct-
ing the subtractions we have observed the principles that
there are no subtraction gluons on the interior of a poten-
tially collinear subgraph, and each collinear subgraph is
connected. We can refine this notion of a connected col-
linear subgraph further. To say that a collinear to + (or
—) subgraph is connected means that there is a path from
a point in the subgraph [say, the meson moving in the
corresponding collinear to + (or —) direction] to every
other point in the subgraph, along which every
propagator's momentum is collinear to + (or —). For
example, there is no subtraction of the type shown in Fig.
23(c), because the momentum l2 interrupts the flow of
collinear to —momentum from the upper meson to the
collinear to —subtraction gluon with momentum I &. It is
easy to see that the two active-quark propagators and the
active-antiquark propagator are all —1/P, so such a con-
tribution is power suppressed. Similarly, in the diagram
of Fig. 20(f), the self-energy correction on the active-
quark line is completely disconnected from either the col-

linear to + or —subgraphs, so there is no subtraction of
the type shown in Fig. 23(d).

In order to reorganize the subtractions of Fig. 25, we
need an additional %'ard identity —the one for the triple-
gluon vertex —which is shown in Fig. 26. This identity
follows directly from the Feynman rules for the vertex.
Its right-hand side consists of two parts. The two terms
(a) and (b) we call the convection parts. They arise from
the convection current of the ordinary gluon as seen by
the gluon with the arrowhead. The terms (c) and (d) are
called the A-line parts. ' (A-line refers to the broken line
in the diagrams. ) These contributions arise from the A-
line ordinary gluon convection current, as seen by the
other half of the ordinary gluon. The Feynman rules for
a A-line-gluon vertex are the same as those for a ghost-
gluon vertex. Note that the A-line parts vanish for gluons
with physical polarization, since in that case the A-line ar-
rowhead symbohzes the contraction of the gluon's
moxnentum into its polarization.

In applying the Ward identities to the subtractions, we
find that there arise terms in which certain propagators
are canceled. If use of a given identity yields several
terms, the leading terms are those in which the denomina-
tors with the greatest power of P are canceled. These
large denominators correspond to propagators that have a
mixed momentum (collinear to + and collinear to —or
collinear to + and central). They are marked with an as-
terisk in Fig. 25. In applying the Ward identities, we re-
tain only the leading terms. This means that the propaga-
tors marked with an asterisk are effectively off-shell,
whereas the other propagators are effectively on-shell.

(a} (c}

FIG. 22. Auxiliary subtractions corresponding to the main
subtractions of Fig. 21.

(&) (s)
FIG. 24. Contribution of the subtractions of Figs. 21 and 22

to the meson structure function.
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(a) (b) (c)
(a) (b) (c)

FIG. 27. Results of application of Ward identities to the sub-
tractions of Fig. 25.

{e) (g)

FIG. 25. The subtractions for the active-spectator —active-
active diagrams for the case of one gluon collinear to + and
one gluon collinear to —.

Also, the contributions in which the end of a A-line
emerges from the vertex along an effectively on-shell line
are nonleading, so we drop them.

Now the application of the Ward identities is easily
worked out. First we apply the identities using the arrow-
head of the subtraction gluon with momentum /2. Then,
the contributions of Figs. 25(b), 25(c), 25(g), 25(h), and the
convection part of Fig. 25(a) sum to give the contribution
shown in Fig. 27(c). Figure 25(f) yields the contribution
in Fig. 27(b). The contributions of Figs. 25(e), 25(i), 25(j),
and the convection part of Fig. 25(d) sum to give the con-
tribution shown in Fig. 27(a).

There are also A-line contributions that arise from Figs.
25(a) and 25(d). It turns out that these cancel among
themselves. In general, if a A-line arrowhead connects to
an effectively on-shell region of a graph, the contribution
is nonleading. Thus, in Figs. 25(a) and 25(d), the terms in
which the gluon with momentum l~ becomes a A-line are
nonleading. The terms in which the gluon with momen-
tum /2 —/~ becomes a A-line cancel between the graphs of
Figs. 25(a) and 25(d) upon application of the q-g Ward
identity.

The next step is to manipulate the results (Fig. 27) from
the preceding applications of Ward identities. The contri-
bution of Fig. 27(a) is nonleading since the canceled
denominator is small compared to the one marked with an
asterisk. In general, if application of Ward identities to
one subtraction gluon (in this case gluon 2) results in a
term in which a second subtraction gluon (in this case

gluon 1) is on the interior of the second gluon's collinear
subgraph, then the term is nonleading. Figure 27(b) is al-
ready in the form of a contribution to Hz'~~M-'&2O'„„'„, ~,

as shown in Fig. 28(a). In order to put the contribution
of Fig. 27(c) into a factored form, we apply the q-g Ward
identity, using the arrowhead from the subtraction gluon
of momentum /&. The incoming antiquark is effectively
on-shell, so we cancel only the denominator marked with
an asterisk. Then, we obtain the contribution to
H'q'&~ H-"&2o,',„'„,~ shown in Fig. 28(b).

At this stage, we have accounted for all the contribu-
tions in which /& and /2 are both collinear. That is,
O' ' —S2 ' is free of such contributions. There remain
collinear contributions of the type I& central, I2 collinear
to +. In order to account for these, we construct col-
linear subtractions SI ' on the set of graphs O' ' —Sz '.

In contrast with the subtractions S2 ', the collinear to +
region of each graph now contains on1y meson 2 and the
gluon with momentum /2. Thus, the subtractions S'& ' are
obtained from 6 (Fig. 20) —S2 (Figs. 21 and 25) by mak-
ing the replacement (3.3) in the propagator of the gluon
with momentum /2. We call this gluon the "active sub-
traction gluon" for SI '. Of course, S't ' contains other
subtraction gluons that arise from Sz, which we call
"inactive subtraction gluons. *' The Ward identities are a~-
plied to the active subtraction gluon in order to put S~ '

into the factored form. Again, only those propagators
that carry a "mixed" (collinear plus central) momentum
are effectively off-shell. The leading contributions come
only from those terms in which an effectively off-shell
denominator is canceled or a A-line emerges from a vertex
along an effectively off-shell line. In applying the Ward
identities to graphs with inactive as well as active subtrac-
tion gluons, it is useful to recall that two A-lines end to
end can be written as a single A-line as shown in Fig. 29.
The contribution to S'& ' that comes from 6 yields the re-

p+k,'P

(a) {b) (c) (4)

FIG. 26. The trigluon Ward identity. The dashed line is
called a A-line. Its Feynman rules are the same as for a ghost
line except that there is no factor 1 for closed loops.

FIG. 28. Contributions of the subtractions of Fig. 25 to the
factored meson structure functions.
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I

g ~ 0 W IK

FIG. 29. A useful diagrammatic identity for A-lines.

suit shown in Fig. 30(a) and the contribution that comes
from —Sz ' is shown in Fig. 30(b). These give the contri-
butions to %qg)H-~~o'„'„'„,) shown in Fig. 31 (with o'„'„'„,)
given in Fig. 8).

The quantity O' ' —Sz ' —S'~ ', by construction, con-
tains only central contributions. Since, in the present
case, we must always have I2 collinear to + in order to
obtain a leading contribution, G' ' —S2 ' —S~ ' is power
suppressed.

C. Double active-active graphs

We do not give a detailed analysis of the graphs con-
taining two gluons that connect only to the active-quark
or antiquark lines (or to each other), since it follows close-
ly the analysis given in the preceding subsection for the
active-spectator —active-active case. The essential new in-
gredient is that in the double active-active case, both I&

and I2 can be collinear to + or —or central. Thus, the
remainder G —Sz ' —S'& ' gives a leading-twist contribu-

(2)tlon to cTcentral

The fact that I2 can be collinear to —leads to a slight
technical difficulty. In certain subtractions, like the one
shown in Fig. 32(a), which are designed to account for
contributions in which both l ~ and I2 are collinear to +,
there is also a leading contribution from the region l

&
and

I2 collinear to —.These collinear to —contributions
could wreck the collinear subtraction procedure since they
come from a region of momentum space that is supposed
to be accounted for by another subtraction. That is, they
could lead to overcounting of the collinear contributions.
One way to eliminate such unwanted collinear to —con-
tributions would be to introduce a cutoff into the defini-
tion of the subtraction. For example, one could introduce
a factor l;+I(/;+ —l; +is) for each subtraction gluon; or
replace the numerator factor n, with n „, where
n =(0, 1,0); or simply restrict the range of integration.
All of these procedures lead to structure functions that
differ slightly from the CSS form. (They give the same
contribution when all the gluons are collinear to the
meson, but the central contributions are somewhat dif-
ferent. ) In general, such structure functions are more
complicated than the standard one, and they are not gauge
invariant.

Fortunately, there is a more elegant solution to this
problem. For I& and l2 collinear to +, that is, in the
region for which the subtraction is supposed to account,

(i)
0

CENTRAL (virtupl)

FIG. 31. The contribution of the subtractions of Fig. 30 to
the factored form.

certain propagators, marked with asterisks in Fig. 32(a),
are effectively off-shell, and others are effectively on-shell.
If we apply the Ward identities in this momentum region,
then some of the resulting terms are nonleading. These
are the terms in which an effectively on-shell denominator
is canceled or a A-line emerges from a vertex along an ef-
fectively on-shell line. We make a new definition of the
collinear subtraction by dropping these terms —even when

l~ and l2 are outside the collinear to + momentum re-
gion.

The subtraction, with this new definition is, of course, a
good approximation to the original graph in the region for
which it was designed (l&, 12 collinear to + ). It is also
easy to see that it does not contribute in the regions I& or
lq collinear to —.After applying Ward identities to Fig.
32(a) and the corresponding auxiliary subtraction, we ar-
rive at the eikonal form shown in Fig. 32(b). Now sup-
pose that one (or both) of /& and l2 is collinear to —.One
of the l; has the largest ~1 ~. Then we deform the l;+
contour out to l~+-P (into the uhp for I; ~0 and into
the lhp for l; & 0) to show that the contribution is
0 ( I /P).

In general, we make a new definition for the collinear
subtractions by decomposing each vertex (trigluon or q-g)
involving an active subtraction gluon arrowhead accord-
ing to the Ward identities and dropping all the resulting
terms that are nonleading in the momentum region for
which the subtraction was designed. That is, we drop all
terms in which an effectively on-shell propagator is can-
celed or a A-line arrowhead connects to an effectively on-
shell region of the graph. Then, after we sum graphs to
obtain the eikonal form, it is easy to see that the collinear
to + (meson 2) structure function has no leading contri-
butions in which one of its gluons is collinear to —.We

{ol (bj
FIG. 30. Contribution of the virtual diagrams of S] after

application of the Ward identities.

(a)
FIG. 32. {a) Example of a subtraction diagram that gives a

leading wrong collinearity contribution. {b) Its contribution to
the meson structure function.
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simply deform the l;+ contour for the loop momentum
with the largest

f
l

f
out to l; -P. (Of course a similar

argument holds for the collinear to —structure function. )

D. The double spectator graphs

Next let us discuss the graphs in the meson-meson
Drell-Yan process that involve an interaction with each
spectator. We do not describe the analysis of graphs in
which a gluon is exchanged between a quark and anti-
quark from the same meson, since these either give a
correction to the meson's wave function or else are very
similar in structure to one of the quark-meson examples
discussed previously. However, we do consider all other
graphs, beyond those treated in the quark-meson case,
that are needed to complete the meson-meson analysis.
The virtual gluon graphs in this set are shown in Fig. 33.
Here, and in the remainder of this paper, the presence of
associated seagull graphs is to be understood in the case of
scalar quarks.

The essential new ingredient that appears in the
analysis of these graphs is that one must add certain real
emission graphs to the virtual graphs in order to remove
all obstacles to the usual contour deformations. Consider,
for example, the contribution corresponding to Fig. 33(d).
Suppose we were to deform the l2+ contour into the uhp.
As usual, the active-quark propagator I/[(xqP+l2 )12+
—i + i@] presents no obstacle until l2+ -P. Owing to the
wave-function pinch in the propagators that emerge from
the lower meson, l2 -i /P. Thus, the pole in the lz
gluon propagator is also at l2+ -P. However, the propa-
gator of the gluon with momentum label l2 —l& blocks the
contour deformation. Since l,+ -i /P by virtue of the
upper meson wave-function pinch, we can write the l2 —l&

I

gluon propagator in the approximate form
1/[l2+l] —

(Ized
—1]z) +i@]. Thus, we see that for l] &0,

the 12 contour has a pole in the uhp. In terms of a
decomposition of the original Feynman graph into time-
ordered graphs, this pole is due to the final-state interac-
tion shown in Fig. 34(a). According to the Cutkosky
rules, the sum over all cuts of the final-state interaction
graph must be zero. Indeed, the contribution of Fig. 34(a)
is canceled by the real emission (time-ordered) graph of
Fig. 34(b). One can see that this cancellation removes the
pole in the l2+ uhp directly in terms of the Feynman ex-
pressions. The contribution of the real emission graph is
identical to that of the virtual graph except that the
l& —l2 gluon propagator is replaced by

(lq] —I]] )
( —2mi)5 l2+ — 0( l, ) . —

2
f
l,

f

l ]
(3.10)

Thus, the sum of amplitudes is proportional to

!
I

!
I

!
I

I

(a) (b)
FIG. 34. Two final-state cuts of the double-spectator trigluon

graph.

lq+1] —(12] —I]] ) +i@
—( n])6(l2+l] ——(12] 1]J ) )8( —l, )

—,[0(l] )+&(—l] )]
l2+l] —(12] —1]] ) +is

—,
' 9(l] )

l2+l] —(12J 1]J ) +]E

1 1 1+
l2 l] —(12] —1]J) +]e —12+i, +(12] I]J) +]e

—,'8( —l] )

—l2+l] —(12J 1]J ) +i@
(3.11)

(a) (b) (c!

(e)

+ SEAGULLS + H. c. + MESON1~ MESON 2

FICx. 33. Virtual double-spectator contributions to the Drell-
Yan cross section.

'

which has no pole in the l2+ uhp.
For the contribution of Fig. 33(b), if we deform the l2+

contour into the uhp, there is the possibility of encounter-
ing a pole in the l2 gluon propagator. This pole, at

I

l2+ ——(lz] ie)/l2, —is in the uhp for l2 &0, and corre-
sponds to the final-state interaction shown in Fig. 35(a).
It is removed when we add in the contribution of the real
emission cut shown in Fig. 35(b). Thus, in the sum over
cuts, we can always deform the l2+ contour into the uhp
out to l2+ -P. We conclude then that l2 -l /P, since if
l2 were 0 (i ), the l 2+ integration would be power
suppressed. The lower meson wave-function pinch gives
the constraint l

& +l2 -I /P, so l I must also be
O(i /P) if we are to obtain a leading contribution. But
the upper wave-function pinch gives l &+ -I /P, so we can
deform the l] contour into the lhp out to l& -P, provid-
ed that we observe the constraint l& +l2 -l /P and
simultaneously deform the l2 contour into the uhp. (The
pole in the l2 gluon propagator poses no obstacle, since if
it is in the uhp it cancels in the sum over cuts. ) Thus, we
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(a l

FIG. 37. Collinear
graphs.

I

I

I

I

I I

(t) )

subtractions for

I
I 1

I

I

I I

I

(r- )

the double-spectator

{oI {bI
FIG. 35. Two final-state cuts of the graph of Fig. 33(b).

conclude that the contribution of Fig. 33(b) plus the con-
tribution of Fig. 35(b) (taken as a Feynman graph) is
power suppressed.

The contribution of Fig. 33(c) can be treated in a simi-
lar fashion. First we deform the /2+ contour into the uhp
out to Iz+ -P. The pole in the lz gluon propagator in the
uhp cancels when we add the contribution of the real
emission graph of Fig. 36. Then we conclude, as in the
preceding example that /, , /2 are 0(l /P). Next we de-
form the /& contour into the lhp, observing the constraint
/& +/z -I /P. Here we encounter a pole in the specta-
tor propagator marked (x), but this pole is canceled when
we add the contribution of the graph of Fig. 33(e). Thus,
we conclude that the sum of contributions of Figs. 33(c),
36, and 33(e) is power suppressed. [This is a general prop-
erty of graphs in which a gluon connects two spectator
lines directly. After summing over cuts, one can always
deform the + momentum of that gluon into the uhp or
the —momentum into the lhp out to 0(P). But one can
argue, using the wave-function pinch combined with de-
formations of the remaining gluon momentum contours,
that leading contributions come only from the region in
which all minus components of momenta flowing into the
lower spectator are 0(l /P) and all plus components of
momenta flowing into the upper spectator are 0 (l /P). j

In the case of Figs. 33(a) and 33(f) the wave-'function
pinches require /2 -I /P and /& -l /P. Thus we can
immediately deform the /z+ contour into the Ihp and the
/~ contour into the lhp out to 0(P).

At this stage, we need to consider only the contribu-
tions of graphs of Figs. 33(a), 33(d), and 33(f), with /2+

and /~ everywhere 0(P). We make a collinear to +
subtraction on the I2 gluon and collinear to —subtraction
on the /& gluon (Fig. 37). Since leading contributions re-

suit only when l2 is collinear to + and I& is collinear to
—,these subtractions account completely for the contri-
butions of the original graphs. Application of the Ward
identities to the I2 gluon leads immediately to the result
shown in Fig. 38(a). [The convection part of the Ward
identity for the triple-gluon vertex graph of Fig. 33(d)
supplies the commutator term required to disentangle the
non-Abelian color factors. The A-line part from Fig.
33(d) cancels the A-line part from its mirror image (meson
1~ meson 2, /&~/2). The convection part from the mir-
ror image of Fig. 33(d) cancels the contribution of the
mirror image of Fig. 33(f).] Subsequent application of the
Ward identities to the /& gluon in Fig. 38(a) yields the
standard factored form shown in Fig. 38(b), which gives a
contribution to %~~~M-&2o„„„,~.

E. Real emission

The treatment at the two-loop leve1 of graphs contain-
ing real gluons differs from the treatment of the virtual
gluon case only in the contour deformation arguments.
The on-shell condition

Thus,

-1 /P,
which implies that

(3.14a)

(3.14b)

If one real gluon and one virtual gluon attach to a specta-

(3.12)

eliminates Glauber contributions from the real gluons,
without contour deformations. The proof that all gluons
that attach to a spectator are collinear to the spectator is
slightly more involved. If one gluon attaches to a specta-
tor line, the argument proceeds as in the one-loop case. If
two real gluons attach to a spectator, then the wave-
function pinch gives (3.1); and the requirement that real
gluons carry positive energy, combined with the on-shell
condition (3.12), gives

l+, l; )0. (3.13)

FICx. 36. A final-state cut involving real emission for the
graph of Fig. 33(e).

I 1

I

t

I

I
l

= -'
I

I l

l I
I i I

((I l (bI

FIG. 38. Application of the Ward identities to the double-
spectator subtractions of Fig. 37 to obtain a factored contribu-
tion to the meson's structure functions.
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tor line, we give the virtual gluon the momentum label
p-q, and the real gluon the momentum label q. The
wave-function pinch gives

p -l /P, (3.15)

so we deform the p+ contour into the uhp. There is the
possibility of encountering a pole in a virtual gluon or
spectator propagator —because of the terms p+q —but
such a pole corresponds to a final-state interaction, and it
cancels in the sum over final-state cuts. Having made the
p+ contour deformation, we are presented with tvvo possi-
bilities. The first is that

~ q ~

)l, in which case there
are at least two large denominators, and the entire contri-
bution is power suppressed. (We are excluding the possi-
bility of gluons that merely give a correction to the
meson's wave function. ) The second possibility is

q -l /P, which implies that q+-P, so that we arrive
at the desired result.

IV. THE ALL-ORDERS CROSS SECTION

A. Weak factorization

(I) Contour deformation

In this section we give the procedure for putting a
graph of arbitrary order into the weak factorization form.
As always, we are concerned only with the leading contri-
butions in the limit Q ~co (leading twist). We do not
consider explicitly graphs in which the annihilating quark
or antiquark is not a constituent of one of the initial
mesons (for example, graphs involving gluonic constitu-
ents of the mesons). However, the techniques we present
can easily be extended to include such cases. The pro-
cedure we follow is a slight generalization of the one out-
lined in the two-loop case. As before we deform contours,
using the sum over final-state cuts to cancel unwanted
pinches, and thereby eliminate Glauber contributions and
show that all gluons that attach to a spectator are col-
linear to it. We define a set of subtractions that removes
the collinear contributions and use Ward identities to put
the subtractions into the factored form. Finally, we dis-
cuss the very soft region, give an all-orders proof of
strong factorization, and demonstrate the cancellation Qf
soft contributions in the inclusive cross section.

from the active-quark and antiquark lines) and label the
momenta as shown in Fig. 39. We choose all loop mo-
menta to flow counterclockwise, with the exception of
momenta on lines that cross the final-state cut, which we
always take to flow into the final state, and momenta on
the incoming fermion lines, which we always take to flow
parallel to the quark momentum and antipara11el to the
antiquark momentum. We label momenta so that there is
only one loop momentum flowing along each real gluon
line.

Now let us suppose that for some internal loop with
momentum l; we attempt to deform the l;+ contour into
the uhp out to l;+ -P. Suppose the contour deformation
is blocked by a propagator pole in one of the propagators
along the loop. Then there must be a momentum circulat-
ing in an adjacent loop whose minus component is posi-
tive and O(l). Let us call the adjacent loop momentum
with the largest minus component l;. Ef in deforming the
l;+ contour we pick up the residue at the pole in the prop-
agator through which both l; and lz flow, we say that we
have "broken" that propagator. Now we attempt to de-
form the lj+ contour into the uhp out to O(P). If we
succeed, then the contribution is power suppressed (since
lj -i). If the deformation is blocked, since lj )0, there
must be an adjacent loop momentum with minus com-
ponent greater than /z . We call the one whose minus
component is largest lk, and attempt to deform the lk+

contour into the uhp. Proceeding in this fashion, we
succeed eventually in deforming a contour to show that
the contribution is nonleading, or we break a line because
it carries some momentum l„with l„)0,

~
I,

~

)I,
where l, is the momentum of a real final-state particle.
Since l, is constrained to be on the mass shell, we are not
able to deform the l„+ contour into the uhp as we would
for a virtual loop momentum. Thus the process of succes-
sive breaking of propagators ends at this line. Note that,
because of the ordering lj &lk &, the sequence of
broken propagators can never lead back to the original
loop. Note also that, because of the choice of momentum
routing, the active-quark line can never be broken.

Suppose we have broken a line because of the minus
component of momentum of a real final-state particle.
Then we go back to the original loop and attempt to de-
form the l; contour into the lhp. Proceeding as in the l;+
case, we have the following possibilities: (1) we succeed in

By contour deformation arguments we can arrive at
several useful results about the regions of momentum
space from which the leading contributions come. We
state each result and sketch its proof below.

Lemma. If we sum over all final-state cuts of a given
graph, make a suitable choice of momentum labels, and,
for a particular loop momentum l; that Aows only
through the part of the graph to the left of the final-state
cut, drop all terms of the l;+l; in propagator denomina-
tors, then we can deform the l;+ contour into the uhp and
the l; contour into the lhp so that at least one of l;+, l;
is O(P). (A similar result holds for loop momenta on the
right side of the graph, but, the contour deformations are
in directions opposite to those for the left side. )

Proof. Let us begin with graphs that are planar (aside
FICx. 39. Example of the choice of momentum routing used

in the contour-deformation arguments.
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deforming the l; contour out to l; -P, (2) we succeed in
deforming some other l contour out to l -P to show
that the contribution is nonleading, or (3) we break a line
because of the plus component of momentum of a final-
state particle. Owing to our choice of momentum rout-
ing, we never cut the active-antiquark line, Furthermore,
in carrying out the 1 contour deformations, we never
break into a loop that had been broken in carrying out the
l+ contour deformations, since in that loop the previous
break constrains l+ to be O(i /1 ) where 1 is the larg-
est l momentum along the loop.

If possibility (3) holds, then the contribution must cor-
respond to a final-state interaction. In order to see this,
let us consider the constraints imposed- on the variables
l+, l in time-ordered perturbation theory. We obtain
the time-ordered expression from the covariant one by in-
tegrating out one of the components, say, I, of each loop
momentum. This gives a set of constraints on all the l
variables and some 0-function constraints on the l+ vari-
ables, which do not preclude the deformation of the l+
contours into the uhp. The constraints on the l+ contour
deformations come from the poles in the intermediate
state (light-cone) energy denominators. These poles corre-
spond to the situation in which every particle in the inter-
mediate state is on-mass shell. But, for an initial-state in-
teraction, the intermediate state always involves the
active-quark line, and, with our choice of momentum
routing, this line never goes on-shell as we deform the l+
variables into the uhp. Thus, we conclude that possibility
(3) occurs only for a final-state interaction. We know
from the cutting rules that the sum over all final-state
cuts for such an interaction is zero.

The generalization to the case of nonplanar graphs is
simple. One must label momenta so that, around a given
loop, the loop momenta flowing through each propagator
are the loop momentum of the given loop and possibly
one loop momentum of another loop. The momentum of
the other loop is labeled so that it fiows through the com-
mon propagator in the direction opposite to the flow of
the momentum of the given loop.

It is also necessary to rule out the possibility of a loop
momentum whose minus component is so large as to re-
verse the direction of the active quark. Note that at least
one virtual gluon must have a large minus component of
momentum, since conservation of energy implies that real
gluon emission alone cannot reverse the direction of the
active quark. If the virtual loop momentum is l;, then
l; ~0, so one attempts to deform the l;+ contour into the
lhp. Proceeding as in the previous discussion of the l+
contour deformations (but now deforming into the lhp)
one eventually succeeds in deforming a contour out to
O(P) to show that the contribution is nonleading. It is
not possible to break a line going into the final state, since
for such a line l &0. Obviously, a similar argument
holds for the reversal of direction of the active antiquark.

Theorem. For each l;, after a suitable deformation of
the t;+ and t; contours (if necessary), t;+l; -J. .

Proof. Consider first the case in which l; does not flow
across the final-state cut. The result follows almost im-
mediately from the lemma. If we restore the terms l;+l;+
to the propagator denominators, then there are two possi-

bilities. The first is that I;+/; is small enough so that we
can still deform contours as in the lemma. Then one of
l;+, I; is O(P) and the other is O(J/P. ) or greater.
[Since P is the largest momentum scale, we can always de-
form contours so that l+ and l are at least O(l /P). ]
The second possibility is that the terms l;+l; block the
contour deformation with a pole at l;+l -P. In either
case, the desired result is obtained.

We always label momenta so that each real gluon car-
ries exactly one-loop momentum. Thus, if t; crosses the
final-state cut, then the gluon on-shell condition gives
l+l; =l

Theorem. If l; is the momentum flowing through a
gluon that attaches to the lower spectator (excluding
gluons that give a correction to the meson wave function),
then the leading contribution to the Drell-Yan cross sec-
tion (after summing over final-state cuts) comes from the
region 1; -J/P, /;+. -P. (A similar result holds for the
upper spectator. )

Proof. Suppose there are r virtual gluons and s real
gluons attached to the spectator line to the left of the
final-state cut. We label the loop momenta in a manner
consistent with the previous lemma. The momenta
p&, . . . ,p, flow along the spectator line from left to right,
with at most one such momentum flowing through each
spectator propagator. If a given spectator propagator has
the momentum p; flowing through it, then the adjacent
spectator propagator to its left has momentum p; ~

flow-
ing through it if the propagators are separated by a virtual
gluon attachment and p; flowing through it if the propa-
gators are separated by a real gluon attachment. The
left-most spectator propagator has the momentum p&
flowing through it. In addition, each real gluon carries
exactly one of the momenta q&, . . . , q, . These momenta
flow along the spectator line from the final-state cut to
the corresponding real gluon and out along the gluon line.
Thus, a given spectator line can carry a momentum from
the set p ~, . . . ,p„and one or more momenta from the set
q&, . . . , q, . Now, none of the momenta p; flows across
the final-state cut. Furthermore, for each p;, the defor-
mation of the p; contour into the lhp is blocked by a pole
in a spectator propagator. Thus, from the lemma we
know that for each p;, the deformation of the p~+ contour
into the uhp out to p;+-P can be blocked only by virtue
of the p;+p; terms in gluon propagators. The meson
wave-function pinch gives p; -I /P, so we can deform
the p &+ contour until p &+ -P. Then there exist two possi-
bilities: (1)

~ p2 ~

& l, in which case there are at least two
large denominators, and the contribution is power
suppressed. (Here we are excluding the case in which
some of the gluons simply give corrections to the meson
wave function. ) (2) pq -l /P, in which case we can de-
form the p z+ contour into the uhp out to p 2 -P.
Proceeding in this fashion, we eventually show that all the
p; are O(l /P) and all the p;+ are O(P), or else the con-
tribution is nonleading. Since all the p; are small, the
on-shell condition for the final-state spectator gives

(4.1a)

Furthermore, the real gluons must carry positive energy,



2634 GEOFFREY T. BODWIN 31

so

q; )0 for alii . (4.1b)

dependent momenta that are potentially coHinear either to
+ orto —:

Thus, for each q;, q; -J /I'. The on-shell condition for
the real gluons then gives q;+ -P.

In summary, we have arrived, by contour deformation
arguments, at two crucial results. The first is that we can
eliminate the Glauber region of momentum space in the
leading contributions. This guarantees that the subtrac-
tions we define are always a good approximation to the
original graph in the collinear region. The second result is
that, in order to obtain a leading contribution, we must
take all gluons that attach to a spectator to be collinear to
the spectator's meson. This means that in each collinear
subtraction the spectator interactions are interior'to the
collinear subgraphs, so that they ultimately reside in the
structure functions.

(2) Construction of the collinear subtractions

The maE'n subtractions. The first step in constructing
the main collinear subtractions is to identify the collinear
regions in each graph. There is a result, which follows
from power counting, that gives some useful information
about these collinear regions.

Theorem. If a graph contains a line whose momentum
is collinear to +( —), then the graph s contribution is
leading only if the line attaches on at least one end to
another line with collinear to +( —) momentum.

This result is easily proven by working out the power
counting for the various types of momentum flows (col-
linear to +, soft, hard) along the lines to which the col-
linear gluon attaches. We do not bother to enumerate the
cases here. This result implies that each collinear (to +)
region is connected in the sense described in Sec. III.
Namely, there must be a path from each hadron through
pure collinear lines to each line collinear to the hadron.
As explained in Sec. III, a line collinear to one hadron
can "interrupt" the collinear lines that extend from the
other hadron [see Fig. 23(c)].

Once we have identified the potentially collinear sub-
graphs of a given graph, we construct the corresponding
main subtraction by making the replacement (2.12) in
each gluon that connects a potentially collinear subgraph
to its exterior. Since we have eliminated the Glauber re-
gion from the currents JU,Jt, the condition (2.13) is satis-
fied and the subtraction is a good approximation to the
original graph when all the gluons in the potentially col-
linear to + subgraphs are collinear to +. Also, as
described in Sec. IIIC, we use the subtraction gluon ar-
rowhead and the Ward identity of Fig. 24 to expand all
trigluon and q-g vertices; and we drop from the subtrac-
tion those terms in which an effectively on-shell propaga-
tor is canceled, or a A-line arrowhead attaches to an effec-
tively on-shell line. These modifications in the definition
of the subtraction, of course, do not change the leading
contribution of the subtraction when all gluons in the po-
tentially collinear to + subgraphs are collinear to +.

Now we can give an iterative procedure for construct-
ing a set of subtractions that removes all the collinear
contributions. First, in G'"' we construct all main sub-
tractions M "' with i =n. Here i is the number of in-

l =l) +l2+ 2 l3 (4.2)

where i; is the power of g on the interior of the collinear
to + region, iz is the power of g on the interior of the
collinear to —region, and i & is the number of subtraction
gluons. M„'"' consists of the subtractions for the cases in
which every independent momentum is collinear either to
+ or to —.In O'"' —M„'"' we construct aH main sub-

tractions M„'"'&. That is, the subtractions for the case in
which one independent momentum is central and the oth-
ers are potentially collinear to + or to —.Note that in
M„'"'] the potentially collinear subgraphs are subgraphs
(possibly improper) of the potentially collinear subgraphs
in M„'"'. We continue in this fashion through the subtrac-
tion M &"'. Note that at any stage in the procedure a sub-
traction may remove a contribution of a type that is, nom-
inally, to be contained in a later subtraction. For exam-
.ple, M "' can contain contributions from the region of
momentum space in which n —i+ 1 independent momen-
ta are central, which is- the type of contribution to be sub-
tracted by M "'~. However, because of the iterative pro-
cedure for constructing the subtractions, M "'~ re-
moves only the

'

remainder of such contributions in
G'"' —M„'"'— —M "'. Thus, there is no double count-
ing, and the quantity

(4.3)

is free of collinear contributions. This iterative procedure
for removing the collinear singularities in momentum
space is very similar to the BPH program for subtracting
ultraviolet divergences.

The auxiliary subtractions. For each set of subtraction
in M "', we construct a set of auxiliary subtractions. The
sum of all the auxiliary subtractions for M "' is denoted
by A'"'

(4.4)

The purpose of these subtractions is to allow us to imple-
ment the Ward identities so as to obtain the factored
form. As pointed out in Sec. III, they vanish in the region
of momentum space in which all the subtraction gluons
are collinear, so they do not upset the program for remov-
ing the collinear contributions that we have already out-
lined. The auxiliary subtractions are defined iteratively
from the main subtractions. There are many possible
iteration procedures, and the choice of the most useful one
depends on the details of the implementation of the Ward
identities. The motivation for the procedure we use will
become apparent only when we discuss the use of Ward
identities in the next subsection. For this reason, we post-
pone the discussion of the details of the construction of
the auxiliary subtractions until that point.

Before we leave the discussion of the collinear subtrac-
tions, a word of caution is in order. Because of the tech-
nical difficulty discussed in Sec. III C, a given subtraction
can give a leading contribution when some of its collinear
gluons have momenta in the collinearity region opposite
to the one which the subtraction is designed to remove.
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As we have seen, these "wrong collinearity" contributions
cancel when one uses Ward identities to sum over graphs
to obtain the factored form. However, on a graph-by-
graph basis 6—S can contain collinear singularities.
Thus, in an actual calculation, it is probably simplest to
extract collinear singularities by writing the cross section
in the factored form (2.6).

= 0

(3) Impiementation of Ward identities

In applying the Ward identities to the subtractions, we
wish to make use of a slight generalization of a theorem
on Yang-Mills fields due to 't Hooft. ' First let us state
the original result:

Theorem. In the pure Yang-Mills theory, if we insert
an external A-line into a Green's function with any num-
ber of on-she11 external gluons with physical polarization,
then the sum over all such insertions is zero (Fig. 40).

%'e can immediately arrive at the required generaliza-
tion by examining the 't Hooft's proof. The first step is to
use the trigluon Ward identity (Fig. 26) to decompose all
the trigluon vertices into which an arrowhead is inserted.
Let us concentrate initially on the convection parts. In
these, we either cancel an external line—which gives zero
since the external gluons are on-mass-shell —or cancel an
internal hne. The sum over insertions in which we cancel
an internal line adjacent to a given trigluon vertex is can-
celed by the insertion of the arrowhead into the corre-
sponding quartic vertex, as shown in Fig. 41(a). This is
simply the statement that the quartic vertex is the
"seagull" for the trigluon vertex. Similarly, the sum of
insertions around a quartic vertex is zero, as shown in Fig.
41(b). (We set aside for the moment the contributions in
which we cancel a propagator coming out of a ghost-
gluon vertex. ) Next let us consider the A-line parts. For
each A-line that enters a trigluon vertex, we again decom-
pose the vertex using the Ward identity. Except for the
possibility of canceling a propagator coming out of a
ghost-gluon or A-line —gluon vertex, the convection and
quartic vertices give zero, as before. Continuing to decom-
pose trigluon vertices in this fashion, we find that there
are three possibilities: (1) the A-line eventually reaches the
exterior to give zero because of the physical polarization
[Fig. 42(a)]; (2) the A-line doubles back on itself [Fig.
42(b)]; or (3) the A-line enters a ghost loop Fig. 42(d).
These last two contributions combine with the contribu-
tions in which we cancel a propagator coming out of a A-
line —gluon vertex [ Fig. 42(c)] or a propagator coming out

(b)

FIG. 41. Identities involving attachment of a A-line (a) to the
legs of a trigluon vertex and (b} to the legs of a quartic vertex.

of a ghost-gluon vertex [Fig. 42(e)] to give zero.
The first obvious generalization to the theorem is that

we can include quark lines in the Green's function (exter-
nal quarks on-shell). The new ingredients required are
q-g Ward identity (Fig. 6), which we use to decompose all
the A-line —quark vertices, and the fact that the set of dia-
grams in which we cancel a propagator coming out of a
q-g vertex sums to zero (Fig. 43).

Now let us see how the theorem can be applied to the
case of a collinear subtraction. The subtraction graph
contains a collinear to + region, from which an arbitrary
number of subtraction gluons emerge to enter the collinear
to —and central regions (Fig. 44). Only that part of the
collinear to —and central regions through which a sub-
traction gluon momentum flows are effectively off-shell.
Because of the connectivity requirement for collinear re-
gions, this means that all the collinear to —and inactive
subtraction gluons are in the effectively on-shell region.
Furthermore, since our definition of the subtraction ex-
cludes from the trigluon decomposition the terms in
which A-lines pass from the effectively off-shell to the ef-
fectively on-shell region, the effectively on-shell gluons
that attach to the effectively off-shell region are effective-
ly physically polarized. Thus, we have satisfied most of
the conditions necessary to apply the theorem.

Let us number the collinear to + subtraction gluons in
an arbitrary fashion, calling the number assigned to each
gluon its index. We attempt to generalize the theorem so

GHOST G HOSTS

lNSERTlONS

1

. 1

FI&. 4O. 't Hooft's theorem for the insertion of a A-line into
an arbitrary gauge-field diagram. All external lines are on-shell
and physically polarized.

(b) (c) (d) (e)

FICx. 42. Remainders a'fter application of the trigluon Ward
identity and the identities of Fig. 41; A A-line (a) emerges along
a physically polarized external line, (b) doubles back on itself, (c)
connects to a gluon line that connects to the A-hne, (d) connects
to a ghost loop, and {e) connects to a gluon line that connects to
a ghost loop.
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FIG. 43. Identity
legs of a q-g vertex.

= 0

involving the connection of a A-line to the

SUBTRAC

—0

that we can apply it successively to the subtraction gluons,
in order of increasing index. This new situation requires
several changes to the original argument.

The first change is that new types of terms arise when a
A-line enters a trigluon vertex involving a subtraction
gluon. We decompose the vertex by applying the Ward
identity with respect to the A-line. The convection term
in which the subtraction gluon propagator is canceled and
the term in which the A-line flows out along the subtrac-
tion gluon line combine to give zero (see Fig. 45). The
other two terms are treated as in the original argument.

A second change compared to the original argument is
that we are missing the convection terms that arise from a
trigluon vertex involving two subtraction gluons. This
type of contribution is illustrated in Fig. 46. It is at this
stage that the auxiliary subtractions enter the picture.
First, we pair gluon 1 with each of the other subtraction
gluons to form an auxiliary subtraction according to the
definition (3.4). The arrowhead of the auxiliary gluon
thus formed resides at the location of the arrowhead of
the subtraction gluon with the larger index, and the gauge
group matrices in (3.4) are in the same representation
(fundamental or adjoint) as the gauge group matrix associ-
ated with the subtraction gluon of larger index. For pur-
poses of defining the terms a' and a" in (3.4a), we observe
the convention that the first set of arguments is associated
with the gluon of lower index (gluon 1). The usual rules
for dropping trigluon and q-g vertex terms that are non-
leading when the subtraction gluons are collinear to +
also apply to the auxiliary subtraction gluons. Now we
notice that the A terms in the auxiliary subtraction sup-
ply precisely the missing terms of the type in Fig. 46.

Thus, we first apply the theorem to gluon 1, using the
3' terms from the set of auxiliary subtractions that it
generates. (We set aside the A" terms for now. ) We
would get zero except that one of the external lines to
which gluon 1 attaches is always effectively off-shell.
This situation is illustrated in Fig. 47. Thus, we obtain a
contribution in which gluon 1 attaches to the active-quark
line just outside the upper blob in Fig. 44, and there is a
factor

COLLINEAR TO

S CENTRAL

FIG. 45. Cancellation of contributions that arise from a A-
line —subtraction gluon vertex.

1&.n+i e 4.5

arising from the replacement (2.12) [see Fig. 48(a)]. Here
k& is the group matrix associated with gluon 1. Next, we
apply the theorem to gluon 2, constructing the required
auxiliary subtractions by pairing it with the remaining
subtraction gluons. Again, we use the A' term and set
aside the A" term. Proceeding in this fashion, we eventu-
ally remove all the subtraction gluons from the upper blob
[Fig. 48(b)] and obtain a result proportional to the factor

A 3kpk ]

(l3 n +i@)(lz n +i@)(l,.n +i@)
(4.6)

+ a "(a "(1;2);3)+a"(2;a "(1;3)), (4.7a)

where

(1;)=(l; n+iE)

Next we apply the theorem to the contributions involv-
ing the 2" terms that we have set aside. The 3" term
acts like a subtraction gluon whose momentum is the sum
of the momenta of the gluons from which it was derived.
We again apply the theorem to the subtraction gluons (or
A" gluon) in order of increasing index. It is convenient to
adopt the convention that the index of an A" gluon is the
larger of the two indices of the gluons from which it is
constructed. For each gluon to which the theorem
is applied, we generate an additional set of auxiliary
subtractions —using the new 3' terms to remove the
gluons from the upper blob and setting aside the new A"
terms. These new 3" terms are treated at the next level
of iteration. Proceeding in this fashion, we eventually
succeed in removing all subtraction gluons and 3"gluons
from the upper blob. (The last to be removed is the A"
term composed iteratively of all the subtraction gluons. )

As an illustration, we write out the resulting factors for
the case of three subtraction gluons:

A3A2A, f A3a "(1;2) a "(1;3)A2 a "(2;3)A,
~

(&3)(i2)(&) ) (i3) (i2) (&) )

COLLINEAR TO + P&~L
FIG. 44. Schematic representation of a subtraction graph

containing collinear to + subtraction gluons.
FIG. 46. Decomposition of the missing term" in the gauge-

invariance sum into the A ' terms of an auxiliary subtraction.
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OR

(oI (b)
FIG. 47. graphs in which a collinear to + subtraction gluon

attaches to an external line of a potentially collinear to —sub-
graph. The external line can be effectively off-shell. Thus these
graphs lead to a nonzero contribution upon application of the
generalized 't Hooft's theorem.

to + subtraction gluons into a form in which all the col-
linear to + subtraction gluons attach to an eikonal line
that connects to the active antiquark line just outside the
central and collinear to —subgraphs. A similar applica-
tion of Ward identities allows us to move the connections
of the collinear to —subtraction gluons out of the central
subgraphs to obtain the factored form. (For each main
subtraction and auxiliary subtraction generated by the col-
linear to + subtraction gluons, the collinear to —sub-
traction gluons generate additional auxiliary subtractions. )

(4) The factored form

[A,;,Ai]

(t;)(I;+ti)

It is easy to see that the expression (4.7a) is equal to

p, „„„,„,(1t )(it+I')(l, +I2+I3)
(4.7b)

which is the desired eikonal form. The expression analo-
gous to (4.7a) for the case of n subtraction gluons is rather
complicated. However, we can arrive at a simplified ex-
pression by noting that, due to our convention for the in-
dex of an A" gluon, the term

(4.8)

appears exactly once, namely, in the expression

a "(a "( . . a "(1;2);3.. . ;n) . (4.9)

Furthermore, the main subtractions are symmetric with
respect to interchange of gluon indices and, because of the
symmetry of A (i;j) with respect to interchange of argu-
ments, the auxiliary subtractions that we add at each
iteration are also symmetric. Thus the final expression
for the main plus auxiliary subtractions has the eikonal
factor l

~(n) (n —i) ~ ~~(k) ~~(j —k}
qq, &' central ~ ~

q /1 ~
k=0

(4.11a)

The factored form of the Drell-Yan cross section, the
convolution of a structure function for meson 1 and a
structure function for meson 2 with a central cross sec-
tion, is shown schematically in Fig. 3. Note that o.„„„,]
has connections only to the active-quark and antiquark
legs. Furthermore (since we are excluding, for the mo-
ment, the very soft region), the active lines entering o„„„,t

are effectively on-shell. Recall that, in the iterative sub-
traction procedure, the potentially collinear subgraphs for
each graph in S "', are subsets of the potentially collinear
subgraphs for some graph in S "'. (For example, each
graph that contributes to Hq~&tH'-"&z

' j' has potentially
collinear subgraphs that are sub~raphs of the potentially
collinear subgraphs in Hq~&& "H "&z

' J'.) Thus, the rem-
nants of the subtractions that remain in o„„„,l have just
the form of the subtractions for those interactions that in-
volve only the active lines. We calculate O.„„„,l, then, by
computing the difference, with active q and q lines on-
shell, between the qq annihilation graphs and their corre-
sponding collinear subtractions [see (2.6e)]. In practice,
the collinear subtractions S'-"' are probably computed
most easily from the eikonal form obtained after applica-
tion of the Ward identities. The S'"',. can be determined
from the q and q structure functions by iterating the
equations

of 1, . . . , n

(4.10)
(j) (j) (j)J
central qq P qq, k

k=1
(4.11b)

At this stage we have shown, by application of the
Ward identities, that we can put the main subtractions
plus the auxiliary subtractions generated by the collinear

MK L LLL

(a) (b)
FIG. 48. Successive application of the generalized 't Hooft's

theorem to collinear to + subtraction gluons.

[which follow from (2.6)], starting with S'"&.

(5) The uery soft region

Finally, let us discuss the effects of the very soft
momentum region, which so far we have omitted from
our analysis. The key to analyzing this momentum region
is the power-counting result that gluons with very soft
momentum must attach either to each other or to col-
linear lines, if one is to obtain a leading contribution.
Furthermore, if an end of a very soft gluon attaches to a
collinear to + or —line, then that end must contract
into a current that is collinear to + or —.Using these
facts we can make a simple modification of the subt'rac-
tion procedure that we have already outlined in order to
incorporate the effects of the very soft gluons.

First we partition momentum space, calling all gluons
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1„np
gpss~ (l n+i e). (4.12b)

I

with
~ l„~ & A, "very soft gluons. " Here m /P &&A, &&m;

for example, we could take A, =m ~ /I"~. There is no
need to identify the "very soft collinear gluons" —those
with l+I, lz ~&I, and I+ &&l or l &&I+—since
these can be treated in essentially the same way as the or-
dinary collinear gluons. (Contributions in which the "ef-
fectively off-shell" arguments fail for the very soft col-
linear gluons are power suppressed. ) We construct col-
linear subtractions exactly as before, except that now the
very soft gluons can be attached to lines in the collinear
region, since the very soft momentum does not interrupt
the collinear momentum flow. In constructing the sub-
tractions, we make the replacement (2.12) only for gluons
that connect one collinear region of a graph to the other
or to the soft and hard central regions. The replacement
(2.12) is not a good approximation for collinear gluons at-
tached to very soft gluons. (It is also a bad approximation
for very soft collinear gluons attached to central gluons,
but such contributions are power suppressed. ) Then, ap-
plication of Ward identities allows us to remove the sub-
traction gluon attachments for the soft and hard central
regions, but not the very soft region. Thus, we have the
situation depicted in Fig. 49(a). The subtraction gluon
scalar remnants attach to the active-quark (or antiquark)
line at a point just outside the last soft or hard central
gluon attachment. The very soft gluons attach (in all pos-
sible ways) to lines inside a collinear region. We can move
these soft gluon attachments out of these collinear regions
in the following way: we make the replacements

n. „+3
gpv~ (4.12a)

(/ n+ —l6)

for a gluon whose v end attaches a collinear to + line,

for a gluon whose' p end attaches to a collinear to —line,
and

( —,
' )l„l,

(l n+ —ie)(l n +i@)
(4.12c)

for a gluon whose p end attaches to a collinear to + line
and v end attaches to a collinear to —line. Here

n+=(1,0,0), n =(0, 1,0) . (4.12d)

Because of the rules given above for the currents into
which a very soft gluon can contract, (4.12) is always a
good approximation for very soft gluons. Now we can
apply Ward identities, using the factor I on the end of the
very soft gluon propagator that attaches to the collinear
region. The procedure is very similar to that employed in
disentangling the collinear subtraction gluons from the
opposite collinearity region and the central region. (The
contributions in which the I' of a A-hne contracts into
the n of a subtraction gluon are power suppressed. ) Note
that, in the present case, in implementing the Ward identi-
ties, we are free to add contributions analogous to the aux-
iliary subtractions, since these vanish when both gluons in
an auxiliary gluon pair are in the very soft region. The re-
sult of application of the Ward identities is that all the
very soft gluon attachments are moved to a point on the
active-antiquark line between the collinear subtraction
gluon attachment and the outermost soft or hard central
attachment point, as shown in Fig. 49(b). But this is pre-
cisely the result that one would obtain by making the sub-
stitution (4.12) and applying Ward identities to the very
soft gluon attachments on the active-antiquark line in Fig.
49(c)—provided that one treats the point on the active-
antiquark line just outside the last'very soft gluon attach-
ment as if it were on-shell. .

Thus, we arrive again at the factored form of Fig. 3.
The net result of the analysis of the very soft region is the
instruction that o.„„„,~

must be computed with external
active fermion lines on-shell. This is the resolution of the
off-shell —on-shell ambiguity.

B. Cancellation of soft contributions
f

If one integrates over transverse momentum, QT, of the
Drell-Yan pair up to order QT ——QT, then the contribu-
tions containing central gluons with

~
lz

~
&&QT cancel.

In order to show this we make use of an argument similar
to that invented by CSS to show the connection between
Drell- Yan and deep-inelastic structure functions. First we
note that, because the gluons are in the central region, the
propagators along the active-quark line take on the eikon-
al form

ON-SHELL
1

P(gl;+)+i e
(4.13a)

Ic)
FIG. 49. Results of application of the generalized 't Hooft

theorem (a) to the collinear subtraction gluons and (b) to the col-
linear subtraction gluons and very soft gluons. (c) an equivalent
form for (b) in terms of a meson structure function times a
graph in which the active antiquark is on-shell.

on the left half of the graph, and

1

—P(pl;+ )+i e
(4.13b)

on the right half of the graph. Here we have routed the
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real gluon mom enta through the Drell- Yan photon.
There is an important cancellation between real and virtu-
al gluons. In order to make it manifest, we consider the
uncut graph of Fig. 50. (In this graph all propagator
denominators have + ie ).Now suppose we move some
central gluon attachments from the left-quark eikonal line
to the right-quark eikonal line—preserving the order of
attachments so that the color factor is unchanged. Pro-
vided that we integrate over Qz and l;z «Qz, only the
quark eikonal propagators are affected by the change of
gluon connections. From power counting, we know that
if /;~ &&ljz, then the attachment of the ith gluon to the
eikonal line must be outside that of the jth gluon. Thus,
we can move the attachments of the gluons with
lz «Qz without disturbing the harder gluons. If there
are m soft gluon connections to the right-quark eikonal

I

FIG. So. Example of momentum labeling for the discussion
of cancellation of soft contributions in o.„„„,I.

line and X-m connections to the left-quark eikonal line,
the corresponding propagators and vertices contribute a
factor

E."(Ii+, , ~~+)= 1 1

l++I+ie l++I +i++2+i@ lm+1+ +lN +~~

1 1

—l++ie —l+, —l++i e —l I
— . —l +ie+ . . . + (4.13c)

Note that

E."(II+, , I~+)= +' . + '+
lI +EE' l I +l2 +EE'

1

l I+ +l2+ + +/p+++i e
(4.13d)

, 4)= 1 1

—lN +l E —lN )
—lN +l g —l) —l2 — . . —lN +ie+ + . . . +

Let us consider first the quantity E obtained by changing the sign of the ie in each of the eikonal denominators in the
second factor of (4.13c):

E (lI+, . . . , l~ )= 1 1

I++, +i e I++, +I++, +i F. l++(+ . +lN++i@

X( —1)
1 1

i++i& l+ I+i++is l++ . - +i++i@ (4.14)

Now, E has the property that

g E~(l+(, . . . , l~+)=0,
m=0

which we prove in the Appendix. Thus, the eikonal fac-
tor associated with the sum over gluon attachments (with
a given color factor) is

(4.15)

N

4)
N

= g [E"(I+,. . . , I+) E"„(t+,. . . , I+)—] . (4.16)

(4.17)

We can use the identity
1 = 1

2vri 5(x)——X +l6' X+l6
to rewrite each eikonal denominator in the second factor
of E [Eq. (4.13c)]. Then, the term involving no 5 func-
tions is precisely E, and it cancels in the difference be-

tween Eg and E & in (4.16). Each of the remaining terms
contains at least one 5 function, whose argument is a sum
of l;+'s. We can use this constraint on the l;+'s to show
that, for the constrained momenta, the l; contours can be
deformed into the lhp so that l; is collinear to —.[The
arguments are essentially the same as those given in Sec.
IVA(1) for the case of gluons attached to spectators. ]
But, owing to the collinear subtractions, contributions to
o.„„„,I are leading only for all gluons in the central region.
That is, the contour deformation argument shows that the
contribution is power suppressed.

Thus, all contributions in which gluons with lz «Qz.
attach to active lines cancel. There is, then, -an effective
lower cutoff on the transverse momentum of the external
lines of O.„„„,I. This transverse momentum cutoff on
external lines ensures that no internal loop integration can
become divergent in the momentum range less than the
cutoff. As a consequence, the inclusive cross section is in-
frared finite, and contributions with loop momenta for
which lz « Qr are nonleading.
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C. Strong factorization

For completeness, we outline here a proof, suggested by
CSS, of the connection (1.1) between the Drell-Yan and
deep-inelastic structure functions. Let us consider the
structure function for the meson that is moving in the +
direction H-&2(x, kq), integrated over kq, and the corre-q/2
sponding deep-inelastic structure function f r2(x) shown

in Fig. 51. Since, in deep-inelastic scattering, one of the
active lines goes into the final state, the eikonal line in
f-rz(x) is timelike;- that is, the eikonal vector n is given byq/2

n =(1,1,0) . (4.18)

Thus, the deep-inelastic structure functions differ from
the Drell- Yan structure function in that

1

n. i+is —II.l+l 6
(4.19a)

in the eikonal propagators, and

lip ~—Plp (4.19b)

in the eikonal vertices. The minus sign in (4.19b)
represents the relative sign in the coupling of the Yang-
Mills field to a quark, as opposed to an antiquark.

Suppose that each of the gluons that attach to the
eikonal lines is collinear to + . Then

np J" J+ —np JI'
~.l+~e I+ g.I+ jq

(4.20)

since J", the current to which the gluon couples, is neces-
sarily collinear to +. Thus, the two structure functions
receive equal contributions from this region of momen-
tum space.

However, we can show that the contributions to the
structure functions in which gluons with central momen-
tum attach to the eikonal lines cancel between real and

I

A///// /////////'V/////// /r'//////
FIG. 51. Schematic representation of the deep-inelastic

meson structure function.

virtual emission. As in the discussion of the soft cancella-
tions, we consider the uncut graphs for the structure func-
tions. For the Drell- Yan structure function in time-
ordered perturbation theory, we never obtain an inter-
mediate state that cuts through the eikonal lines, since
these are orthogonal to the time direction. That is, the
eikonal propagator has no I dependence. Thus, we are
free to choose the sign of the i@ in the eikonal propagators
in the uncut graph —which we take to be positive on the
left-hand side of the graph and negative on the right-hand
side. The sign of the ie in the eikonal propagators is also
irrelevant in the uncut deep-inelastic structure function,
but for a different reason. The poles in the lightlike
eikonal propagators are at l =0; that is, they correspond
to zero-energy states. As a consequence, it is immaterial
whether we pick up the positive- or negative-energy pole
in forming an intermediate state. Again we choose plus
signs for the ie's on the left-hand eikonal and minus signs
for the ie's on the right-hand eikonal.

Now we can easily see that the contributions in which
central gluons attach to the eikonal lines cancel. In the
Drell-Yan case, for a graph with m central gluon connec-
tions on the right eikonal line and X-m central gluon con-
nections on the left eikonal line, the corresponding propa-
gators and vertices contribute a factor

N
DY, m

1 1

l +~ n+ie (l +&+l +2) n+ie (l +)+. . . +i~) n+ie

( —l~ —.. . —l )n ie——l~ n ie ( l~—& l~) n ie—— — (4.21)

Here we have used the fact (from power counting) that all
the soft gluon attachments must be to the outside of the
hard gluon attachments. Since we have integrated over
kT, we can move central gluon attachments from the left
eikonal to the right eikonal without changing the graphi-
cal factors, other than in the eikonal lines. (As usual, we
choose the order of attachments so as to maintain the
original color factor. ) Summing over all such attach-
ments, we obtain

N Z", =0, (4.22)
m=0

where we have made use of the combinatorial identity
(4.15). In the case of the deep-inelastic structure function,
we obtain a factor identical to (4.21) except that n~ —n.

I

After summing over all central gluon connections to the
eikonal lines with a given color factor, we again obtain
zero.

V. CONCI. UDING REMARKS

Having established in detail the mechanisms by which
strong and weak factorizations occur, we can now address
the question raised in the Introduction concerning the
"transparency" of nuclear matter to a fast-moving quark.
The statement of strong factorization does not imply that
an incoming quark undergoes no interactions with specta-
tors as it traverses a nucleus. Rather, weak factorization
tells us that, provided the target-length condition (2.26) is
satisfied, the net effect of such interactions is to append
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an eikonal line to the target wave function. Strong factor-
ization tells us that the outgoing quark in deep-inelastic
scattering undergoes a similar set of spectator interac-
tions, producing an equivalent eikonal line, so that if we
compare the Drell-Yan process to deep-inelastic scatter-
ing, the spectator interactions cancel. One can regard the
eikonal line, which makes the structure functions gauge
invariant, as a gauge artifact. Indeed, for a suitable
choice of axial gauge, the interactions in which a gluon at-
taches to the eikonal vanish.

Finally, let us summarize the general properties of
quantum chromodynamics that are crucial in implernent-
ing the factorization program. Contour deformation ar-
guments allow us to eliminate Glauber contribntions and
to show that the spectator interactions proceed via col-
linear gluons. The propagator ii's, which play a central
role in these arguments, are, of course, just the
momentum-space realization of the causality of the
theory. In fact, Collins, Soper, and Sterman have sug-
gested an heuristic space-time picture for elucidating the
relevant momentum flows and graphical structures that is
based on the causality principle. A feature of the Drell-
Yan process that is essential to the causality arguments
and the contour deformations is the presence of a hard
(short distance) -interaction in the basic process. Another
essential feature is the cancellation of final-state interac-
tions, which is a consequence of the unitarity of the
theory. The power-counting properties of a vector theory
with dimensionless coupling constant enable us to identify
the graphical structures that could give leading contribu-
tions for various combinations of loop momenta. For ex-
ample, power counting allows us to see that the collinear
subgraphs are connected and that very soft gluons must
attach to collinear lines or to each other. Power counting
is also crucial in showing that the Grammer-Yennie re-
placements yield a good approximation in certain momen-
tum regions. Of course, it is precisely the nature of power
counting in a vector theory that leads to a potential viola-
tion of factorization in the first place. In a scalar theory,

I

the factorization-violating contributions are power
suppressed —but the extra numerator powers of momen-
tum in a vector theory destroy this simple picture. Much
as in the case of the renormalization program, it is the
gauge inuariance of the Yang-Mills theory that allows us,
to tame the unruly power behavior of the vector interac-
tion, for it is the Ward identity manifestation of gauge in-
variance that enables us to organize the cross section into

.a factored form.
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APPENDIX
PROOF OF A COMBINATORIAL IDENTITY

In this Appendix we prove the identity (4.15) for the
sum over connections (with a given color factor) to two
eikonal lines. The proof proceeds by induction. First we
assume that (4.15) holds for some N. Then for the case of
%+1 gluons we have

%+1
X ( &' ' ~ &+&) X E m (il ~ ~ ~ ~ 4+1)+E%+1(il. ~ ~ ~ . i~+ &)

=g E (l),

+( 1)%+1 1

l~+ ) +l6
1

l)+ . +le+I+sr (A 1)

(Here we have dropped the superscript + on the momenta to simplify the notation. } Now,

E(~l&, . . . , lx) . = g E (li, . . . , lx)
lm+&+ ' ' +le+i+«o l&+&+«

X+RE (ii . . ~ 4)
~ =o le+i+ « l i + + le+ i+i~

cV —1 l + - +l= —g E "(i,, . . . , &„)
m =p ~ 1+ + lN+1+ & & l%+1+& &

(A2)

where we have used (4.15) to obtain the last line of (A2), and have changed the upper limit of the sum from N to N —1,
since the term with rn =N vanishes. Substituting (A2) into the right-hand side of (Al), we have
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X

m=0 rn+&+ + N +&+ t~ N+&+ ~ %+I&+&+t~
1 1

I)+ ' ' ' +I~+)+i& ~~+)+i&
J

(A3)

In the last line of (A3), we have again used (4.15). Now, (4.15) holds trivially for the case N = 1, where it gives

1 =0
l)+i@

This completes the inductive argument.
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