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We investigate the class of vacuum five-dimensional spatially homogeneous and anisotropic
cosmological models satisfying Einstein s field equations and derive, for some of them, general or
particular exact solutions. The analysis of the asymptotic behavior of these solutions shows that
Chodos and Detweiler s cosmological dimensional-reduction process is possible for these models, the
fifth, unphysical, dimension being allowed to contract to a very small scale.

The idea that space-time has more than four dimen-
sions, the extra ones being compactified so as to be unob-
servable at the energies currently available, has received
much attention recently. ' These multidimensional
theories constitute most interesting candidates for a unifi-
cation of all fundamental interactions, including gravita-
tion, in the framework of a theory of general relativity in
4+ d dimensions.

The earliest theory of this type due to Kaluza and
Klein is five-dimensional and, accordingly, possesses only
one extra dimension; this Kaluza-Klein theory represents
the first attempt at unifying gravitation and elec-
tromagnetism.

In the framework of multidimensional theories, an ex-
planation of the four-dimensionality of the actual universe
as well as of the Friedmann-Robertson-Walker form of its
metric, has to be found.

An interesting possibility, known as the "cosmological
dimensional-reduction process, " is based on the idea that„
at very early times, all dimensions in the universe were of
comparable size but that, later, the scale of the extra di-
mensions became so small as to be unobservable, by ex-
periencing either a contraction or an expansion at a much
lower rate than in the case of the physically observable di-

ensions. This process was first proposed by Chodos and
Detweiler' who showed that there exists, in the frame-
work of a pure gravitational theory of Kaluza-Klein type,
a vacuum Kasner (Bianchi type-I) solution of Einstein s
field equations for which the extra dimension contracts to
a very small scale, while the three other spatial dimen-
sions expand isotropically.

The explanation of the smallness of the extra dimen-
sions of the universe by the dynamical evolution of the
latter has also been proposed in the case of a more realis-
tic model, i.e., 11-dimensional supergravity. '

However, Chodos and Detweiler's analysis is based on
the study of the very simple anisotropic Bianchi type-I
model, which is the less general among spatially homo-
geneous models. It is then essential to examine if the
cosmological dimensional-reduction process is still possi-
ble for more general multidimensional spatially homo-
geneous models.

Leaving aside the problem of stability of the particular
Kasner type of solution considered by Chodos and

Detweiler, we address here the problem of the evolution of
general five-dimensional anisotropic spatially homogene-
ous models and we consider only vacuum solutions of the
field equations. This work is in fact a first step toward a
complete understanding of the multidimensional anisotro-
plc cosmologles.

Extending the usual definition of four-dimensional spa-
tially homogeneous models, "' we define a five (X)-
dimensional spatially homogeneous model as a five (X)-
dimensional space-time possessing a four ( N —1)-
dimensional group of isometry acting simply transitively
on four ( N —1)-'dimensional spacelike hypersurfaces.
This definition does not probably recover all possible cases
of spatially homogeneous models (cf. for instance, for
3 + 1 space-times, the supplementary case of the
Kantowski-Sachs models' ) and a detailed analysis of the
higher-dimensional isometry groups would be necessary in
order to obtain the totality of possible different types of
such models. However, the definition adopted here is al-

ready sufficiently rich as to recover a large diversity of
spatially homogeneous models.

The real four-dimensional Lie algebras have been classi-
fied by different authors ' we have used explicitly the
classification given by Fee, ' which comprises 15 distinct
real four-dimensional Lie algebras, some of which (even-
tually for particular values of the parameters involved in
the commutators of the elements of the algebra) generalize
the usual three-dimensional Bianchi-type Lie algebras.

The corresponding five-dimensional metrics have been
written in the Cartan basis of left-invariant forms (the
Killing vectors being then identified with the right-
invariant vectors); in this basis, the metric tensor depends
on time only. The right- and left-invariant vector fields
and forms for each of the real four-dimensional Lie alge-
bras are given explicitly in Fee's work. '

For each of the 15 distinct real four-dimensional Lie
algebras, we have considered only five-dimensional diago-
nal metrics in the Cartan basis of left-invariant forms and
have written the corresponding Einstein's vacuum field
equations, using the algebraic system SHEEP 2, which en-
ables one to change the dimension of the Riemannian
manifolds studied.

Some of the five-dimensional space-times considered do
not admit any diagonal vacuum solution. For other ones,
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we have been able to derive general or particular exact
solutions, some of which represent direct generalizations
to five-dimensional space-times of known vacuum solu-
tions of the Bianchi-type cosmological models howev-
er, certain solutions are typically new and have no spatial-
ly homogeneous lower-dimensional counterparts.

Kasner's generalized solution (corresponding to the
Abelian algebra denoted in Fee's work as GO), which is
valid for any dimension of space-time, has been studied in
detail by Chodos and Detweiler. '

%'e shall describe here some particularly interesting re-
sults obtained for Fee's G7, GS, and G 1 1 four-
dimensional Lie algebras [I.(4,4), L(4,2), and I.(4,7),
respectively, in the notation of Patera et al. ' ].

The diagonal five-dimensional metric corresponding to
Fee's 67 algebra can be written as

3

ds =e ( dt +—dw2)+ g g, , (m')2, (1)
i=1

where A and all g; s are functions of time t only and the
spatial Cartan basis of left-invariant forms is given by

co'=e-~dx '

co =8 dx

t03=e (dx3 —todx ),
co =dM,

where I' is an arbitrary constant. The commutators
characteristic of the Lie algebra generated by the corre-
sponding Killing (right-invariant) vectors, i.e.,

X;=, (i =1,2, 3),a
Bx

X„=—QPx' . +
Bl8

(7)

are given by

[XJ,X„]=PfXJ .

Einstein's vacuum field equations, computed by means of
SHEEP 2, have the following form (the subscript zero
refers to the time variable x = t):

e ROD ——QA —Q —A —g Bt ——0,

e R) J ——B) +OBJ —oI'J- ——0,

e 'Ro„crA ———g P;B;=0,

e "R„„=A+QA—g P; =0,

ly unobservable dimension and an expansion of the three
physica1 dimensions.

The spatially homogeneous five-dimensional model cor-
responding to the 68 four-dimensional algebra can easily
be generalized to any dimension; its Inetric can be written,
in the case of an n-dimensional algebra (latin indices run-
ning from 1 to n —1) as

ds =e '"( d—t +dw )+ g (e ' ' dx') (6)
l

where the P s are constant. The commutators of the cor-
responding Killing vector fields generating the Lie alge-
bra, i.e.,

X4 ——(x +x ) 3+x +Px, +2 8 ] 8
Bx Bx Bx

have the following form:

[X3,X4]=X3,
[X2,X4) =X2+X4,

[X),X4]=PX) .

where

Q(t) = g B,(t) = lnR (t)

o= gP;.
Summing the ( n —1)(jj)-field equations, it becomes

(10a)

(10b)

Einstein s vacuum field equation R23 ——0 imposes
P = —2. An exact solution of the field equations can, in
this case, be derived; it is given by or

Q+ Q =o.

2/3

g» t'/3(ty+t y——),

g33 t '/3!(ty+ t y),——
2A e 3t 2t ( y 1/3 ) /2( t y —+ t —y )

where y is a positive constant.
The study of the asymptotic time behavior of this exact

solution shows that, for any (positive) value of y, g», g22,
and g44 tend toward infinity while g33 vanishes when
taboo. this is typically the behavior found by Chodos
and Detweiler in their study of the five-dimensional Kas-
ner solution, leading thus to a contraction of the physical-

R=o. R (1 lb)

which can easily be integrated:

R =o. R +p, (12)

where p is an integration constant.
Two cases have to be considered, following the value of

the parameter o..
(a) cr&0 (o can then, without restriction, be normalized

to + 1). The field equation Roo =0 imposes the con-
straint p) 0. If p=0, we obtain a special solution of Eqs.
(9) generalizing to any dimension the particular four-
dimensional solution obtained by Collins' and Evans
for the vacuum Bianchi type-VIt, model:
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r

ds =exp g P; t ( —dt +dw )

l

with

(13a)

(13b)

On the other hand, if p= 1, we obtain the following gen-
eral solution:

2 .I'~
ds =(sinht) ' ' (tanht/2) ' ' '( dt —+dw )+ g (sinht) '(tanhtl2) '(e ' dx') (14a)

where

(14b)QP;=1, Qai=0, ga; =1+ QPj
l 1

This solution appears as an ( n + 1)-dimensional generalization of Ellis and MacCallum's ' solution for the vacuum Bian-
chi type-VIt, model (containing also as particular cases Bianchi type-III and type-V models).

(b) o =0. The solution obtained in this case is the following one:

ds =exp gP; t l2 t ' '
( dt +dw —)+ gt '(e ' dx') (15a)

where

g a;=1, g P;=0, g a;P;=0. (15b)

The asymptotic time behavior of the spatial part of the
exact solutions (13a), (14a), and (15a) [with the constraints
(13b), (14b), and (15b), respectively] can be, in the five-
dimensional case, one among the three following possible
different types: four, three, or two spatial dimensions can
be expanding monotonically while the other ones would be
contracting; this second type of behavior is in agreement
with Chodos and Detweiler s cosmological dimensional-
reduction process.

In the 611 case, which has no spatially homogerieous
three-dimensional counterpart, it is possible to derive an
exact particular solution of Einstein's vacuum field equa-
tions, given by

844 = —goo

where cr and C are given, respectively, by

0. = ,' [27(P+1—)+(P 1)]— (17a)

and

[(P—1)'+9(P+1)']'"
3v 6o' (17b)

P being an arbitrary constant.
The corresponding five-dimensional metric has the

form (1), with the spatial Cartan basis of left-invariant
forms given by

~+ (dx x dx )

co =e dx

=(sinho. t) ' + +" tanh
2

- y8(P —1)C co =e dx

co =dw .

+4(P—1)C

g22 ——(sinho. t) ' + ' tanh
2

g33 ——(sinho. t) ' =" tanh
2

+4(4P+5)C

y4(5P+4) C

g» ——(sinhot) ' + + ' tanh
2

(16)

All gs's (i= 1 to 4) tend to infinity for taboo, with the
exception of g» which, for PH] —2, ——,

' [, tends toward
zero.

We have thus shown that Chodos and Detweiler's
cosmological dimensional-reduction process is present in
each model considered here and we conjecture that this
would be true for each five-dimensional spatially. homo-
geneous cosmological model. A detailed analysis of the
whole class of such models is in progress.
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