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Derivative expansions of fermion determinants:
Anomaly-induced vertices, Goldstone-Wilczek currents, and Skyrme terms
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An algebraic procedure for evaluating functional determinants in powers of derivatives of external
fields is used to calculate one-fermion-loop contributions to low-energy effective Lagrangians involv-

ing anomaly-induced vertices, Goldstone-Wilczek currents, and Skyrme terms.

I. INTRODUCTION

Radiatively induced contributions to the effective ac-
tion, which arise specifically from single-fermion loops,
are of fundamental importance in many physical process-
es. Generally, phenomenological applications involve the
expansion of the corresponding effective Lagrangians in
powers of derivatives of the relevant fields —or
equivalently, of the effective amplitudes in powers of mo-
menta. In this paper we employ a general functional
method, recently developed by one of us' (see also Ref. 2),
to calculate such derivative expansions of fermion deter-
minants.

We shall consider three characteristic types of applica-
tion. The first involves chiral anomalies (which are, of
course, associated with fermion loops ). We show in Sec.
II how to rederive, in a very simple way, those effective
interactions between bosons and vector or axial-vector
fields [e.g., vr ~yy (Ref. 4)], or among bosons alone [e.g. ,
KK~3m (Ref. 5)], which summarize the low-energy
consequences of anomalous Ward identities. Such
"anomaly-induced low-energy theorems" form an impor-
tant class of predictions based on the chiral properties of
QCD.

As a second application, we consider the problem of
calculating the vacuum fermion-number current in the
presence of a background (soliton) field. In their remark-
able paper, Goldstone and Wilczek calculated this
current by considering certain fermion-loop graphs, ex-
panded in derivatives of the background field. It is, of
course, simple to reformulate the problem in terms of an
effective-action approach: one introduces a source s„(x)
coupled to the fermion-current operator P(x)y"f(x), and
retains the term in the (one-loop) connected vacuum func-
tional which is linear in sz. This can then be expanded in
derivatives of the background field and the Goldstone-
%"ilczek result obtained quite straightforwardly, as we
show in Sec. III. The relation between the functional and
graphical methods will also be touched on. The calcula-
tion can be easily generalized to include external gauge
fields. We show, in some illustrative examples, how the
expected anomaly-induced contributions to thy vacu-
um current can be efficiently computed by the same
method.

The Goldstone-Wilczek calculation provided, among
other things, one justification for identifying the Skyrme

topological current with the baryon number current, — when
the soliton in question is a Skyrme soliton. ' Our last
fermion-loop application is to Skyrme-soliton physics. In
Skyrme's model, the stability of the soliton against col-
lapse was ensured by the ad hoc addition of terms of order
(BP) to the (classical) nonlinear o-model Lagrangian.
Since the resulting Lagrangian is treated classically, it can
be interpreted as an effective Lagrangian in the field-
theory sense. Having, then, invoked a fermion-loop effect
for the baryon-number-current result, it seems only con-
sistent to determine its contribution to the O((ill) ) terms
in the effective Lagrangian. In other words, the possibili-
ty exists that such radiative corrections might, of them-
selves, stabilize the soliton. We present this calculation, a
brief version of which has already appeared, " in Sec. IV.

We end the present section by outlining the general pro-
cedure which we shall apply in all the above cases. We
consider a fermion multiplet ttt interacting bilinearly with
scalar fields P, gauge fields A, and sources s (any
internal-symmetry labels are, for the moment,
suppressed). All fields except tb will be regarded as exter-
nal and treated classically, since only fermion loops are
being considered. The Lagrangian then has the general
form

(1.2)

Integrating over the fermion fields yields

Z=det[p —M(Q, A,s)] . (1.3)

Since the fields tb, A, s are external, no Legendre transform
is needed to pass from F to the effective action S,ff, and
so

F=S,tt i Trln[p M(—Q,
——A, s)] . — (1.4)

Formula (1.4) is entirely familiar, and undoubtedly
represents the effects of all fermion loops in such theories,

W =/[i/i M(P, A—,s )]P,
where the mass functional M depends on the external
fields (and could include, of course, a conventional fer-
mion mass). The connected vacuum functional F(Q, A, s)
is given by F= —i 1nZ(P, A, s ), where

r

Z(Q, A, s)= f&/&/exp i fd x P[ig M(Q, A,s)]g—
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but as it stands it is purely formal and not useful, since it
cannot, in general, be evaluated. The difficulty is that the
quantities P, A, and s (denoted generically by P for the
rest of this section) are all, of course, x dependent for the
applications of interest. Thus the functional operations
formally indicated in (1.4) can be performed neither in
momentum nor in coordinate space. In particular, it is
not clear how to manipulate (1.4) into the form

S,tr= d x W, tt
4 (1.5)

so as to extract the quantity we are after, the effective La-
grangian.

Recently, a method has been developed' which solves
this problem. For convenience, we include a brief descrip-
tion of it here. One sets P(x)=go+/(x), where Po is a
constant field, and expands (1.4) in powers of P(x):

1
i T—r ln[p —M(p)] = i Tr—ln (p —Mp) 1—

p —Mp

1 — i 1 — 1i Tr—ln(p —Mp)+i Tr M+ —Tr M M+ ' '

p —Mo 2 P —Mo P Mo— (1.6)

where Mp is the constant M(go), and M is M(P) —M(Pp). There is still a problem with (1.6), apart from the first term,
which is that the p operators do not commute with the P's, so that the x and p traces still cannot be disentangled. How-
ever, this can easily be overcome by repeated use of the identity

1 I — 1 2
— 1 +

p —Mo p —Mo p —Mo p —Mp

f d' p F( p') fd'x g (y„y,a„y) . (1.9)

Thus when S,tt is expanded in powers of B„P, it can be
written as the integral of a local density L,tt, as in (1.5),
even though the closed expression (1.4) cannot. We write
this expansion, symbolically, as

S f = fd x[—V(p)+ , Z(p)d„pd"p+—. ]

= fd'xW„, .

By further expanding the coefficient functions V,Z, . . .
around P =Pp one obtains

S,tt =f d x [—V((bo) + terms in Po, P, r)pP ] .

By comparing coefficients in (1.11) and (1.6), the coeffi-
cient functions V, Z, . . . in L,tt can be determined
by a straightforward —indeed mechanical —algebraic pro-
cedure. The first term V(gp) is clearly given by
i tr 1n(p —Mo ), which is just the well-known single-
fermion-loop expression for the effective potential. ' The
remaining terms provide precisely the effective interac-
tions which are required in low-energy applications. We
remark, incidentally, that since all such vertices are finite,
traditional subtleties associated with the regularization of
anomalous graphs are bypassed in our approach. Finally,
we note that the method can, of course, be applied to bo-
son loops also; we consider fermion loops here mainly be-
cause of their special role in anomalies, and anomaly-
related effects.

together with

[p,g] = /+2 p B„P

and similar expressions for higher commutators. In this
way each term in (1.6) can be written as a product of
momentum operators on the left and functions of P, and
the derivatives of P, on the right. A general term then has
the form

II. ANOMALY-INDUCED VERTICES

As our first illustration of the use of fermion deter-
minants, we calculate the ~ ~2@ amplitude, starting
from the gauged linear o. model. The Lagrangian is

W =P(Q —eQQ )f gP(o+—i ~ my.5)P

+ —,
' (a„y.)'+ —,

' „'4'——,
' xy', (2.1)

where 1lj is a massless two-component fermion field
(which we take to be the nucleon doublet; one could also
use three colored quark doublets); p, =(o,~) is a four-
component meson field; p =o. +m ~; and

1 0
Q= oo

is the charge matrix of the nucleon doublet. With the sign
of p as shown, the SU(2) X SU(2) symmetry is spontane-
ously broken; we therefore shift the o. field by its vacuum
expectation value f, whereupon, writing o =o f, the fer-—
mion sector of the Lagrangian then has the form (1.1)
with

M=m+go+ig~ my' 5+e Qg, (2.2)

where m=gf. Hence our expression (1.4) for the one-
fermion-loop effective action becomes

S,tt= —i Trln(p —eQA —m go ig~ nyq—) . — .(2.3)

Equation (2.3) incorporates all one-fermion-loop effects; it
must therefore include all effects due to anomalies, as
these are known to be unmodified by higher-loop correc-
tions. ' Thus to calculate the ~ ~2@ amplitude, all we
have to do is expand (2.3) in powers of the fields o, ~, and

and their derivatives, and pick out the appropriate
terms. It turns out that this is a rather easy calculation.
It may seem surprising that this anomaly-induced term
can be deduced in a straightforward way from (2.3); but
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recall that anomalies have traditionally been interpreted as
arising from the fact that any gauge-invariant evaluation
of quantum corrections will violate the chiral symmetry
present in the classical Lagrangian. S,rr in (2.3) is expli-
citly gauge invariant, and this must guarantee the appear-
ance of the anomalous terms in the one-loop action.

To calculate the m —+2y amplitude, we need the term in
the expansion of (2.3) about cr=n =A& ——0 of second or-

der in the photon field Az and first order in the fields
o.,m. This term is

1
l Tr

P —m

1ega g(o+.ir my&) .
p —m

(2.4)

When we perform the SU(2) trace, this picks out the
terms in vr3, the ~ field, and o.,' we drop the term in o., as
it is not of interest to us, and we are left with

1 1 1—e g Tr (p+m)A (p+m)A 2 2 (p+m)y5~3 .
p —Pl p —I p —pl

Performing the Dirac trace then gives

(2.5)

—4ie gme vg Tr p"A" p A~+p"A A pl'+A"1 1

p Pl p Ul p
2 ~ 2

1 g p 1
2 2P P - 2 2

p —I p —p1
(2.6)

where our convention for e„,q~ is that eol23 ——+ 1. We move the p's in the numerators of (2.6) to the left, using the rela-
tion

f(x)p =p f(x) iB f(x)—
and find that (2.6) reduces to

(2.7)

(2.9)

(2.8)
p —7?z p —I p —I

To find the low-energy limit of the m ~2y amplitude, which is of second order in momenta, we do not even need to use
(1.7) as (2.8) is already of the required order in derivatives of the field. The term we want in S,rr is simply

2

4ie gme„,~~ fd x 8~A'8 Arm, f . = fd x e„q 8"A'B~Ar~, ,(2') (p —m ) 8~ f
from which we deduce that the amplitude is

2e
lM v A,

e~„g k, k2e, d~,4' f (2.10)

where e;&, k;z are the polarization vector and momentum
of photon i. Equation (2.10) agrees with the result given
in Ref. 4.

Our second example is a calculation of the five-
pseudoscalar vertex in the nonlinear SU(3)XSU(3) chiral
model with the pseudoscalar octet coupled to fermions.
We will not introduce gauge fields yet (their'effects will be
considered below), and so at first sight the connection of
this vertex with anomalies is rather mysterious.
Nevertheless, it has been shown by Wess and Zumino
that such a purely pseudoscalar term must appear in the
effective action of any model containing pseudoscalars
coupled to vector and axial-vector fields in which
anomalies appear. Starting from the Ward identities for
the divergence of the vector and axial-vector currents,
Wess and Zumino derive a functional differential equation
for the part of the effective action which summarizes all
effects of - anomalies —the so-called Wess-Zumino
action —and give an explicit solution which [like S,rr, Eq.
(1.4)] cannot itself be written as the integral of some local
density, though its expansion in powers of derivatives of
the fields can. The Wess-Zumino action is model in-
dependent in the sense that, up to an overall multiplicative
constant, it does not depend on the details of the fermion
sector of the model, but only the structure of the gauge
group. Recently Witten has given a geometrical deriva-

I

tion of the Wess-Zumino action for the case of the purely
pseudoscalar SU(3)XSU(3) nonlinear chiral model, and
has shown that its coefficient is uniquely determined up
to an integer of topological origin, which he identifies
with the number of colors. In this respect the purely ha-
dronic term in the effective action, which is sensitive to
color alone, is in principle independent of the ~ ~yy
term, which involves the assumed fermion charges.

Since the Wess-Zumino action is, after all, simply part
of the one-fermion-loop contribution to the effective ac-
tion, it must be possible to calculate its expansion in
powers of field derivatives, for any given model, using the
methods described in Sec. I. Here, we shall calculate the
low-energy contribution to the five-pseudoscalar term in
the effective Lagrangian, taking the tree-level fermion-
pseudoscalar interaction Lagrangian to be'

W= P(iP pP)f, —
where

(2.1 1)

8

P =exp Hy5, II= g A;vr',f
the A,

' are the generators of SU(3), and m' are the fields of
the pseudoscalar octet, transforming nonlinearly under
SU(3) X SU(3); g is a fermion triplet; and p is a fermion
mass, which will not appear in our final answer. McKay
and Munczek' have recently calculated this vertex, using
graphical methods; they have also considered the effects
of adding extra interaction terms to (2.11) and have found
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that, as expected, these leave the vertex unaffected.
We expand

—i Tr in[+ —p —p(P —1)]

about m'=0. The term of interest to us is

(2.12)

2lI'=1+ IIy + . ~ .

Eq. (2.13) becomes

(2.14)

l—Tr
5

Writing

5
1

iJ, (P 1)—
P —Pl

(2.13)

32p 1
5

Tl Oy
p —I (2.15)

Performing the Dirac trace, and using the cyclic property
of the trace, we find that (2.15) becomes

(2.16)

We pull the p's in the numerator through to the left, using (2.7); note that, because of the antisymmetry of e&„~, all
terms of the form p"p'lI vanish immediately. Equation (2.16) then becomes

128p pi" 1 g 1 p 1 I
, &„.„Tr, ",a rr, , O n, , a~re, , rr, , rr.

P P P P P P . P 5' —P
We now move all functions of x to the right, using (1.7), to obtain the term of order (BII):
256' d'P fd'x e„„,,Tr(a IIa'IIa~IIa. IIII) f P„P~, , =—,, e„.„fd'x Tr(a~lIa Ila'Ila~niI) .

(2.17)

(2.18)

[The trace in (2.18) is over SU(3) indices. ] Equation (2.18) agrees with the result given in Ref. 13, and with the model-
independent calculation of Witten; note that if there are X, fermion colors, Eq. (2.18) will simply be multiplied by K, .

We now consider the extra low-energy anomalous terms which appear in the effective action when electromagnetic in-
teractions are included in the SU(3))&SU(3) model of (2.11). Witten has derived "by trial and error" an expression for
the Wess-Zumino action of a pseudoscalar octet coupled to the electromagnetic field: it is simply a gauge-invariant ex-
tension of the purely pseudoscalar Wess-Zumino action. Our result is in agreement with his, when expanded in powers
of II. The mass functional is now

M =pP+eQQ,
where —taking the fermions to be quarks —the charge matrix Q is

(2, 19)

2
3

I

3

1

3

Witten finds two extra terms in the Wess-Zumino action, which, to lowest order in the pseudoscalar fields a, are of the
form e&„~&A

"8"IIB"II@'IIand e„~z(B 3 )A~8"II; the corresponding terms in the expansion of

S,ff(II,A&) = i Tr In(p —p—P —eQQ ) (2.20)

about H=A@ ——0 are

See 1 1
3

Tr Hyq Hy~f.' &—v

and

1 1
Hy5

P P
(2.21)

2 2

Tr II@~ Qg Qg .f. p sp—i p s— —
When the Dirac traces are performed, and all P"'s in the numerators moved to the left, Eqs. (2.21) and (2.22) become

(2.23)

2 2
(2.24)
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ep,gp Tr[QB"IIB II@'II]A~—
3 P~P (2.25)

We already have the required number of derivatives in the numerators of {2.23) and (2.24), so (1;7) need not be used. Per-
forming the momentum-space integrals, we find that the new terms in the Wess-Zumino action are

2

fd'x- e~„gp(d A")A~ Tr( Q 3"II)

in agreement with Eq. (19) of Ref. 7, when only terms of lowest order in rr are retained in the latter. As Witten points
out, the m. ~2y amplitude can be extracted from the second term in (2.25).

Finally, we remark that the method we have used here to calculate low-energy terms in the Wess-Zumino action can
also be used to derive several of the results appearing in recent papers' on (2+1)-dimensional axial anomalies, in a very
straightforward way.

III. VACUUM FERMION CURRENTS IN THE PRESENCE OF EXTERNAL FIELDS

We consider the problem of calculating the vacuum expectation value of a fermion current, of generic type
j&(x)=f(x)y&P(x), in the presence of background fields P (which may include gauge fields):

(jq(x))p —— f&g&ggy~gexp i fd x W(g, g, P) (3.1)

where again

~{40 4)=0f ~& M{0)1
—0

and

(3.2)

Z(P)= fQ'/&/exp i fd x W(g, g, P)

A convenient expression for (j„(x))~ can, as usual, be obtained by introducing a source s (x) coupled to j„(x):

(j„(x))y= S,rr(g, s)
5

5s&(x)

where S,rr(g, s ) = i lnZ(g,—s ), and

Z(p, s)= f&/&/exp i fd x g[igl+s M(p)]g—

(3.3)

(3.4)

(3.5)

We therefore need to calculate

S,rr(g, s') = i Tr ln[p+—s' —M(P ) ]

expanded to first order in s:

(3.6)

S,'r&(P, s ) = i Tr-
p —M (3.7)

= fd x(j„(x))p"(x) . (3.8)

Our notation emphasizes that the vacuum current (jz(x))~ depends on the external fields p(x). Following the ap-
proach outlined in Sec. I [cf. Eq. (1.10)], we expand the current in powers of 8"P(x):

(J„(x)),= +S(y')~„„„~.„,„y.(x)a y„a y, a y, + (3.9)

where we have singled out a term of Goldstone-Wilczek form {see below) relevant to the case of a pseudoscalar field P.
By comparing the expansions of both (3.7) and (3.8) about P=Po, as before, we can obtain the coefficient functions
S(P),

One small technicality deserves comment. The expansion of {3.7) about P =Po proceeds via

S,'rr'(P, s) = i Tr( I (p ——Mo)[1 —(p —Mo) 'M] I
's')

1 1= —l TI g'+ Tf M g'+ Tr
p —Mo p —Mo p' —Mo

'2
1

g + e o ~

p —Mo
A

(3.10)
p o

where Mo ——M(go). As explained in Sec. I, such an expression is not really meaningful until the x and p traces have been
separated: only then can it be compared with the corresponding expansion of (3.8). Nevertheless, it is permissible to per-
form on (3.7) the functional differentiation indicated in (3.4), so as to obtain the formal expression

(j„(y))~
= i Tr —y„5(x —y ) .1

p —M (3.11)
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Expanding (3.11) about Pp yields

(j„(y))p———i Tr 1 1 — 1
y„5(x —y)+ Tr M y&5(x —y)—M, " P —Mp P —Mp

1 — 1 — 1+Tr M M y„5(x —y)+ .
p —Mp P —Mp P —Mp

(3.12)

which is, indeed, the appropriate derivative of (3.10), and which may be directly compared with (3.9). The notation in
(3 11) and (3.12) implies that Tr includes the integral fd x. In using (3.12), one must obviously be careful about cycli-
cally reordering the factors in the traces, and then commuting the p's to the left [so as to end up with the desired form
(1.9)]. In this process, derivatives of the 5 function must not be omitted: they correspond, of course, to commutation of
p operators with ~ in (3.10). We shall find it most convenient simply to retain the 5 functions at the right of all expres-
sions, and not permute the factors in the traces. Alternatively one can, of course, retreat to (3.10).

proceed with the calculation of the goldstone-Wilczek fermion current, for the case of a background field
=(o ~) (a =0 to 3) transforming as the four-dimensional representation of the chiral SU(2) X SU(2) symmetry of the

SU(2) o. model. The mass functional is taken to be

M(P) =go+igr mys. (3.13)

and q is an isospinor. The leading term of (J„(y))& expanded in powers of B&P is the SU(2) X SU(2)-invariant Lorentz
four-vector

S(P )e„~ E,b,dg, (y)a yb(y)a"y, (y)d y, (y) . (3.14)

The form (3.14) is dictated by symmetry principles. The fermion current is an isoscalar, and has the quantum numbers
of the co. Isospin and/or G parity forbid co~(o, m) and co~oo., nor, or ere , the "first coupling they allow is co~3m.
Since the ~ s are pseudoscalars, momenta ( or derivatives) must be introduced and coupled to form a (Lorentz) axial vec-
tor, so that the complete current is an ordinary vector. This leads to the e„,~z product in (3.14). O(4) invariance then im-
plies the e,b,d product in (3.14), which is correctly Bose symmetric.

We now expand (3.14) about P=Pp. The leading term in powers of BP is

S(po )e„e,b,dp, d pbd p, d pd .

This arises uniquely from the term

1 — 1 — 1 — 1—iTr M M M )„5(x—y)
p —Mp P —Mp P —Mp P —Mp

(3.15)

(3.16)

in (3.12). Using SU(2) X SU(2) invariance to choose pp, =(op, 0), and isolating the terms in (3.16) which produce e„„~~
from the Dirac trace, Eq. (3.16) reduces to

8g ape, jke»z~ Tr pm; —p—Fr,
—p~~k 5(x —y—)+Tr——p 8-;—p F~ Fk pl'5(x ——y)—

1 1 1 g 1 1 1 1 g 1—Tr—p vr; —% —p Bb —p~5(x —y)+Tr %.; pn p—%k ——@~5(x——y)x 'x'x x x 'x 'x 'x (3.17)

where X=p —m, with (as before) m =g Pp . Remarkably enough, one finds that (3.17) reduces [restoring manifest
SU(2) X SU(2) symmetry] to

8ig e,b,de „~ pp, Tr—8 pb
—8 p, —B~p„—5(x —y), (3.18)

where our convention for e b d is that ep~il, =e~jk. Since we only need the term O((BQ) ) in order to collect S(pp ), we
may at once replace (3.18) by

d4
8 g'e.b,de„.~,p, fd' ~ 4bdV, d'4d5(x —y) f (2 )4 (

2 2)4
1

, , e.„„e„.„y,.a y, a y, a~y„,
12~ Pp

(3.19)

whence, comparing with (3.15), we obtain

&( p)=—2 1

12' Pp
(3.20)

It should be clear from the fact that (3.15) is an expansion of (3.14) that we can replace Pp in (3.20) by P(x) to obtain
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..„„.„„„4.a.y, a'y, a 4„,
12m P

(3.21)

which is the Goldstone-Wilczek result for the linear SU(2) )& SU(2) cr model.
We have presented this calculation in terms of a direct evaluation of (3.11). As remarked above, however, we could

also have used (3.4), retaining the part of S,ff which is linear in s and has the tensorial structure indicated in (3.14).
This is precisely an anomaly term of the type considered in the previous section. By way of varying the example, we note
that Witten's expression for the Goldstone-Wilczek current in nonlinear SU(3) &&SU(3) [e.g. , Eq. (29) of Ref. 7] drops
out very easily in this way: comparing (3.6) with (2.20), we see that (jz)n can immediately be obtained from (2.25) by
replacing —eg& by f. We find

(j~ ) tt —— 3 ep„gp Tr( 8 II8"IIcYII ),
3f 3 Pv P (3.22)

as expected.
Though this paper advocates a functional approach to the evaluation of fermion-loop effects, we should like at this

point to indicate the connection with the graphical method used by Goldstone and Wilczek (see Ref. 1 for further com-
ments on the relation between the two approaches). Clearly, this entails a momentum-space formulation. We expand the
one-loop effective action S,'ff'(P, s) in powers of P about Po, and in s& about s&

——0—retaining only the term linear in sz..

4

S,'f'f'(p, s)= i g—
, I

n
, (2~)'| k+ yp, r„'"'( —p, , . . . , p„, k—;y, )y—(p, )

(2m ) (2m. )

(3.23)

where I „'"'(p~, . . . ,p„, k; Po) (see Fig. 1) is the fermion loop, in momentum space, with one external s line and n external

P lines (internal indices being understood), evaluated using "shifted"" Feynman rules; p;, k are ingoing momenta. Ac-
tually, since the interactions we are considering are linear in P, the effect of the shift is trivial, and amounts simply to us-

ing the propagator i(p —Mo) and interaction vertex M. Comparing (2.32) with (3.8) we deduce

&j„( ) )p= f,~'" " —g I(2m )' „~.'(2~)'
dPn 4(2m) 5 k+ gp;
(2m ) i=1

&& r„'"'( P, — P. k'4o)4—(P )—' 4(P. ) (3.24)

I

Expansion in powers of B&$ corresponds, of course, to a momentum expansion of I &"'. The first nonvanishing contribu-
tion comes from I"„' ' and, as we shall see, has the expected Lorentz structure e&,~tpzp~3 [cf. Eq. (3.15)]. Reinstating
now the SU(2) & SU(2) index, and taking Po, ——(oo, O) as before, I ~

' is (for a given ordering of the external lines)

r

d p . (P+g~o) . (p+pti+g~o) . (p+q+goo) . (p+~+go)
4 1 p 2 2 (g&&)» —&g) 2 2 (gVj/5, —lg) 2 2 (grk) 5&

—Eg)
2m p —m (p+p) ) —m (p+q) —m (p+r) m—

(3.25)

where q =p&+pz, r =pj+p2+p3, and the trace is over internal and Dirac indices; the notation (gr;y5, ig), for —exarn-
ple, means that the vertex g~;y~ is taken for an external vr; line, and ig for a—n external a line. Performing the internal
and Dirac traces, Eq. (3.25) reduces to

8& &ijkg o&pvxp 2 2P PzP3 ~

(2m) p —m (p+p~) —m (p+q) m(p+—r) m— (3.26)

t

tions yields the leading contribution to (j&(x) )~.

(J~(X))y= —
2 4 e&JkE~vgpd 7T; d 77jd 77k

121 o v A, p
p

= —
2 4 &&jk&pvzl&p jp2p3 .

12m Po
(3.27)

whence [cf. Eq. (3.15)] we recover

Dropping the p; from the denominators, we obtain for the
leading term

(3.28)

There are six such terms with different orderings of the P
lines; inserting this into (3.24) and performing the integra-

~(4o') =-
12m P

(3.29)
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&)y~, -t g)

metry is gauged. We introduce two isotriplets of vector
and axial-vector gauge potentials, VP and AP [i is the
SU(2), and p the Lorentz, index]; ordinary derivatives
then become covariant

B~ D~=—B~+ —,
' i.g~ V~+ -,

'
ig~ A&y,

when acting on isospinors, and the mass functional is

M(rtI, V, A)= —,g~ g+ ,'gr —gys+igI.hays+. ger . (3.31)

FIQ. 1. The vertex I p" (p~, . . . , p„k; po).

(40 )Noa ~abed bcd
2 (3.30)

In this approach, it is the use of shifted Feynman rules
which corresponds to the expansion of (3.14) about /=$0
and allows identification of (3.28) with (3.15)—and
thence, via the connection between (3.14) and (3.15), the
reconstruction of the complete current (3.21).

We may also obtain the Goldstone-Wilczek result for
the vacuum current for the case in which the chiral sym-

I

as before, Eq. (3.20). In general, it is clear that if the coef-
ficient of e„,l„glpzp3 in I „'' is written as Sb,d (where the
internal index b goes with momentum pI, etc.), then

where we shall not be interested in the explicit form of the
terms in (3.32) which are bilinear in the A s. The extra
contribution to (3.14) has the O(4)- and Lorentz-invariant
structure

)~pvl.p~abcdfarbc D 0d (3.33)

The leading term in the expansion of (3.33) about P =$0
and Aab =O»

G(po )e„,l„e,b,dc', (B"Ab, —B~Ab, )Bppd

which arises from the terms

(3.34)

The current (j„)d, I ~ will now have a term of the form
(3.14) with i) replaced by D. In addition, however, there
will be a new piece depending on the O(4) field strength
tensor. V~ and 3," make up the components of the six-
dimensional regular representation A,"b of O(4), according
to Apo;—:A/' and Apj =e;Jk Vg'. The field-strength tensor is
then

(3.32)

M 5( —)'p M, '2+'2 "P—M, P M, '"—
1 1 e 3f 7 t'1

g( )+'p M, p M, g2+gZ~'p —M. ~" (3.35)

in the expansion of (3.11) in powers of the fields, where M=M(p) —M(po) and Mo=igr'Iro)'s+g~o as usual. Perform-
ing similar manipulations to those which led to (3.18) from (3 16), we find that the relevant terms (3 35) reduce to

2ig E & p b dp Tr—Q Ab —Oped —5(x —g ) —Tl 8 Ab 8 pd ~(x —g ) (3.36)

G(d ')=
2$ 2

(3.37)

Once again, since we need retain only O(BA BP) terms to
compare with (3.34), we obtain directly

the fermion-loop contribution to the O((BQ) ) terms in
the effective Lagrangian of the linear and nonlinear 0.
models; the motivation for this was explained in the
Introduction —see also Ref. 11. The nonlinear model has
the Lagrangian

from which [cf. Eq. (3.33)] the new contribution to the
current is W2 ———,(B„P,) (4.1)

vk p
16Ir p

2 ~abcd~pvkpdaFbc D (3.38)

in agreement with Ref. 6, and containing the expected
anomalous divergence.

IV. SKYRME-SOI.ITON PHYSICS

As our last, and technically most intricate, application
of the derivative-expansion technique, we shall calculate

where the index a runs from 0 to 3 with p= (cr, Ir) and p,
is constrained by o +m=f, where f is .a symmetry-
breaking parameter. Treating (4.1) as a classical field
theory, Skyrme showed that field configurations charac-
terized by nontrivial topology are possible; however, sim-
ple scaling arguments imply that they would be unstable
against collapse if the dynamics is given solely by (4.1).
Skyrme proposed the addition of the term ( in our nota-
tion)
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2r,"'= ' [(a,y.aA. )' —(a„y.)'],4 f4 1a, a a /l a (4.2)

where s is a dimensionless parameter. With the addition
of this term, static finite-energy field configurations are
possible, carrying a conserved topological quantum num-
ber. Since Pa is treated as a classical field, we may inter-
pret W2 as an effective Lagrangian: indeed, the associat-
ed action is we11 known to generate m-irreducible vertices
which are exact to second order in the momenta for a
wide class of theories exhibiting spontaneously broken
chiral symmetry. ' Thus W2 is, from today's perspective,
rather securely based . as part of the low-energy
phenomenology of QCD, in which pions are the Gold-
stone modes of the associated broken chiral symmetry. It
is then natural to try and calculate, from some chosen
quantum field theory, the O((ap) ) terms in the effective
Lagrangian, W4. As remarked in the Introduction, we
take the view that at least those O((ap) ) terms generated
by fermion loops should be included, since this particular
type of radiative effect has already been employed in the
calculation of the Goldstone-Wilczek current, which in
turn allows identification of the Skyrme topological
current with physical currents. ' We shall be interested to

see whether such O((ap) ) terms have anything like the
form (4.2} proposed phenomenologically by Skyrme.

Though we shall eventually specialize to the nonlinear
o. model, we shall first present' the results for the more
general linear model. We consider meson fields coupled
to fermions via the Lagrangian

'(a,—4.)'+ ' i '0—'

+p(igl ig—r nyq go—)p, (4.3)

S,ff — i Trln—(p igr m—y& ger)—; (4.4)

we do this by expanding about a constant field $0„as in
all our previous examples.

First consider the expansion of S,ff in powers of a&p, .
There are ten independent (i.e., not related by integrations
by parts) terms with four derivatives of P„which we
choose as follows:

where g is a massless isospinor fermion field, Pa = (o', w),
and $2=o2+n2is .not yet constrained to equal a constant.
Thus, we are consistently taking the same M(P) as in the
Goldstone-Wilczek calculation of Sec. III [see Eq. (3.13)].
We seek the O((ap) } terms in the expansion of

s,ff =. . . + fd'x[Y (4')(a„p. )'+ Y,(y')(a„y.ap. )'+ Y3(y')(y. y, )'

+Y,(y')y. a„ap.a~y, a y, +Y (p )(5 p (a p, )2+ Y (p2)p2(Qp, )

+ Y (Q )(P a„(h ) (a„gb) + Y8($ )P a„P P„aP a&p, a P,

+ Y,(y')y. a,aA. y„a&y, y, a y, + Y„(y')(y, a„y.)']+ (4.5)

We now put 1I},(x)=po, +p, (x) in (4.5), where boa is a constant field, and retain terms of O(1I} ). There are 19 such
terms, of which one is not independent of the rest. After performing some integrations by parts, to eliminate this depen-
dent term and to bring some of the other terms into a more convenient form, we find that (4.5) becomes

f d x[S,(a„p, ) +S (a„p,ag, ) +S3(p, p, ) +S4p, a„ap, a"pba'pb+S5pb pb(a p, )

+S P (Clg, ) +T,g, a„g,g,ba„gb(ag, ) +T P, a„p,p ba+ba"P, a'P,

+ T3(9 0 W)00 a aA' a 4'ba 4b + T4(4'0 4)a aA' a 0 9 oba 4b

+ T Q, a„a+,poba"pbpo, a'p, + T6$0, a„ap, pba"pbpo, a'p, + T (p qY) (HqY, )

+ T8(40 0)00 +4aeb a0b+ T9P'(boa Oa ) + Ul(1to 0) ('1|POa ya )

+ U, (4, y)y,.a„aA.y„a~4,y„a y, + U, (y, y)y,.(:jy.(y„a„y„)], (4.6)

where the coefficients S;,T;, U;, which are related to the Y;, are functions of po . Only ten of these are independent; they
give the coefficients Y;($0 ), as follows:

2 dY6
S, = Y„Sb=Yb+00

dP

dY5
S2 ——Y2, T ) ——Y7 —2

d40'
(4.7)

S3 ——Y3, T2 ——Y8, S4 Y4 T5 Y9 Sg = Y5 U3 = —Y)p

The other eight satisfy the following relations:

d Y4 dS4 d Y5 dS5
T3 ——2 =2, T4 ———4 = —4

dP dP dP dP

dY6 2
d Y6 dS6

T6 ——2Y9=2T5, T7 ——2 2 +40 =2
2 d(p 2)2 dp 2 (4.8)
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d Y3 dS3 d Y3
T8 —4 =4, T9 —— ——4 T8,

d No' d 0o' d 0o'

d F3 dT9
U& ——2 =2

d(0o')' d 0o'
de

, —~io
dip

dT5
, +U,

d0o'

P ig&''I—roys+goo

The relations (4.8) provide a very useful check when we come to read off the coefficients S;,T~, U; from the expansion of
(4 4)

We now put Pa(x) =/pa+Pa(x) in (4.4), and expand that, again keeping the term of O(P ). This term is
4 4 4

ig 1 lg 1Tr (ir Fy5+o) = Tr (pig' r—npy5+gop)(ir my5+o) (4.9)
4 p2 2

where m =g Po . After performing the Dirac and SU(2) traces, Eq. (4.9) becomes

~ 8 4
[0'0 Tabcd +8(dpcdpd —&cd )Wpadpb tTr

q q 0a 2 q 0b g p 4c 2 p 0d
p —I p —I p —pl p —pl

~ 6 2+ 8ig gp [2(~ bdo Pod ~bddoakoc +~addobloc ) 40 Tabcd]Tr
p —I p —pl p —vl p —pl

+4 g gp [2(~hdtv'Oakpc 2Ocddpadpb+ackobkod)+4'0 abed] 2 2 0 p 2 4b p 2 0 2 2 0d.p2 2 a 2 ~2 2 ~2 c 2 2

+2ig [Tabcd(gpvglp gpkgvp+gppgvk) ~ ~pvkp~abcd]j p p 0a 2 p 4b p p 4c
p —Pal p —p?1 p —I?? p —pyz

where
/

Tabcd ab ~cd ~ac ~bd +~ad ~bc

(4.10)

Equation (4.10) can now be expanded in powers of derivatives of P„by moving momentum operators to the left and
functions of x to the right, using the relation (1.7). (The calculation is unfortunately very much more complicated alge-
braically than those presented in Secs. II and III, where we were usually looking for terms of at most third order in

derivatives, and where the trace was always contracted with e„,~p, which eliminated many terms. ) After a good deal of
algebra and some integrations by parts to bring this expansion into the same form as (4.6), we find that the coefficients
S;, T;, and U; are, in units of 1/60rr Pp,

19 1S=——,T=
1 8 ~ 1

0

38
S2 ———,, T2 ——

3p 2

1S = ——
3 2

10 S4 ———,, T4 ———
0

8
2

(4.11)

8
S5 — 1y T5-

34o'
5S = ——,6 4~

16
T6 230o'

4 7 1
U) ———,T7 —— 2, U2 ———

4 ~ Ts —
2 r 3

———
4 ~ T9 ——

4o' 4o' 0o' &o 6 Ao'

We see that these satisfy the constraints (4.8). From (4.7), we can deduce the coefficients Y;.(Pp ); we may now replace Pp

by P(x), and (4.5) becomes

S„,= ', fde — '9, (a„y.)'+ ",(a„y.ap. )' — '„(y.ny. )'+ ', y.a„ap.spy, a.y,60~' 8y' " ' 4y' " ' ' 2y"
/+, ( P, )' —

~ P P, (&„Pb)'+ 6 (P, &„P,)'(Rgb)'a
p4

a a p ~6 a p a
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Expression (4.12) is the complete one-fermion-loop con-
tribution to the O((c)p) ) terms in the effective action, in
the model of (4.3). It may well have independent applica-
tions, but for the moment we are interested in the special
case in which the nonlinear constraint is imposed. To this
order in fi and derivatives it is sufficient' simply to set
P =f in (4.12), where f =p, lk is the minimum of the
classical potential in (4.3). The last four terms in (4.12)
now vanish identically as we have P, B&P, =0. The
remaining six are no longer independent; since now
P, t)„t)g, = B„P,—"dP, and P, GP, = (d~P—, ), there are
only three independent nonlinear invariants, and the final
contribution to the effective Lagrangian is

(4.13)

We may now compare (4.13) with the Skyrme form
(4.2). We first note that the' first two terms of (4.13) do
have the same signs as those in (4.2). Furthermore, the
"additional" ——,(c)&P, ) contribution gives a positive
contribution to the static energy (though it leads to a
Hamilton for time-dependent solutions which is unbound-
ed below). Thus it might seem possible that these radia-
tive corrections could stabilize the soliton against collapse.
However, the third term [(El(t, ) j remains to be con-
sidered. Previous discussions' ' of the possible radiative
origin of the Skyrme terms have omitted this third term,
on the basis that only the first two are required as coun-
terterms in renormalizing the nonlinear o. model to one-
loop order. However, there is nothing to rule out a finite

term of this form in general. Our calculation shows expli-
citly that such a term is induced by the one-fermion-loop
contribution, and we have also found that in the linear o.
model (without fermions) the boson loops generate such a
finite term. ' It appears that the effect of this term is to
cause the total static energy to become negative, thus indi-
cating a possible instability of the ground state: this con-
clusion is arrived at by MacKenzie et a/. ' from a con-
sideration of a regime of g and N (the number of fermion
species) for which the one-loop calculation should be
dominant, and it is also confirmed in numerical calcula-
tions by Ripka. Though more detailed numerical stud-
ies will be undertaken to study the effect of this term
further, it seems clear now that the calculated W4 terms
do not stabilize the soliton, and indeed give a negative
contribution to the energy.

In conclusion, we should note that the status of (4.12)
or (4.13) is rather different from the anomaly-related ef-
fects of the earlier sections. In those cases, general topo-
logical arguments were available to guarantee that the
form of the amplitude was model independent. By con-
trast, the O((c)p) ) terms we have calculated are surely
dynamical in origin and model dependent. In particular,
there is no a priori reason why (in this nonanomalous part
of the Lagrangian) boson loops should not also be con-
sidered We. have, in fact, also calculated the O((t)p) )
terms arising from P loops, starting again from (4.3). We
hope to report on this elsewhere ' and also on the gauged
extension of this model, which may have interesting appli-
cations to a heavy Higgs sector &7, 2O, 24, 2s
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