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Quantized electric-flux-tube solutions to Yang-Mills theory
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We suggest that long-distance Yang-Mills theory is more conveniently described in terms of elec-
tric rather than the customary magnetic vector potentials. On this basis we propose as an effective
Lagrangian for this regime the most simple gauge-invariant (under the magnetic rather than electric
gauge group) and Lorentz-invariant Lagrangian which yields a 1/q gluon propagator in the Abeli-
an limit. The resulting classical equations of motion have solutions corresponding to tubes of color
electric flux quantized in units of e/2 (e is the Yang-Mills coupling constant). To exponential accu-
racy the electric color energy is contained in a cylinder of finite radius, showing that continuum
Yang-Mills theory has excitations which are confined tubes of color electric flux. This is the cri-
terion for electric confinement of color.

I. INTRODUCTION

Yang-Mills theory is most easily expressed in terms of
equations for the vector potentials A &(x); the Yang-Mills
Lagrangian is simple in terms of these potentials and the
short-distance properties of the theory are also con-
veniently described in this way. The long-distance proper-
ties, however, are not. The correlation functions of these
operators are apparently singular at long distance presum-
ably reflecting, in some complicated and as yet not under-
stood way, the confining properties of Yang-Mills theory.
It seems unlikely, therefore, that there is any simple
description of the long-distance behavior of Yang-Mills
theory in terms of A&(x); indeed, substantial progress to-
ward understanding confinement has so far been made
only for lattice Yang-Mills theory, where the natural vari-
ables are gauge-invariant Wilson loops.

On the other hand, the Yang-Mills vacuum is a relativ-
istic dielectric medium, and the correlation functions for
the vector potentials describe the properties of this medi-
um. The Schwinger-Dyson equations are an infinite set of
coupled equations relating the correlation functions and
determining self-consistently the vacuum dielectric prop-
erties. They are of the same structure as the equations
giving the dielectric properties of any condensed matter
medium. The question we must face, then, is how can we
extract information from the relations among these
gauge-variant singular functions and how this informa-
tion can best be used to obtain physical predictions about
Yang-Mills theory at long range.

In the past' we have studied a truncated version of the
Schwinger-Dyson equations obtained by expressing the
three-point correlation function I in terms of the two-
point current correlation function II (the vacuum polari-

zation) according to the simplest possibility consistent
with gauge invariance. This reduced the Schwinger-
Dyson equations to a single nonlinear integral equation
for II which had the general structure of the integral
equation for the dielectric constant in a many-body sys-
tern. The vacuum polarization is the zero-field dielectric
constant, and the truncation procedure expresses the
field-dependent part of the dielectric constant back in
terms of the dielectric constant itself.

We showed first numerically and then analytically
that this equation had a solution for which the Fourier
transform of the dielectric constant e(q ) behaved like
(q /M ) as q —+0, where M is an undetermined
renormalization-group-invariant mass scale (these results
were confirmed by a more thorough analytical study of
this equation by Atkinson and Johnson). In this solution
the gluon propagator D~(q ) =1/q e(q ) behaves like
(M2/q ) as q'~0.

Because of this singular low-momentum behavior of the
gluon propagator it is not possible to use the Dyson equa-
tions beyond the stage we have already studied. This
again reflects the problems of using vector potentials to
calculate the long-distance properties of Yang-Mills
theory. To obtain further information we must go beyond
the Dyson equations and abandon the use of vector poten-
tials.

In coordinate space our solution of the Dyson equations
means that in the simplest long-distance approximation
the Yang-Mills vacuum behaves as a linear dielectric
medium with dielectric constant e and magnetic permea-
bility p= I/e where e=B /M . The magnetic H field
and the electric displacement vector 0 are then. related to
the electric color field E and magnetic color field 8 by
the equations
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8= 8, D= E, -

M M

and the equations of motion are

The simplest Lagrangian which is invariant under the
gauge transformation (1.7) and reduces to (1.5) in the
Abelian limit is

VXH=, VD=0,D
at '

V 8=0, VXE=- BB
Bt

(1.2)

(1.3)

A

where

F~„d„A„——d„Ap—ie [—Aq, A „]

(1.8)

B=VXA, BA
Bt

(1.4)
I

and the equations of motion (1.2) are then generated by
the Lagrangian

a2
~MAX(A )

1 FMAX (1.5)

Since Eqs. (1.1), (1.2), and (1.3) are linear the color indices
play no role. These equations summarize what we have
learned from our solution of the Dyson equations and
Ward identities and provide the starting point for con-
structing a consistent long-distance theory.

We wish to emphasize, however, that this paper does
not rest on our study of the truncated Dyson equations
and Ward identities. Here our starting point is only that
the gluon propagator, for whatever reason, and in some
gauge, behaves like 1/q in the infrared; that is, the two-
point proper vertex function, in some gauge, behaves like
H„-p (q 5&,—q&q, ). These statements are equivalent
to the statement that the dielectric medium in the weak-
field limit, in some gauge, is described by Eqs. (1.1), (1.2),
and (1.3). Our purpose here is to construct, given the
above conditions, a phenomenological long-range Yang-
Mills theory. As has already been pointed out ' Eqs.
(1.1), (1.2), and (1.3) already describe some of the proper-
ties of a confining theory. They yield a long-range linear
potential between color electric charges and a vanishing
long-range force between color magnetic charges, which is
a concrete realization of 't Hooft's theorem that electric
and magnetic confinement are mutually exclusive. How-
ever since Eqs. (1.1), (1.2), and (1.3) describe an Abelian
theory they clearly cannot account for the nonlinear
dynamics of long-distance Yang-Mills theory. In particu-
lar electric flux is not confined to narrow tubes but
spreads out through all space.

In an earlier papers we tried to account for these non-
linear effects by constructing a gauge-invariant effective
Lagrangian W(A) which yielded Eqs. (1.1)—(1.3) in the
linear Abelian approximation. The Lagrangian W(A)
was constructed as follows: Eqs. (1.3) are automatically
solved by

M~(A)F=dpF ie[A~—,F] . (1.10)

II. USE OF ELECTRIC VECTOR POTENTIALS Cq
TO DESCRIBE THE ABELIAN THEORY

We can solve Eqs. (1.2) by writing

0= —V XC, 8=—VCO- BC
Bt

(2.1)

We call CI'=(Co, c) the electric vector potential and de-
fine

MAX
Gp =BpC —c) Cp .

Then Eqs. (1.1) can be written

( d /M )F„,=G„—,
where

(2.2)

(2.3)

The 3& as usual are matrices in color space,
A &

——g T,A „', where the T, are the generators of the
color gauge group. In the Abelian theory all matrices A&
are proportional to a single generator. We normalize all
matrices so that 2Tr(T, Tb ) =5,b.

However, the Lagrangian (1.8) does not give any re-
sults beyond those already obtained from its Abelian lim-
it. In particular the nonlinear terms do not prevent the
spreading of electric flux lines. We now believe that the
reason the Lagrangian (1.8) does not adequately describe
long-distance Yang-Mills theory is that it was constructed
assuming that the long-distance Lagrangian was a simple
function of the vector potential 3&. We have already seen
that an expansion in powers of A& is not appropriate at
long distances due to the singular nature of the propaga-
tor. In Sec. III we will obtain an alternate long-distance
Lagrangian which also yields Eqs. (1.1), (1.2), and (1.3) in
the Abelian limit, but unlike W(A) should be capable of
describing long-distance Yang-Mills theory. To do this
we will first write another Lagrangian for the Abelian
theory which is completely equivalent to Eq. (1.5) but will
suggest the alternate generalization.

where

F~ BpA „—BQ (1 6) and

A,o.
Fpv —

2 &I vxuF (2.4a)

(The superscript and subscript MAX denote Maxwell. )

However the Lagrangian (1.5) is not invariant under the
non-Abelian gauge transformation

Fok =Ek& Fij = —6ijk+k (2.4b)

Equation (2.3) determines E and 8 in terms of C„, while
Eqs. (1.3) are obtained as the equations of motion generat-
ed by the Lagrangian

'2 0——Q '(j Q.P e P (1.7) ~MAx(C) & GM&x( ~2/g2)Ggv (2.5)
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This equivalence of the Lagrangians W (A), Eq. (1.5),
and W (C), Eq. (2.5), was pointed out by Nair and
Rosenzweig' and reflects the fact that sourceless electro-
dynamics in a linear relativistic dielectric medium can be
described either in terms of magnetic vector potentials A&
or electric vector potentials C&. W (C) is obtained by
making the replacements 2&~C&, @~p= I /e in

(A). The propagator Dc(q ) for the C& field is

Dc(q )= (2.6)

&s q2~0, p{q )~M2/q and hence Dc(q )~1/M; i.e.,
the C& propagator develops a mass if the Az propagator
behaves like 1/q as q —+0.

Including the first correction to the q ~0 limit of e,
we obtain

~pF = ~pg MAX .f2
(2.11)

The (1/f )l3„g"MAx term in Eq. (2.11) is the change [in
Eq. (1.2)] due to the q term in e. The physical implica-
tions of Eqs. (1.1), (1.2), and (1.3) (discussed earlier)
remain valid in the presence of this next leading term in e.

III. LONG-DISTANCE LAGRANGIAN
FOR YANG-MILLS THEORY EXPRESSED

IN TERMS OF ELECTRIC VECTOR POTENTIALS

(A„)= —2 Tr ,' (F""F—„„), (3.1)

In order to proceed further we use the results of Man-
delstam' who showed that starting with Yang-Mills
theory,

e(q ) —q /M [1+q /(fM) ]
q~~O

(2.7a) one can construct electric vector potential operators C&
such that the theory is invariant under the group of
transformations

p(q ) —M /q [1 q /(fM—) ]
q~~O

=M /q —1/f (2.7b)

The truncated Schwinger-Dyson equation determines only
the leading behavior of e as q ~0 and hence the constant
f in Eq. (2.7a) is not fixed. " Inserting Eq. (2.7b) into
Eq. (2.6) gives

Dc{q ) 2
2 1

M q /f— (2.8)

It is convenient to choose C„and F„as independent
variables in order to eliminate the I /8 factor in
WMAx(c„). To do this we replace Eq. (2.9) by

~MAX(c F llv) .

82—2gMAXF Pe+ FPv F g MAxggv
4 Pv M2 jlv f2 Pv AX

(2.10)

Then Eq. (2.3) becomes an equation of motion obtained by
varying F„„in Eq. (2.10). Varying C& in Eq. (2.10) yields

which shows that fM can be interpreted as the mass in
the C& propagator. As pointed out by Nair and
Rosenzweig' this indicates that a dielectric medium in
which e(q )~q /M as q ~0 possesses some of the
features of a magnetic superconductor, since the C& prop-
agator develops a mass just as the A& propagator'develops
a mass in an electric superconductor (the Meissner effect).

Including the q term in e produces additional terms in
Eqs. (1.1), (1.2), and (1.3). In the C& language the modi-
fied equations are obtained by replacing —M /8 by
—M /8 —1/f in W '"(Cz). Equation (2.5) is then re-
placed by

~MAX(C )
& gMAX( M2/()2 1/f 2)ggv (2 9)

c„n 'c„-n (i/g—)n 'a„n-, (3.2)

where eg=4vr The .group of transformations (3.2) is
called the magnetic color gauge group in contrast to the
electric color group of gauge transformation, Eq. (1.7).
Mandelstam' was able to give a kinematic definition of
the operators C„, but the explicit form of W (Cz), the
Yang-Mills Lagrangian expressed in terms of the C&
fields, was not determined. It is presumably an extremely
complicated function of the C&, since W (3) has a sim-
ple dependence upon the magnetic vector potentials A&
and the definition of the C„ in terms of the Az is very
complicated. Of course in an Abelian gauge theory
Mandelstam's definitions are equivalent to those given in
Sec. II and the explicit dependence of the Lagrangian
upon the C@ fields is known and is not complicated.

The idea of our approach is then the following. Be-
cause of asymptotic freedom the Yang-Mills Lagrangian
(3.1), augmented by simple corrections, is the effective La-
grangian describing short-distance Yang-Mills theory.
Because of Mandelstam's work short-distance Yang-Mills
theory could in principle be described in terms of electric
vector potentials C&, but as indicated above it would be
extremely complicated. We will see that at long distance
the situation is reversed and that the effective long-
distance Lagrangian W(c) is simple when expressed in
terms of electric vector potentials C& and hence necessari-
ly complicated when expressed in terms of the 3&. [In
particular the effective Lagrangian (1.8) cannot be ade-
quate to describe the long-distance Yang-Mills theory. ]

We will not need Mandelstam's explicit construction of
the operators C& in order to construct W(C). We only
need that W(c) is invariant under the transformations
(3.2) of the magnetic color gauge group and that in the
Abelian limit it generates Eqs. (1.1)—{1.3). Furthermore
we assume that W(C) is the minimal Lagrangian having
these properties. We assume W(c) is minimal because in
the linear Abelian theory the C@ propagator develops a
mass and hence the C& field falls off rapidly at large dis-
tances. Thus higher-order terms in the expansion of
W(c) in the variables C& can be neglected at long dis-
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G„, G„,=a„c.—a,c„—ig [c„,c,],
B„F~&q(C)F =d„F ig [C—„,F] .

This substitution yields the Lagrangian

(3.3)

(3.4)

tances. This contrasts with the higher-order corrections
to W(A) [Eq. (18)] which are necessarily large at long dis-
tances because 3& is singular there.

We then seek the minima1 Lagrangian which is invari-
ant under transformations (3.2) of the magnetic color
gauge group and reduces to W (C~,F"'), Eq. (2.10),
when all the fields are taken to be Abelian. This can be
done by making the following replacement in Eq. (2.10):

The Lagrangian (3.8) is the minimal gauge-invariant La-
grangian which reduces to Eq. (2.10) when the fields Cz
and F" are taken to be Abelian.

We can add to W a gauge-invariant function of F&„
alone, (fM—) (M/g) W(F&„), provided W vanishes
when F&, is chosen to be Abelian. The addition of any
such 8'is consistent with gauge invariance and the Abeli-
an limit [Eq. (2.10)].' This freedom in the choice of W'

reflects the effects of short distances on the long-distance
Lagrangian. The function W plays the role of a non-
Abelian Higgs potential and only certain general features
of W will be important. An example of a possible form
for 8'is

2
2G""F,+F F"" G"'G—

4 &~ &~ M2 f2 P&

(3.5)
(3.10)

W(F„)=k&2Tr[F„„,F p] +A22Tr[F&„,[F p, Fq ]]
+A, 3I 2 TrF„„[F,~,F „]I

is clearly invariant under the transformations (3.2)
provided the tensor field F& transforms under the mag-
netic color gauge group according to the rule

Fp —+Q 'Fp 0 . (3.6)

The Lagrangian (3.5), aside from an additional term,
will be the Lagrangian describing long-distance Yang-
Mills theory. Before we obtain the final form for W we
again emphasize that the Lagrangian (3.5) is not
equivalent to any Lagrangian which has a simple struc-
ture in terms of the magnetic potentials 3&. In particu-
lar, it differs fundamentally from the Lagrangian (1.8)
even though both reduce in the Abelian limit to (2.10) and
(1.5), respectively, which are equivalent.

More generally the Lagrangian (3.5) is essentially dif-
ferent from any non-Abelian Lagrangian which can be ex-
pressed simply in terms of magnetic vector potentials.
Thus if it, or any other Lagrangian which has a simple
structure in terms of the electric vector potentials C&,
correctly describes long-distance Yang-Mills theory, then
any simple approach based entirely upon the use of mag-
netic vector potentials A~ is likely to be inadequate. The
remark applies to the previous work of the present au-
thors based on the Lagrangian (1.8), and perhaps as well
to semiclassical methods in which certain simple configu-
rations of the magnetic vector potential Az are assumed
to dominate the functional integral.

It is convenient to make some scale changes in Eq.
(3.5). We let

Mf fgM . —— (3.1 1)

Adding a term —W(F„„)to Eq. (3.9), we obtain our fi-
nal expression for the action S = f dxW describing
long-distance Yang-Mills theory:

S= dxM Mf 2Tr4 2G" F& +F" C F&,

G"'Gp ]——W(F„„)I . (3.12)

Varying F& in S then gives the equations of motion

G„,= &'(C)F„.+-
QF P~

(3.13)

while varying C& yields the equations of motion

M„(C)G" =&„(C)F""+(i/2)[&,(C)F P,F p] .

where k~, A,z, and A, 3 are constants. We will see that only
certain ranges of k; are possible and that the parameters
A,; determine the strength of the gluon condensate.

The quantity fM is the basic length scale in the theory;
we shall from now on denote it by

Mf =fM .

The combination M/g=4~eM is the other renormal-
ization-group-invariant mass which naturally appears. It
is convenient, for simplicity in writing, to just call this M:

M/g~M .

In thi~ new notation we then have

fM —„Mx~x/fM, C"~ C", F""~ F"' . (3.7)
(3.14)

where

—G" G„,], (3.8)

G„„=a„c„—a.c„—i [c„,c„]. (3.9)

The new distance and fields are all dimensionless, and the
fields are renormalization-group invariant. Then Eq. (3.5)
becomes

2

W=2Tr(fM) [2G" Fp +Fp & (C)F""

Note that the function W enters only in Eq. (3.13), which
is the non-Abelian generalization of Eqs. (2.3) giving the
relation of B and E to the potentials C& via the dielectric
properties of the vacuum. For simplicity we will from
now on use the symbol && to denote W&(C).

We next write the equations of motion (3.12) and (3.13)
in terms of the fields D, H, E, and B. We define D and
H in terms of Cz by the equations

IIk GOk ~ ~ij k+ Gij (3.15)

where G&, is defined by Eq. (3.9). Equation (3.15) is just
the non-Abelian generalization of Eq. (2.1). [Note com-
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paring (2.4b) and (3.1S) we see that under the replacement
F„~G„;E~H,B~—D.]

Likewise Eqs. (2.4a) and (2.4b) suggest the following
definitions of E and 8:

1
Ek 2 ~kij +" +k +Ok (3.16)

H= —uCp —apC,

where the ij component of Eq. (3.1S) is

D= —VxC —(i/2)[CxC] .

(3.17)

(3.18)

Note that in the non-Abelian theory the fields E and 8
defined by Eq. (3.16) are not the same as the fields E and
B defined by Eq. (2.4b) with F&„given by Eq. (1.9). This
is because F@„ transforms according to the electric color
gauge group while F&„ transforms according to the mag-
netic color gauge group. Thus, as pointed out by Mandel-
stam, in the non-Abelian theory an unknown color matrix
relates the left- and right-hand sides of Eq. (2.4a). Only

. in the Abelian theory is Fz the dual of F& . In any case
we use Eq. (3.16) to define E and B since F&„ is the field
appearing 1n our Lagrangian.

Let us write Eqs. (3.1S), (3.13), and (3.14) in three-
dimensional form: the Ok component of Eq. (3.1S) is

the vacuum described by the classical solutions (3.13) and
(3.14) have F& C——

&
——0, and hence is the trivial vacuum.

Determination of the true vacuum requires studying Eq.
(3.13) and (3.14) beyond the classical approximation so
that vacuum expectation values of Lorentz- and gauge-
invariant operators like F~ppF& can be calculated. How-
ever, if we look for solutions to Eqs. (3.13) and (3.14) cor-
responding to nonvacuum solutions such as electric flux
tubes or glueballs, then F& or C& can take on nonvanish-
ing values because the orientation of the excitation selects
a preferred direction in space (e.g. , the axis of the electric
flux tube). Furthermore the value of F& at large dis-
tances from the disturbance should reflect the properties
of the true vacuum. We can thus obtain information
about the vacuum expectation values by finding the
large-distance behavior of F& for a nonvacuum solution
of the classical equations (3.13) and (3.14). This is analo-
gous to the situation in an isotropic (Heisenberg) fer-
romagnet for which the expectation value of any com-
ponent of the magnetic field B vanishes since the fer-
romagnet can have any orientation. Only (B )&0. How-
ever in the presence of a disturbance (no matter how
weak) which selects at a direction in space (the z axis),
(B,)&0. Furthermore

The Ok component of Eq. (3.13) is

H=~'B +as
where the ij component of Eq. (3.13) is

(3.19)

2 . 2) unoriented —& Bz ) oriented
ferromagnet ferromag net

In a similar way we should have

Qp
~ F isv FOP )Yang-Mills FizvF—

vacuum
t)w
BE

In the above equations

&F=VF +i[C,F—] .

The 0 component of Eq. (3.14) is

(3.20)

(3.21)

M.H= I
—&.B+i[&PE, E]—i[trPB, .B]I, (3.22)

while the k component of Eq. (3.14) is

u,H —uxD=~pB+~xE —i[~E El

(3.23)+i [zg)'B, .B] .

Finally the Hamiltonian density derived from the La-
grangian (3.12) is

(&pB) ——,(MpE)
2

+ 8'—E. 68
(3.24)

IV. ELECTRIC-FLUX- TUBE SOLUTIONS
OF THE FIELD EQUATIONS

We first npte that since C& and F~ are vector and ten-
sor fields, respectively, Lorentz invariance requires that

where F& is the large-distance limit of a nonvacuum
solution of Eqs. (3.13) and (3.14).

The above comments (in more general terms) indicate
that tensor "Higgs" fields can be used to produce spon-
taneous symmetry breakdown. Scalar Higgs fields P are
usually used since any tensor must have a vanishing vacu-
um expectation value and hence cannot produce spontane-
ous symmetry breaking in the classical approximation.
However, tensor fields can have nonvanishing expectation
values for nonvacuum solutions of the classical equations
and the large-distance values of these solutions are related
to the vacuum properties of the theory. A nonvanishing
large-distance value of a tensor field is analogous to the
large-distance value of a scalar Higgs field t)t, correspond-
ing to the nonvacuum solution of a set of classical equa-
tions involving P The difference in the case of scalar
fields is that this limiting value of P is also a solution of
the vacuum equations.

Our electric-flux-tube solutions will give a concrete
realization of the use of tensor fields to produce spontane-
ous symmetry breaking. This idea is of course not re-
stricted to Eqs. (3.13) and (3.14), or to QCD. It might
also be relevant for weak and electromagnetic interactions
or for grand unified theories. The fact that the vacuum of
any gauge theory is a dielectric medium Ineans that, aside
from the fundamental non-Abelian gauge field and field
tensor, there naturally appears a second tensor containing
the D and H vectors. Because of the complicated dielec-
tric properties of the vacuum, this tensor cannot be expli-
citly determined in terms of the original gauge fields, and
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hence must appear as an independent dynamical variable
in the effective Lagrangian. The new tensor field can pro-
vide the mechanism for spontaneous symmetry break-
down of this Lagrangian. The fields F& appearing in the
action Eq. (3.12) provide a concrete realization of this. Of
course the general case does not refer specifically to a
color electric or color magnetic gauge group. Which one
is relevant depends upon the dynamics. In the particular
example of the Lagrangian (3.12) the dynamical variables
correspond to the set C„,F" .

Let us now show how these ideas apply in the problem
of determining a static electric-flux-tube solution of Eqs.
(3.13) and (3.14). We choose the z axis along the direction
of the flux tube and introduce cylindrical coordinates r, P,
and z. Then at large distances from the flux tube, C& and

Fz should approach a static solution of the equations

G„,=0, &~Fq 0, ——58

5' (4.1)

which are the particular solution of Eqs. (3.13) and (3.14)
corresponding to a vacuum at large distances. We are
looking for solutions of Eq. (4.1) which are not topologi-
cally equivalent to the trivial solution C& ——Fz ——0.

We will study the problem in terms of the three-
dimensional variables E, B, C, and Co. In terms of these
variables the action Eq. (3.12) takes the form

T

D E E~2~f 2 2Tr D.E
2 2

Then the equation dS/da ~, i
——0 yields

jg 2

dX2TI—
2

= J dxW(E). (4.6)

Hence if W(E)=0, then D=O, and it is then easy to
show that E=O and C=O. If 8'does not vanish, then we
conclude from Eq. (4.6) only that

dx O' E &0. (4.7)

In this case one needs to use the explicit form (3.10) of
W(E) to demonstrate that there are no pure electric solu-
tions with cylindrical symmetry. However Eq. (4.7) al-
ready indicates there will be problems, because of the fol-
lowing: As r —+ oo, E approaches E, determined by Eq.
(4.1). That is, WE=0, 5W/5E=O, for E=E . Further-
more the constant term in W(E) is chosen so that the in-
tegral Eq. (4.7) converges, i.e., W(E )=0. If for simpli-
city we neglect the multicomponent nature of the field E,
we have

D, = D(x/a) .1

Q

Let S, be the value of the action (4.3) evaluated with
fields given by Eq. (4.5); then Eqs. (4.4) imply
dS/da i, i ——0. Now since d =2 (cylindrical symmetry),
dx=a d(x/a) and the first and third terms in (4.3) are
independent of a. The a-dependent terms in 5 are then

r

D2
a x2Tr a dx~ E

2

BN8
2

—W(E,B)

(4.2)

5 8'
W(E)~ (E—E )

5E E

where the color magnetic H field and the displacement
vector D are defined in terms of C and Cp by Eqs. (3.17)
and (3.18). We begin by looking for solutions where
B=H=O. If Cp ——0, then from Eq. (3.17) it follows that
H=O. (We are interested in static solutions. ) Then Eqs.
(3.19) and (3.22) are identically satisfied and Eqs. (3.18),
(3.20), and (3.23) determine the vector potential C and the
electric field E. The action then reduces to

02S= J dxM Mf 2Tr —D E—
2

E.9' E
2

—W(E) (4.3)

The requirements

5S 5S5E=' 5C=' (4.4)

E,(x)=E(x/a), C, (x)=a 'C(x/a) (4.5)

then yield Eqs. (3.20) and (3.23).
The following simple scaling argument shows that there

are no solutions to Eqs. (4.4) if W(E) =0.
Suppose E(x) and C(x) are a solution to Eq. (4.4). Let

as r~~. Assuming that the large-distance contribution
to the integral (4.7) is by itself negative we conclude

5 8'
5/2 E E

(4.8)

E=Ee,T3, 8=BiTi+B2T2, (4.9)

where E is a function of the cylindrical coordinate r. The
electric field then lies along the z axis in ordinary space
and the 3 axis in color space, while the magnetic field lies
in the 1-2 plane in color space. We choose the vector po-
tential to have the structure

At large distances we can linearize Eq. (3.20) in the differ-
ence (E—E ). We can then show using Eq. (4.8) that
these equations have no solutions for which (E—E ) van-
ish as r~go. If the sign of Eq. (4.8) had been positive
then there would be solutions which vanish exponentia11y
as r~ oo as is necessary in order to have a confined elec-
tric Aux tube.

Thus there must be a nonvanishing magnetic field 8 in
order to have a confined electric flux tube. Let us look
for static solutions of Eqs. (3.19), (3.20), (3.12), and (3.22)
for the case that the gauge group is SU(2). We make the
following ansatz for the electric and magnetic fields:

then C=CepT3 Cp=CpT& (4.10)
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where we use the same notation Cp for the coefficient of
the matrix Co along T]. The vector potential lies along
the P direction in ordinary space and along the 3 direction
in color space. The H and D fields determined by Eqs.
(3.17) and (3.18) are then given by

V—:V—
r

(4.16)

Inserting the ansatz into our expression (3.10) for $V

yields the result

H= VCpT]+CCpeyT2~ D= (VXCey)T3 (4.11) [E (8 2+8 2) 8 28 2]
2

Bi——B],e„82——B2eg, (4.12)

where 8& and 82 are functions of r.
With the above ansatz Eq. (3.20) has only a z com-

ponent in space and a 3 component in color space and
takes the form

where

(rC)= —(V +.Cp )E—1 d 2 2 58
r dr

(4.13)

1 d dE
r dr dr

L

Equation (3.19) lies in the 1-2 plane in color space and
yields the two equations

dCo = —VB+
dr

2CB2 2+C Bi+r 6Bi
(4.14)

The H and D vectors then have the same nonvanishing
color components as B and E. We take Co and C to be
functions only of r T.hen D will also lie along the z axis,
while H will have components in the r and P directions.
This suggests that we take

——[E'(»'+Be') —Bi'82'(Bi'+82')
2

E(B—i +82 '] ——(E Bi Bz ), (4.17)
2

where x= —16k, i, z= —32K,2, and w =72k, 3 from which
the explicit form of Eqs. (4.13), (4.14), and (4.15) are
readily obtained. It can be shown for the ansatz, Eq. (4a),
that Eq. (4.17) gives the most general sixth-order expres-
sion for W; In this case all the sixth-order terms in 8'
not included in Eq. (3.10) also have the form, Eq. (4.17).

Equation (3.22) lies entirely along the 1 axis in color
space and has the form

( —V C +C C ) = — (rBi ) CBp+Cp(E —82 )
1 d 2 2

r dr

(4.18)

Equation (3.23) lies along the P direction in ordinary
space and the 3 direction in color space and has the form

—
Z 2 28]B2—V C —Cp C =Cp82 — —C(8 ] +82 )—

Br r

(4.19)

CCo ———V B2+

where

2CB
& g8+C'B2 —Co'B2

r 582
(4.15)

Thus we see our ansatz is self-consistent and Eqs. (3.19),
(3.20), (3.22), and (3.23) reduce to the five coupled equa-
tions (4.13)—(4.15), (4.18), and (4.19) for the five functions
C, Cp, E, 8&, and Bz. The action Eq. (4.2) expressed in
terms of these variables takes the form

S= f dxM Mg — (rC)+ —,'CV C —2EV E+ ,'E C—p 8, —+CC—p
——,Cp(V —C )Cp

r dr dr

+ —,Bi(V —C )Bi+—,Bp(V —C +Cp )82—
2CB]B2 —W (4.20)

while the Hamiltonian density A Eq. (3.24) becomes
T

A =M My Cp( —V +C )Cp+C( —V )C+Bi( —V +C )Bi+82(—V +C +Cp )Bz
2

4CB]B2 Ed 8+ r
+E(—V' —3C,')E + 8'—

dE
(4.21)

W is given in Eq. (4.17), and finally

$y ——[E2(8 2+8 z) +8 zB 2] + —[3/4(8 z+8 2) /z(8 i 4+824) 8 28 z(8 z+ 82 ' )]+—8

V. THE QUANTIZATION OF ELECTRIC FLUX

We will begin by finding the large-distance behavior of
the solutions to Eqs. (3.19)—(3.23). This behavior is deter- D=H=O, (5.1)

mined by the vacuum equations (4.1). In the three-
dimensional notation Eqs. (4.1) are
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(5.2) f dl. C„,=+ T3 ——+ T—3,
g

(5.1 1)

MB=ME=&pE=&pB=O . (5 3)

Cp82 ——CpE=O .

Equation (5.4) can be satisfied by taking

C, =o as r

(5.4)

(5.5)

The other possibility E=Bz——0 will conflict with Eq.
(5.2). Next the equation W E=0 reduces to VE =0.
Hence

First we look for solutions of Eq. (5.3). We restrict our-
selves for simplicity to fields having the structure of our
special ansatz [Eq. (4.10)] for which the vector potential
C lies in a single color direction. Only these solutions of
Eq. (5.3) are relevant to the problem of solving Eqs.
(4.13)—(4.19). However it is also of interest to solve Eqs.
(5.3) without making this ansatz. We can then find solu-
tions of Eq. (5.3) in which the vector potential C does not
point along a single direction in color space. These poten-
tials will give the large-distance behavior of Eqs.'

(3.19)—(3.22) in a general gauge. We will later discuss this
more general solution.

Inserting the ansatz (4.9) and (4.10) into the equations
&pB =&pE =0 yields the equations

since eg=4~. The solutions (5.9a) and (5.9b) therefore
correspond to an electric flux tube containing a quantum
e/2 of electric flux. Expressed in terms of the unscaled
color electric displacement vector D„, Eq. (5.11)becomes

f D~.dS= —f (Vx C„,).dS

eC dl=+ —TUS 2 3 (5.12)

8+ =8)+iB2 . (5.13)

The integral in (5.12) is over the plane perpendicular to
the electric flux tube. To obtain this result the solution of
Eqs. (4.13)—(4.19) must be regular everywhere. We will
show later in this section that this is the case.

The third solution (c) of Eqs. (5.8) corresponds to the
trivial perturbative vacuum. This solution will not satisfy
the condition (5.2) because of the presence of the potential
8'. Equation (5.2) determines the value of the constants
8' and b in Eqs. (5.6) and (5.9).

Finally we note that the solution (5.5) and (5.9) au-
tomatically satisfies Eq. (5.1). Alternatively Eq.(5.5) fol-
lows from (5.1) and (5.9).

It is convenient to express the solution (a) in terms of
the vector

E(r)~8' as r~ op, (5.6) From Eqs. (4.12) and (5.9a) we then have

where 5' is a constant. Finally the equation KB=0
yields

VB)+Cep82 ——0,
VB2—CepB) ——0 .

(5.7)

B)
+CB,=0,

—B2 —CB]——0 as r~ oo,

(5.8)
dB] dB2=0, =0.
dr dr

There are three solutions of Eqs. (5.8):

(a) B)
———B2 b, C = + 1/r,——

(b) B& ——Bz b, C= —1/r, —— (5.9)

Using Eqs. (4.12) for B, and 82 we obtain from Eqs. (5.7),
the following equations determining the large-distance
behavior of B& and Bz..

B+——b(e„ie&)=b—e' (e„ie~) . — (5.14)

E'=E'e, T3, C'= C'e~ T3 (5.15)
r

Denote the one and two components of the transformed
color magnetic fields by B~ and Bz, respectively. B'~ and
B2 will in general have both r and P components. The
gauge transformation expressed in terms of the variables
B'+ ——B&+iBz,, C' and E' is

B+——B+e' (~'), C'=C+—,E'=E.1 dg
r dP' (5.16)

Next note that from the solution (5.9) of Eqs. (5.3) we
can construct others by performing a gauge transforma-
tion about the three-axis in color space. The transformed
vector potentials C' and electric field E' will still lie along
the 3 axis. We choose the rotation angle g(P) in color
space to be a function only of P. Then the transformed
vector potential will also lie in the P direction. We can
write

or

(c) B, =B2 ——0, C=O,
Using (5.9), (5.15), and (5.16) we then find the following

family of solutions of Eqs. (5.3) as r~ ao. :

where b is a constant. The first two solutions are physi-
cally equivalent. They correspond to a solution for which
the vector potential at large distance satisfies

8+=b e'~'~'(e„ie ), —
1 da(P)
r (5.17)

f, dl.c=+2~T, .
1

(5.10) Ql g

The integral in Eq. (5.10) is over a large circle S~ sur-
rounding the z axis. Expressing Eq. (5.10) in terms of the
original unscaled potential C„, [see Eq. (3.7)] gives

where a(P ) =/+ X(P ).
Combining Eqs. (5.16) and (5.17) and dropping the

prime notation we can write Eq. (5.17) as
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8,+iB,=b e"&'("e„—icy),

e~T3 do.
r dP

E=8'e, T3 .

(5.18)

Equations (5.18) satisfy Eqs. (5.3) for any value of a(P).
Furthermore, substitution of Eq. (5.18) in the expression
(3.10) for 8' yields an expression which is independent of
a. Hence Eq. (5.18) also satisfies Eq. (5.2) for any value
of a. The expressions given by Eqs. (5.18) are a one-
parameter family of . solutions for the vacuum. These
solutions for E and 8 are characterized by the fact that
they are invariant under a rotation by an angle 0 about the
3 axis in color space combined with a rotation by angle
—0 about the z axis in ordinary space. This is because
under a rotation by 0 about the z axis e~C~ (A)Tt, +A2T2+A3T3), (5.21)

class n =1. Thus if b&0, the solution of Eqs. (4.13)
—(4.19) cannot be deformed into the trivial vacuum.

Geometrically, when n =1, the radial and tangential
components of B remain radial and tangential as they ro-
tate around the cylinder axis, so that after going all the
way around, 8& and 82 have rotated exactly once (see Fig.
1). For n ~ 1, the 8 vector rotates n times during one re-
volution around the axis; thus at an intermediate stage in
the rotation what started out as radial and tangential com-
ponents do not remain so'" (see Fig. 2).

We can also solve Eqs. (5.3) with vectors whose com-
ponents in cylindrical coordinates depend only upon r, but
whose color and spatial structure are otherwise arbitrary.
In this case we find a further solution of Eq. (5.3) in
which

The e ' factor then compensates a color rotation by an
angle 0. This combined invariance reflects the cylindrical
symmetry of the vacuum solution. Equation (5.18) is the
most general solution in which C lies along the 3 axis in
color space.

Now let us return to the problem of finding flux-tube
solutions to Eqs. (3.19)—(3.22). As r ~ co for fixed P, the
solution must approach a vacuum solution. It therefore
must be of the form of (5.18) for some value of a. As we
move around the circle surrounding the flux tube from

/ =0 to P =2', the corresponding vacuum solution
characterized by a(P) varies: Thus every solution, Eqs.
(3.19)—(3.22), determines a map of the circle S, into
group U(1) of phases e' . Since the map must be single
valued we must have

p &«/+2~~

where

3) +22 +23 —1

In this solution the limiting value of 8 also has color
components in the 3 color direction. Equation (5.21) has
the structure of a gauge-rotated n = 1 flux tube.

Finally we note the relation of these results to the vor-
tices of quantized magnetic flux obtained by Nielsen and
Olesen' in the Abelian Higgs model. The non-Abelian
electric vector potential C plays the role of the Abelian
vector potential A in that model, while the magnetic field
vector 8 plays the role of the charged scalar Higgs field.

VI. SOLUTION OF EQS. (4.13)—(4.19)

We now discuss the solution to Eqs. (4.13)—(4.19).
First we determine the constants 8' and b. Equations
(5.2) reduce to the two conditions

r.e.,

a(/+2m. ) =a(P)+ 2m.n,
58' 68'

B~ ——Bp ——b ' ~E B& ——B2——b
1 E g E=8'

(6.1)

or

1 f z~d~ da(p)
2m o dP

(5.19)

Using Eq. (4.17) for W we obtain the following equations
determining b and 8' in terms of the parameters x, z, and
w in 8'.

f C.dl= f dy T3 T3 . ———da(P) n

dP 2
(5.20)

Thus these solutions correspond to a flux tube having n
units of quantized flux. Furthermore from (5.18) and
(5.19) we see that as P varies from 0 to 2m. , the asymptotic
solution for B+ covers the vacuum solution n times. The
solution with n=0 is continuously deformable into the
vacuum solution while the solution (5.14) belongs to the

where n is an integer.
The solutions of Eqs. (3.19)—(3.22) then break up into

classes of maps S~ ~U(1) such that the members of each
class can be continuously deformed into each other. Each
class is characterized by an integer n which determined
how many times the map S& ~U(1) winds around the cir-
cle. Consider those asymptotic solutions (5.18) belonging
to the class n Then, fro.m Eqs. (5.18) and (5.19),

2x5' 4z8' +—2z8'b +w8'b =0,
x(g b2) z(@4+—3b —2b g )+wb —g =()

(6.2)

I

I

iiB)

=8~
I

4

I

B,

Bz

Bl

=Bp
1

I

I

=0
@IS

4=2

(0) (c) ((j )

FICJ. 1. The color magnetic fields B~ and Bq at large dis-
tances from an n = 1 electric flux tube.

Note 8'=0 and b = —x/3z is always one solution for
any value of x, z, and w.
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Bl

l- =HZ
I

I

1

I

4

I

I cf =Bz
I
I

Bz
(a) (b3 (c} (d)

FIG. 2. The color magnetic fields B~ and B2 at large dis-
tances from an n =2 electric flux tube.

1
C( r) =—+g„CO(r) =g

r

E (r) =8'+f, (6.3)

&i«) =&+fi &2(2)= &+—f2 ~

In order to have a confined flux tube the functions g&,
g2, f, f&, and f2 must vanish exponentially at large dis-
tances. Equations (4.13)—(4.19) can then be linearized
and become five coupled linear equations which can be
solved analytically. The solutions are as follows: as
r —+ oo

Next we determine the leading correction to the large-
distance behavior of C, Cp, E, B&, and B2. We define
functions g&, g2, f, f„and f2 as

g~ -K~(~&), g2-K~(ar), f-Ko(ar), (6.4)f~ -Kq(ar )+K2(ar), f2 -Ko(ar ) K2(a—r ),
where K„(x) is the modified Bessel function which de-
creases exponentially as x —++ ~. The parameter a is a
root of the following equation:

(a —2b )

b

0

—b

(~2+ g2 $2)

0
0

a —A,
2

0

0

0

0

0
0

2(a —A, )

(6.5)

The constants k, A, +, A, , and g are functions of the pa-
rameters x,z, w:

A, = —4zb —6z8' b +wb

A, +——6zb "+2z8' b —2w 8' b

4z 8' 2z 8'—b'+ 2z—b',
4z 8'b 2w —8'b—

(6.6)

Cp —constant, E—constant,

C-r, B& -r, B2-r .
(6.7)

We then integrate Eqs. (4.13)—(4, 19) numerically starting
at large r with a linear combination of Eqs. (6.4) and
starting at small r with a linear combination of Eqs. (6.7).
The constants defining these linear combinations are then
determined by requiring that each of the five functions
are continuous and have continuous derivatives at some

where 8' and b are determined in terms of x, z, and w by
Eqs. (6.2). Each positive value of a which is a root of Eq.
(6.5) generates a solution which dies exponentially. This
means that the linearization of Eqs. (4.13)—(4.19) used to
generate the large-distance solution is justified and Eq.
(6.4) is a valid large-distance solution of these equations.

Equation (6.5) is a fifth-order equation in the variable
a . Suppose it has five distinct positive roots. Equation
(5.24) then gives five linearly independent solutions which
have physically acceptable asymptotic behavior. On the
other hand, it is easy to show that Eqs. (4.13)—(4.19) have
five linearly independent solutions which have the follow-
ing acceptable behavior at the origin:

E~E, C~C, B)~iEp,
B2~iE Cp ~iC

(6.&)

l

intermediate matching point. Thus we expect that if Eq.
(6.5) has five positive roots for a, then Eqs. (4.13)—(4.19)
have a solution corresponding to a confined electric flux
tube. We have explicitly verified this for several choices
of the parameters x, z, and w. The solutions are all quali-
tatively similar and we will discuss one of them in detail
later.

On the other hand, if Eq. (6.5) has a negative root for
a, the solution oscillates at lung distances and is not
physically acceptable. . Then there are no longer five
linearly independent long-distance solutions and hence not
enough freedom to match the five linearly independent
short-distance solutions. Equations (4.13)—(4.19) then
have no regular solutions. Next suppose Eq. (6.4) has a
pair of complex conjugate solutions for a with positive
real part. These roots will yield a long-distance solution
which is a product of an oscillating function and an ex-
ponentially vanishing function.

The long-distance behavior of the solution should be
determined by the masses m; of the lowest-lying states
(glueballs) which couple to the flux tube. Thus at long
distances the solution should decrease like a sum of ex-
ponentials e ', and should not contain any oscillating
factors. For this reason we have chosen the parameters x,
z, and w so that all the roots a are real and positive.

Using the above results we can now show that the pure
electric problem described by the Lagrangian Eq. (4.3) has
no solution. We can obtain the equations for the pure
electric problem from Eqs. (4.13)—(4.19) by making the
following substitution:
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where the electric field matrix E is

E=Ee,T3+E&e&T, +E,e„T2 .

Since

(6.9)

b2
3z

Bi —=B» = —Fp»~ B2 =By = —Fpy

E,= —F„p,
we see that the substitution (6.8) is just a replacement of
the index zero by the index z in the fields C„and F~I3.
Since our solutions are both time and z independent they
must be invariant under such a transformation except for
changes in sign due to changing a timelike direction into a
spacelike direction. These changes of sign are accounted
for by the factors i in Eq. (6.8). Equations for color elec-
tric fields are then obtained from Eqs. (4.13)—(4.19) by
changing a few signs. The determinant which governs the
long-distance behavior of these equations is formed by
changing a few signs in Eq. (6.5). It can then be shown
that for all values of the parameters x, z, and u, there is
at least one nonpositive eigenvalue of o. . We thus con-
clude that in two dimensions there are no regular pure
electric field solutions to Eq. (3.19)—(3.23). Tliis is the
proof of the result asserted in Sec. IV. The statement that
at least one eigenvalue is nonpositive is the rigorous gen-
eralization of Eq. (4.8).

We conclude that in order to have a confined electric
flux tube we must have a nonvanishing magnetic field.
Furthermore there is no nontrivial solution of Eqs.
(4.13)—(4.19) with b&0. Hence the magnetic field must
be nonvanishing at large distances. Recall that in our
dielectric medium described by electric vector potentials
C, the magnetic field 8 plays the role of —D in a normal
dielectric medium. Therefore at large distances B is the
magnetic dipole moment per volume of magnetic charge
density, since H~O as r~ao. The distribution of mag-
netic charge density in the Yang-Mills vacuum plays the
crucial role in producing a confined electric flux tube, just
the electrically charged Cooper pairs of the superconduct-
ing state are responsible for quantized magnetic vortices.

To solve Eqs. (4.13)—(4.19) we must vary the parame-
ters x, y, and w so that all the roots of Eq. (6.5) are posi-
tive. We have not done a thorough investigation of this
problem, but have found that when 8'=0 it is easy to ob-
tain only positive roots. For certain values of x, z, and w
it is also possible to have 8'&0 and all positive roots.
However, we have only solved the full equations
(4.13)—(4.19), when 8'=0.

With 5'=0, the second of Eqs. (6.2) gives

This corresponds to b = 1.3.
In Fig. 3 we plot the vector potential C and its radial

derivative versus the dimensionless distance r. In Fig. 4
we plot the electric field F. (r) and the electric displace-
ment vector D(r)= —(llr)(dldr)frC(r)]. The confined
nature of the electric flux is evident. In Fig. 5 we plot B&
and B2. Note that they remain close at all distances be-
fore approaching their asymptotic constant value of 1.3.
In Fig. 6 we plot rA (r) where A is the energy density
given by (4.21) and (4.22). The string tension is positive
and has the value

~=15.5M

Finally we list in Table I the values of the parameters z,
x, and w for four different solutions along with the values
of the string tension ~ and the magnetic condensate b.

We note that the value of the string tension is not very
sensitive to large changes of the parameters z, x, and w. '

VII. ROLE OF THE "POTENTIAL" W'

In the last section we explicitly solved Eqs.
(4.13)—(4.15), (4.18), and (4.19) when W had the form
(4.17), for three different choices of the parameters x, z,
and w. It can be shown that the expression (4.17) for W'

is the most general sixth-order form for W. However
there is no a priori reason why higher-order terms in 8
should not be included. The question then arises: To
what extent do our results depend upon the choice of W?
For this reason we review the role of the potential 8' in
our fundamental action Eq. (3.12).

The action (3.12), for any choice of W(F&, ) which van-
ishes when F& is Abelian, yields a theory which is invari-
ant under non-Abelian transformations of the color mag-
netic gauge group, and which in the Abelian limit de-
scribes a linear dielectric medium with e= —V . Further-
more, in the theory described by the action (3.12) there ei-
ther exist tubes of quantized electric flux [solutions (5.9a)
or (5.9b)] or else all fields vanish at large distances as in
the perturbative vacuum [solution (5.9c)]. Which of these
solutions is realized depends upon the properties of 8'.
The flux-tube solution will be realized provided 8'has the
following properties:

1.0—

0.8—

which means that x and z must have the opposite sign.
From Eqs. (6.6) we see that if z is positive, both A, + and

are positive. Then m must be positive in order to have
A, )0. Thus the expression (4.17) for W possesses the
essential feature that all three parameters k+, A, , and A,

can be made positive. In the figures we plot the solutions
corresponding to

z =0.506, x = —2.61, m=4. 63 .

0.6—

0.4

0.2

0—

-0.2'
0 2.50.5 I.O 1.5

r
FICi. 3. The electric vector potential C(r) vs r.

5,0
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2.0—

yD (&)

I.O—

0
0 0.5 l.o l.5 2.0 2.5

FIG. 4. The color electric field E(r) and the color electric
displacement vector D(r) = —(1/r)(d/dr)[rC(r) j vs r.

0
2.50,5 I. Q0 l. 5

I'

FIG. 6. The energy density A (r}multiplied by r vs r.

5.0

(1) W has a nontrivial minimum; i.e., there exist solu-
tions of Eq. (6.1) with b&0.

(2) W has the right curvatures at the minimum so that
the deviations of the solutions from their large-distance
limiting values decrease exponentially. For the particular
case of our sixth-order expression (4.17) for W, this meant
that Eq. (6.5) has five positive roots. The parameters A, ,
k+, A, , and q in Eq. (6.5) are determined by W according
to Eq. (6.6). For the case of a general W (having the
correct symmetry properties) the same Eq. (6.5) remains
valid, where the parameters A, , A, +, A. , and g are deter-
mined in terms of the second derivatives of W at the
minimum rather than by Eq. (6.6).

The existence of a flux-tube solution thus depends only
upon a few general properties of 8. However, the predic-
tive power of the theory depends upon the sensitivity of
physical results to the detailed structure of W. From
Table I we obtain some information- about the sensitivity
of the string tension to the parameters determining 8'.
Let us now see how other physical quantities depend upon
8'.

Since the electric field vanishes at large distances from
the flux tube while the magnetic color fields B& and Bz
are nonvanishing, the flux tube orients the one and two
components of the color magnetic field at large distances,
while 83 and all three components of the color electric

field at large distances remain random as in the vacuum.
As discussed in Sec. IV, if fluctuations are not large we
should expect that the vacuum expectation value of the
operator B~ is of the order of the square of 8& at large
distances from the flux tube; i.e.,

& B',")„.,=g'm'b', (7.1)

where we have taken account of the rescaling Eq. (3.7).
On the other hand, by Lorentz invariance we have

( E )„„=—(B~ )ac, a=123,
arid since the vacuum is a color singlet

(B',"&...= &B,"')...=&B',"&,..

(7.2)

(7.3)

] 2g2M4$2 (7.4)

We can use Eq. (7.4) to determine b provided we can
make the identification

(FOpFpv &vac (FOp pv &vac ~

for we then have from Eqs. (7.4) and (7.5)

(7.5)

Recalling that E and B are defined in terms of F"',
Eq. (3.16), we have

3—&F"o,F„.'&...=2 g ((B'.")...—(E'.")...)

G, —= * (F&",F„".)„„=4gb'm',
7T

(7.6)

l. 2

l.o

cc) 0.8

0.6

~ 0.4

0.2

where a, =e /4m.
The assumption on which (7.6) is based is that the

asymptotic magnetic fields Bt and B2, in the presence of
an electric Aux tube, have the same magnitude as do the
fluctuating fields B~ and B2 in the physical vacuum.
The flux tube aligns the fields but does not change their
magnitude.

We could, however, instead make the assumption that
the Aux tube leaves unchanged the Lorentz-invariant
combination F„„F~~p. If we do this, then (7.6) would be
replaced by

0.5 3.0I.O0 l. 5 2.5

FICx. 5. The color magnetic fields S&(r}and B2(r}vs r. Gq ——— F„FI' =16b M
'ij (7.7)
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TABLE I. Values of the string tension ~ and the magnetic condensate b for four choices of the pa-
rameters determining W.

Solution

(a)
(b)
(c)
(d)

0.0107
0.0213
0.25
0.506

—0.155
—0.310
—1.5
—2.61

0.0854
0.1707
1.125
4.63

x/M

1.2.2
10.1
8.5

15.5

2.2
22
V'2

1.3

11ev„= ——„,G2, (7 8)

where e„, is the difference between the energy of the non-
perturbative vacuum in the energy of the perturbative vac-
uum. Equation (7.8) is a consequence of the stress-

a result three times smaller.
We do not know which of these two assumptions is

more plausible, and the difference between (7.6) and (7.7)
therefore indicates the degree of uncertainty in our esti-
mate of G2. For specific numerical calculations, we shall
make use of (7.7) in what follows.

The operator Fz, on the left-hand side of Eq. (7.5) is
the usual Yang-Mills field tensor defined in terms of the
potentials Az. As mentioned earlier, the quantities Fz
and 2 e& ~+~& are related by an unknown color matrix.
Furthermore as pointed out by Mandelstam' one cannot
even make the identification, Eq. (7.5), because of singu-
larities in the product of operators at the same point.
However if we neglect such problems and provisionally
accept the identification (7.5), then we obtain Eq. (7.6) or
(7.7) determining the product b M in terms of G2. Al-
though this relation involves assumptions we cannot as
yet justify, it makes explicit how a vacuum correlation
function can be related to the asymptotic limit of a non-
vacuum problem in the classical approximation.

The quantity G2 has been calculated in SU(2) lattice
gauge theory' with the result

G2-0.42~

Taking the string tension to be its experimental value of
about 0.2 CxeV then gives

G2-0.017 GeV

which is roughly the value determined from QCD sum
rules.

A further constraint on W can be obtained by using the
SU(2) relation'

energy-tensor trace anomaly. ' Combining Eq. (7.8) with
G2-0.42m' gives the SU(2) lattice value for E„„:

e„„=—0.096m (7.9)

We can compare this with e„„calculated from the
large-distance limit of the Hamiltonian density (3.24).
Since E—+0 as r~ oc, the only term which remains is 8'.
We thus have

e„„=MMf I W[Fp„F~~(r =——oo )]—W(F~„——0) ] .

(7.10)

Using the expression (4.17) for W we obtain

e„„= b zb —M —Mf = —, zb M Mf—. (7.11)vac

The scale M is determined by the string tension, and the
scale Mf can then be found from e„,.

In Table II we list M, Gq, and Mf for the four solu-
tions listed in Table I, in order to indicate how these phys-
ical quantities depend upon the choice of 8. We must
remember that these formulas for Gz and e„, involve as-
sumptions and should be regarded only as estimates.

These should be compared with the result for SU(2) lat-
tice gauge theory, Gz-0. 42m . (The parameters in the
four solutions were not specifically chosen to fit this
quantity because of the uncertainty in how to estimate to
G2.) We see that although in most cases the quantities
have the right order of magnitude there is significant sen-
sitivity to the choice of 8'. Using the experimental value
of about 0.2 GeV for x. the value of M ranges from 113
to 153 MeV, while the value of Mf varies from 400 to 700
MeV. We recall that the size of the flux tube is deter-
mined by the mass aMf [see Eq. (6.4)]. This ranges from
255 MeV to 1 GeV for the different solutions. This mass
is related to the lowest glueball mass.

TABLE II. Values of M, 62, and Mf for the four solutions listed in Table I.

Solution

(b)

(c)

(d)

0.0107

0.0213

0.25

0.506

2.2

2.2

1.3

12.2

10.1

8.5

15.5

62 =—16b M"

0.53K

0.77~

0.44m

0.12~

Mf

1.95m

0.80m

0.81m

1.17m
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VIII. SUMMARY AND DISCUSSION

We have shown that the action (3.12) describing long-
distance Yang-Mills theory in terms of electric vector po-
tentials C& and dual tensors Fz yields a confining theory.
We have studied to some extent the sensitivity of the pa-
rameters of the flux-tube solution to the choice of the po-
tential O'. This question must be studied more carefully
to see whether the action (3.12) can become a quantitative
tool for studying long-distance gluon physics. There is
also the possibility. that one can find physical principles
which could specify W in more detail. Such principles
must of course go beyond gauge invari'ance and our solu-
tion of the Dyson equation which to a large extent leave
8' undetermined. In the meantime we are looking for
solutions of Eqs. (3.19)—(3.23) which could correspond to
glueballs to check the applicability of the action to other
problems.

Aside from the relevance of the specific action (3.12),
some of the general ideas presented here may prove useful.
The first is that electric vector potentials are natural vari-
ables for studying long-distance hadron physics and they
can be used concretely to obtain physical results. The
second is that it is natural to use tensor fields to describe

spontaneous symmetry breaking. The third and related
idea is that vacuum properties can be studied by investi-
gating nonvacuum configurations in the classical approxi-
mation where tensor fiekls can produce the spontaneous
symmetry breakdown. Finally we emphasize that the
spontaneous symmetry-breaking mechanism is essentially
non-Abelian. An Abelian configuration of fields reduces
the Lagrangian Eq. (3.8) to a quadratic form describing a
linear dielectric medium with dielectric constant —V . In
particular there is no contribution to the potential W(F)
from Abelian field configurations.
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