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Classical relativistic constituent particles and composite states. II
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A classical theory of interacting relativistic constituent and composite particles is developed fur-
ther. The Lorentz-invariant Lagrangian, a function of the single unmeasurable evolution parameter
s, is considered for attractive and repulsive harmonic-oscillator forces acting pairwise between con-
stituent particles. Nonrelativistic Newtonian equations of motion can be derived by letting c~ oo in
"equal-time" solutions, but, in general, there is a "surplus" of solutions which have no nonrelativis-
tic counterpart. These solutions are used to construct classical models of strongly interacting com-

posite particles. Asymptotic selection rules and constituent confinement are postulated and lead to
space-time conservation laws for systems of scattering composite particles. Constituent four-vectors
are linear combinations of "kinematic" terms and "intrinsic" normal modes. The latter are identi-
fied with internal symmetries of the composite particles, which are labeled by sets of "intrinsic num-
bers" analogous to additive quantum numbers. Formation of two- and three-body composite parti-
cles follows an exact analogy to the color quark model, in which the meson is composed of a quark
and an antiquark of the same color, and the baryon is formed from three quarks of three different
colors. Scattering examples are given analogous to MM~MM, MB~MB, and BB~BB. The re-
actions take place through constituent exchange, and total intrinsic numbers are conserved. There
are other similarities to quantum field theory, such as particle-antiparticle pair creation and annihi-

lation, fixed relative values of internal angular momenta, fixed orbital angular momentum, and
many-particle systems characterized by a vacuum state (lowest energy state) and the existence of vir-

tual composite particles as well as physically observable composite particles.

I. INTRODUCTION

This paper will develop further the classical theory of
relativistic composite particles introduced in an earlier
work' (hereafter referred to as I). The aim has been mul-
tifold: (I) to investigate a particular relativistic classical
action-at-a-distance particle theory based on an "evolu-
tionary" parameter s; (2) to develop an alternative to
perturbative-type calculations (e.g., by avoiding specifying
a Hamiltonian as H =Hp+Hi); (3) to construct models
of particle interactions; (4) to examine the extent to which
a relativistic classical theory can describe phenomena usu-
ally associated with quantum field theory or quantum
mechanics.

In I, a nonlocal-Lagrangian formalism, based on an
evolution parameter s, was developed to describe classical
relativistic many-particle systems. Although the evolu-
tion parameter s is not measurable, we adopted the point
of view that s describes the evolution of the system in
space-time in a manner analogous to time t describing the
evolution of a system in space. Solutions to the equa-
tions of motion represent particles which are, in general,
off the mass shell. It was proposed that these solutions
represent confined constituent particles which combine
into observable composite particles. Sample models were
given based upon a harmonic-oscillator potential contain-
ing attractive and repulsive couplings. The imposition of
constituent confinement led to the conservation laws of
energy, momentum, and angular momentum.

The models in I, which describe the scattering of com-
posite part;icles, exhibit several features not usually associ-

ated with classical particle theories: (I) the "creation"
and "annihilation" of particles, (2) the description of
zero-mass particles, (3) particle interaction by means of
constituent exchange, (4) restricted values of angular mo-
menta. That these features appear in a "classical" formal-
ism requires some comment. The Lagrangian adopted in
I is Lorentz invariant, that is, it describes the interactions
of particles within the context of special relativity. This
relativistic Lagrangian yields the Newtonian equations of
motion in the limit choo only in the special case of
"equal-time" solutions. ' In general, the solutions do not
have nonrelativistic counterparts, i.e., there is a "surplus"
of solutions over and above the ones which reduce to the
well-known nonrelativistic solutions. It is precisely such
solutions that enabled the formulations of the composite-
scattering models. Thus, one should not expect to find
nonrelatiuistic analogs to.such models.

The models of I were artificial, however. For example,
nonforward/backward scattering could occur only in the
presence of a zero-mass "catalytic" composite particle.
Furthermore, elastic scattering was restricted to
forward/backward angles. In this article, these difficul-
ties are removed by extending the harmonic-oscillator La-
grangian to include more than two couplings, and descrip-
tions of two- and three-body composite particle scattering
is obtained.

II. HARMONIC-OSCILLATOR
EQUATIONS OF MOTION

The Lagrangian for X interacting constituents is given
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N

I (s) = —Mc V[X ] (s), ~, x~($)] g mi[xt($)]
I=1

1/2 III. TWO- AND THREE-BODY
HARMONIC-OSCILLATOR SOLUTIONS

A. Two-body harmonic-oscillator solution

(Four-dimensional indices are suppressed throughout. )

The metric is g11 ——g22 ——g33
———goo

——1, and squares of
four-vectors are given by x = —g~px x ~. The
harmonic-oscillator potential' is

This solution was also discussed in I. We summarize
the results below.

The constituent four-vectors are given by

x~(s) = —,
' (As+B)+(mz/M)[a exp(iws)+b exp( —iws)],

(10)
N

V = 1 ——g g [wIJ(0)/c] (xt —xJ )
2 I=1J=1

(2) x2(s) = —,(As +B)—(m &/M)[a exp(iws)+b exp( —iws)],

and M = gt, mi, wtJ(0) =wjt(0). The Lagrangian is
singular, ' and as a result we are allowed to choose one
component of one four-vector as an arbitrary function of
s. We set

where

w=(M /4m~m2)'

and the complex constants are taken such that the xi(s)
are real. Defining

xo =~os, (3)
w(0) =(M /4m &m2)'~ w&2(0), (12)

where Jo is the fourth component of the center-of-mass
vector

N

X(s)=(1/M) g mtxt, (4)

N
x'I(s)=(M/m&N ) g (wIJ) (xI —xJ), (5)

where we have defined

and Ao is any constant.
This choice of "gauge" function (3) considerably sim-

plifies the equations of motion, which, for the harmonic-
oscillator potential, become

we can express the frequency as

[w/w(0)] =(A/c) /[1 —[w&2(0)/c] a b } .

The total momentum for the system is

P =M&zv&z/[ I —(v&2/c) ]'~

Po Mi2c/[ I———(vi2/c) ]'i
2 2

P2 ——M12 C

where v12 ——A/Ao, and

M&2 ——M I 1 —[w &z(0)/c] a b }
'~

(13)

(14)

(15)

N

wry ——(N /Mc ) g mkxk /V [wtj(0)] (6)

Expressing the angular momentum J as J(c.m. ) + j, we
have J(c.m. ) =X&&P,

The factor wIJ is constant in s. However, its presence
leads to solutions which behave very differently from the
analogous solutions to classical nonrelativistic harmonic-
oscillator equations. Equation (5) is not a simple generali
zation of the nonrelatiuistic harmonic oscillator equat-ions

of motion. [For example, linear combinations of solutions
of (5) are not themselves solutions. ]

The evolution parameter s is discussed in detail in I.
We note here that it is not in general associated with the
physical clock.

The momenta conjugate to xI are defined by

pi = dL /Bxy =mIxt[Nwyy(0)/wtg]

The Lorentz invariance of I yields ten constants in s:

P"= g p]'(s) =M [NwtJ(0)/wtJ]X"

N
J& = g [xf'($)pl(s) —xl"($)pg(s)] .

Thus we obtain conservation laws in s, and not conserva-
tion laws in the observer's time t&z. The P" and J" obey
the Poisson brackets (PB) of the Poincare group.

J = ( 1/M)(x, —x, )(m, p, —m, p, )

=i (0w)M &(ab . (16)

[For a zero-mass composite, replace w (0) by c/(a b)' . ]
Note that since

X(s)=v&2Xp($)+B,

P" is independent of the choice of gauge (see, for exam-
ple, p. 526 of Sudarshan and Mukunda, cited in Ref. 4).

l. Interpretation of the solution as a physical state

The physical free-particle states, that is, the observable
composite particles, must form the bases of irreducible
representations of the Poincare group. " Such a represen-
tation is partially specified by the values of the Casimir
operator P and P. It can be easily verified that the inter-
nal angular momentum jk given in (16) satisfies the PB
relations of the rotation group and have vanishing P with
P"; i;e., they are the generators of the "little" group which
leaves P" invariant and the representation can be com-
pletely specified by, say, P and P,

~ j ~, and j,. Thus, we
may interpret the solution above as follows: The constitu-
ents x~(1) and x2(s) form an observable composite parti-
cle of mass M12, "spin" j, and momentum P. The com-
posite four-vector is the center-of-mass vector X(s).
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B. Three-body solution

Equations of motion for the constituents are
N

XI = —(M/9mI ) g WIJ (XI —XJ ) .
J=1

(17)

m/M 2m/M 0
m/M —ml/M

m/M —nz )/M 1

The components of y are given by

(20)

I=ay . (18)

We consider the case m &2
——u ~3, m 2 ——I3

——m, and write
the solutions in matrix form: y&

——As +8,
y2 ——a 2 exp( iw2s) +b2exp( —iw2s),

y3 ——a3exp(iw3s)+ b3exp( iw—3s)

with

(21)

and

X= X2, y= y2 (19) w2 ——(M /9mml )w, 22,

W3'= (M/9m )(w l2'+ 2w „') .

The frequencies are given by

[ I I( )] =[ u/ u(0)] =(3m/M) (&/c) I 1 —8[WI2(0)/c] a2.b& —(2/c )[w» (0)+2W23 (0)]a3 b3 (22)

The observable composite state has a world line
described by the four-vector X= (m /M)y &, and as a basis
of an irreducible representation of the Poincare group it is
completely specified by the mass

M]23™t 1 —( 8/c )w&2 (0)a 3 b2

—(2/c )[w l2 (0)+2W23 (0)]a 3 'b 3 I

(23)

m&/m 1 1

1

2

0 1

IV. 4N-CONSTITUENT MODEL

A. Solutions to the equations of motion

(26)

three-momentum

P =MI23X/[ I —(vi/3/c) ]'~ (24)

where vl23/c =dX/dXo, and internal angular momentum
j=J—J(c.m. ) with J(c.m. )= XXP. We find

In I, models of composite-particle scattering were con-
structed from constituents of two kinds: "Like" constitu-
ents repelled, while "opposite" constituents attracted each
other. Here we expand the formulation to include four
types of constituents. It is assumed. that the system con-
tains X of each kind of constituent, i.e.,

j= 4i+m—m l wl2(0)a2&&13

i3/mM —[wig (0)+2w23 (0)]' a3Xb3 . (25)

We were able to diagonalize the three-constituent equa-
tions of motion because of the choice wl2 ——wl3. The re-
sulting solutions allow an interpretation which has an
analog in the quark model based on the unitary group
SU(3). Consider the matrix A, in (20) which yields the
coefficients of the normal coordinates yl, y3, and y3 in
each of the three solutions in (18). For the case
m =m& ——M/3, the coefficient of y& (column 1 of I, ) is
the analog to baryon number, while the coefficients of y2
(column 2) and y3 (column 3) play the roles of hyper-
charge and the third component of isospin, respectively.
By allowing m&~~, the general matrix (20) yields a
similar interpretation based on SU(2), and is equivalent to
the two-body solution in (10). The SU(3) analog will be
introduced again in Sec. VII.

The inverse of X

q», I =1,2, . . . , %; A =1,2, 3,4 .

The potential takes the form
N 4

V= 1 ——,
' g g [f~a(0)/c] (xl~ —XJa)

I J A, B
(27)

and the coupling matrix defined by

N

(4N/c ) g (xI) /V I fg—g (0) I . (28)

It is convenient to go to matrix notation with general
vectors denoted by
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We consider the case when f takes the form

2= 2f~~ =fo
f»'=f24'= ,'(f —'+fy'»

fi4'=f23'= 2 (fy'+f. '»
f12 f34 2 (f '+f.')

(29)

yr ——aI exp(as ) +bI exp( —as),
a2 & (f 2+f2)

N

g y1=0,

(32)

xI ——yl+ZW

with

(30)

1 1 1 1

with analogous definitions of fo(0), f„(0), f~(0), f, (0), in
terms of fz~(0). The masses are taken to be equal.

With these relations, the coupling matrix f can be di-
agonalized, and the solutions expressed in terms of normal
coordinates. After some algebra, we obtain the solutions

8 1
——As+B,

W2 ——a2exp(/3s) +b2exp( —/3s),

/3'= ,' (f.'—+—f,'+ 2f,'),
W3 —a 3 exp( iw 3s ) +b 3 exp( —iw 3s )

w 3'= .' (f.'+—2f,'+f.'),
W4 ——a4exp(iw4s) +b4exp( iw4s)—,
w4'=

4 (2f.'+f, '+f.') .

(33)

1 —1 1 —1

1 1 —1 —1

—1 —1 1

(31) We further take a, p, w3, and w32 to be positive and
greater than zero.

The frequencies are calculated using (6) or (28):

[a/a(0) ]'= [/3//3(0) ]'

=[w3/w3(0)] =[w4/w4(0)]

=(4N) (A/c)
N

21+N[4a(0)/c] g al'bl+4[4Nf3(Q)/c] a2 b2

—4[4Nw3(0)/c] a3 b3 4[4Nw4(0)—lc] a4 b4 (34)

B. Boundary conditions and selection rules

Assume there is an "interaction interval" in s, defined
by

—Sp ($ (Sp (35)

for which the couplings fo(0), f„(0),f~(0), f, (0), etc. , take

where a(0), /3(0), w3(0) and w4(0) are defined in terms of
fo(0), f„(0),fz(0), f, (0), in analogy to a, /3, w3, and w4 in
(33).

The solutions xi& are characterized by a term depen-
dent on I and linear combinations of the normal coordi-
nates 8'z. We shall denote ylz as the "kinematic" term
and the normal coordinates as the "intrinsic" terms.

In solution (30) for the 4N constituents, there are
8 X (4N) —2 arbitrary constants, which could be
mathematically determined by specifying initial condi-
tions in the evolution parameter s. Since s does not corre-
spond to the physical clock, we approach the problem dif-
ferently. The number of arbitrary constants is reduced by
imposing boundary conditions on the constituents, namely
that they cannot exist as free particles, but that asymptoti-
cally in s they bind together into observable composite
states (see also the discussion in I). For the 4N system at
hand, more specifically, we impose the following.

f0'(0) =f, '(0) = —f '(0) = —fY'(0) . (36)

Solutions outside the interaction interval are considered in
detail in Sec. V.

Selection rules will also be imposed upon the solutions
by specifying the initial and final configurations of con-
stituents. For example, Fig. 1 contains a schematic repre-
sentation of two-composite scattering (discussed in detail
in Sec. VI).

In the Appendix, the solutions and their derivatives are
matched at s =+sp to the solutions outside the interac-

I

the form analogous to (29). Assuming also that so is
large, i.e., tends to infinity. For physical solutions to the
system, impose the condition that as s ~+so, and for s
outside the interaction interval, the constituents must pair
up into two-body harmonic-oscillator states taking the
form described in Sec. III. That is, they must form the
bases for irreducible representations of the Poincare
group. This implies that for

$( —Sp ands)sp

the couplings appearing in the exponential terms must
vanish. Further, the frequencies associated with the oscil-
lations must be equal. These conditions are met provided
that the couplings in the intervals

~

s
~

& so satisfy
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M [3] M I4] the exponential terms should be replaced by terms linear
in s.

ln order to meet the boundary conditions imposed
above, the frequencies m3 and u4 within the interaction
interval must be independent of the kinematics of the
composite particles. That is, the internal state of a com-
posite particle should not depend on the kinematic
behavior of other composites in the system. 8'e shall
make the following assumption: The indiuidual terms yI
determine the kinematic behavior of the composite parti
cles; the solutions 8'z are considered to be an intrinsic
part of the total system. This leads .o the important fre-
quency condition given below.

FICi. 1. The scattering of two composite particles via ex-
change of constituents. The arrows denote the sense of increas-
ing s, while the observer s time axis,, is in the vertical direction.
The constituents pair up as s~+so to form composites M[J],
J= 1,2,3,4.

j. The frequency condition

Examination of the expression for the frequencies (34)
shows that for it to be independent of external kinematics,
i.e., independent of the constants aI, bI, the following
condition must hold:

tion interval, giving relations for the arbitrary constants.
Rather than introduce unnecessary additional complica-
tions in the notation, we shall retain the exponential form
of the solutions with the understanding that as s —++so,

N

ar bI=0.

Equation (34) then reduces to

(37)

[ct«(0) l' = [P/13(0) ]'
= [w3/w3(0)] = [w4/w4(0)]

=(A) /[(c/4N) +4[P(0)] a2 b2 —4[w3(0)] a3 b3 —4[wg(0)] a4 bgI . (38)

C. Energy, momentum, and angular momentum
for the 4X-constituent system

The conservation laws for the system of 4N constitu-
ents appear in terms of the parameter s. The conserved
quantities I'" and J" cannot be identified with the physi-
cal and angular momentum of the system unless the evo-
lution parameter can be identified with the physical clock,
as was done for the isolated two- and three-body systems
of Sec. III. However, as is demonstrated in the examples
below, s is not in general the parameter that describes the
evolution of the system as the observer measures it.

Nevertheless, at the observer's times tQB —+oo boun-
dary conditions imply that if any constituent particles are
present, they must pair up into observable composites.
We can then, at these asymptotic times, define the energy,
momentum, and angular momentum as the sum of the
corresponding quantities for the composite states. We
shall find that the imposition of constituent confinement
implies the space-time conservation laws.

D. Formation of composite states

fo =f f =fy (39)

xt ~

——[At ~exp(as)+BI texp( —cts)]

+(W', + &4)+(As+B),

xtq ——[A ~2exp(as)+Bzzexp( —as)]

+( W, —W, )+(As +B),

xj3—[At 3exp(as) + BI 3exp( —cts ) ]
—( W3+ Wg)+(As +B),

xI4 ——[At4exp(cts)+ BI4exp( —cts)]

—( W, —8', )+(As +B),

(40)

where

~I 1,3 +I 1,3+~2

I 1,3 I 1,3+b2
(41)

Equation (39) implies that ct=P and w3 ——w4 ——w. The
4X-constituent solutions are given by

To simplify the scattering examples and to illustrate the
main features of the constituent model, we shall restrict
the examples considered in this article to the case defined
by and

~I2,4 I2,4 +2

+I2, 4 ~I2, 4 ~2



2544 MARCIA J. KINCi 31

N

aj~ = g be ——0.

V. SOLUTIONS OUTSIDE
THE INTERACTION INTERVAL:

PHYSICAL CONSTITUENTS

The boundary conditions force the constituents to pair
up into composite states outside the interaction interval,
i e , wh. en. s (—so or s )so. Thus, the conditions (36)
follow. The equations of motion outside the interaction
interval can be expressed as

zj ——(1/4&) f'zj .

Using the matrix

(43)

0 1 0
0 1 0 1

1 0 —I 0
01 0 —1i

(44)

In order for a composite to be formed from qzq and

qzz1, the relative vector must satisfy

xi& —xzz ——oscillatory terms only as s~+so .

Furthermore, if the composite is to be a free particle, its
four-vector must satisfy

—,
'
(xj~+xjz1) =linear terms only as s —++so .

Thus, only qI1 and qJ3, or qI2 and qJ4, can form compos-
ite states. (In terms of the coupling constants, the attrac-
tive couplings form composite states. )

The constituent solutions given by (40) could be used to
construct models similar to the examples in I. However,
to avoid the presence of catalytic zero-mass composites,
we shall instead adopt a different approach. Solutions of
the 4X model outside the interaction region are examined
in the next section. These lead to an alternative definition
of the "physical" constituents as linear combinations of
the solutions xi&. We shall also assign various intrinsic
properties, or intrinsic numbers, to the physical constitu-
ents based upon the columns of the matrix y.

or the system breaks up into two identical but nonin-
teracting systems, one consisting of the constituents qI1
and qI3, and the other qI2 and q14.

We shall now make the following supposition: The
constituent solutions within the interaction interval must
"match" the solutions (45) at the end points defined by
+so. This leads us to define the physical constituent solu-
tions within the interaction interva1 by the 1inear com-
binations of the original solutions given below:

1ZI1= 2 «I1+XI2),
1

ZI2 T(XI 1 XI2) ~

l
ZI 3 2(XI3—+XI4),

I
ZI4 2 (XI3 XI4)

Note that the solutions (48) are symmetric or antisym-
metric under the exchange of the "original" constituents
which become identical outside the interaction interval.

In the remainder of the paper the "constituent solu
tions" mill be taken to mean the physical constituent solu-
tions unless otherwise indicated. The notation qlz will
hereafter refer to the physical constituents.

It is important to recognize that although the solutions
zz„satisfy harmonic oscillato-r equations of motion outside
the interaction interval, the equations of motion are not
harmonic oscillator in form within the interaction interval
There are two ways to interpret this. (1) The physical
constituents satisfy more complicated equations of motion
than the harmonic-oscillator equations within the interac-
tion interval, or (2) since the constituents are not con-
sidered to be observed particles, we may treat them as
mathematical entities, taking linear combinations of them
to construct the four-vectors of physically measurable
states. As we shall later see, the latter interpretation is
strongly implied. %'e still retain the nomenclature classi-
cal to describe the formalism, however, since the theory is
mathematically "deterministic" if only one knew all the
"initial" conditions at some value of s.

In the next section, we examine the implications of
these new definitions on the description of composite
scattering.

VI. EXCITATION OF PHYSICAL
COMPOSITE STATES:

THE p AND THE x
COMPOSITE PARTICLES

zj1 =HI 1s +BI1+[aj1exp(tws)+bj 1exp( —tws)]

zj3 —AI3$ +BI3 [aj1exp(iws) +bj 1exp( —iws) ]

ZI2 ——AI2s +8I2+ [az2ex p(iws) +bj2exp( i ws) ], —

zj4 AI4s +BI4 [aj2exp(iws) +——bj2ex p( —i ws) ], —

Inside the interaction interval, the constituent solutions
fall into two groups. The first can be written as

zz 1
——az1exp( as ) +bz1exp( —as ) + JY1 + W3,

zj 3 —aj 3exp(as ) +bj3exp( —as ) + 8'1 —W3

(49)where from (3)
N 4

g g zj~o=Aos . (46) where 8'1 and 8'3 are given in (33), andI=1 2 =1

to diagonalize f instead of y in (31), we obtain solutions
of the form

In terms of the couplings (f~jj ), Eq. (36) implies

f12 =f14=f23 =f34 =0, (47)

N N X N

g aI1 g bI1 g aI3 g bI3 (50)
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The second group is

ZIz ——atzexp(as)+bIzexp( —as)+ Wz+ W4,

zI4 a——I4exp(as ) +bI4exp( —as ) + Wz —W4,

with Wz and W4 given by (33), and

(51)

N N

oI2 g oI4 g bI2 g bI4
I =1 I =1 I =1 I =1

(52)

The two systems of solutions are related through the
equation for the frequencies, which retains the form of
(50) for the newly defined constants in (49) and (51):

[a/a(0)] =[to/to(0)] =(A) /I(c/4N) +4[a(0)] az bz —4[to(0)] (a3.b3+a4.b4)I, (53)

and through the frequency condition, which also retains
the form of (37):

I =1 A =1
(54)

A. Excitation of the x composite states

Assume that all the p-constituent solutions are identi-
cally equal to zero. For a system of 2% x composites, the
lowest energy state (vacuum) corresponds to

Just as for the system of equations (30), the arbitrary con-
stants in the solutions (49) and (51) can be determined
mathematically by specifying initial conditions in the pa-
rameter s. However, as we shall see, these do not corre-
spond to physical initial conditions as measured in the
laboratory. The initial-value problem wi11 be discussed in
more detail in the scattering example to follow. Here, we
just mention that a complete set of initial conditioris in s
precludes any difficulties associated with causality.

It has already been assumed that the kinematic
behavior of the composites is determined by the terms
at~exp(as) and bI~ exp( —as), and that the solutions Wz
are to be associated with .intrinsic properties of the com-
posites. Denoting the solutions (49) as the p constituents,
and the solutions (51) as the x constituents, we shall de-
fine the coefficients of W& and Wz as the P number and
the X number, respectively (see, for example, the discus-
sion in Sec. II regarding interpretation of the three-body
composite state). Let us further assign the constituents
the intrinsic properties denoted as the L number and 8
number, defined as the coefficients of 8'3 and 8'4,
respectively. Thus two-body composite states must be
constructed from constituents of opposite L number or of
opposite 8 number: The two-body composites are charac-
terized by zero I.number and zero B number.

At this point, let us consider particle and antiparticle
interpretations. As already noted, the constituents which
turn around. in time (see Fig. 1) can be reinterpreted as
constituent-anticonstituent annihilation or pair produc-
tion. Similarly, composites with the opposite sense of s
can be interpreted as composities and anticomposites.

The model of this article differs from the usual quark
model: The two-constituent states are not composed of a
particle and antiparticle, but of two particles of opposite
L or 8 number.

We shall consider again the particle-antiparticle inter-
pretation in the scattering examples below.

aI 2 aI 4 ~I2 bI 4 (55)

4[a (0)az bz w4 (0)a4 —b4]= —(c/4N)

Consider now the excitation of the four constituents

q12 q14 q22 q24

as shown in Fig. 1. The constituent. four-vectors are

(56)

(57)

z&2
——A &zexp(as)+B&zexp( —as)+ W4,

zzz ——Azzexp(as)+Bzzexp( —as)+ W4,

z &4 ——A ~4exp(as) +B&4exp( —as ) —W4,

z24 A24exp——(as)+B24exp( —as ) —W4,

(58)

where

I2 QI2+Q2 ~I4 aI4+ g2

BI2 ~I2+ b2~ BI4 ~I4+ ~2
(59)

~12+~22 =~14+~24=a2

B12+B22——B14+B24——Nb2 .
(60)

The four constituents are assumed to form the configura-
tion shown schematically in Fig. '1. The -arrows denote
the sense of increasing s, and the observer's time axis is in
the vertical direction. The constituents q12 and q14, and
qzz and qz4, pair up as s~ —so to form composites M[1]
and M[4], respectively. As s~+so, constituents q&2 and
qz4, and qzz and q&4 pair up to form composites M[2] and
M[3], respectively. Note that the constituents q&2 and qzz
turn around in the observer's time. We can interpret the
trajectory of q12 as representing a constituent and an an-

In this case, the constituents (and composites) are all vir-
tual particles, oscillating about the origin of space-time.
In the examples to follow, the x constituents are excited
into configurations representing composite scattering at
arbitrary angles. Thus we have referred to them as the x
(for "extended") constituents. All two-constituent x com-
posite particles will be designated as M particles. .

Setting the p solutions to zero places a constraint on the
internal states of the x composite particles. Since A=O,
the right-hand side of the expression for the frequency
(53) must become indeterminate, or the internal ampli-
tudes of the oscillating constituents satisfy
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ticonstituent annihilating in time, and the trajectory q22
as representing the creation of a constituent and anticon-
stituent pair. Thus we can interpret the diagram as fol-
lows. The initial state consists of two composites, M[1]
and M[2] which subsequently come together and through
the exchange of constituents lose their identity and yield
the final state consisting of composites M[3] and M[4].

We have assumed that, particle and antiparticle four-
vectors are identified as having time components which
are increasing and decreasing functions of s, respectively.
Thus M[1] and M[3] are composites, and M[2] and M[4]
are anticomposites. If we further assume that the X num-
ber is equal but opposite in sign for the composite (con-
stituent) and the anticomposite (anticonstituent), then it
follows that

[(dZ1/ds) + (dZ2/ds) ] I,

=[(dz3/ds)+(dz4/ds)]
I s s, . (69)

Consider a two-body harmonic-oscillator system com-
posed of constituents I and J which have a relative vector
equal to

a exp(iws)+b exp( iw—s) .

Assume that each constituent has mass m(eff) and that
they interact via coupling w(O, eff). Then from (13), the
frequency is equal to

w =G [1—(vo/c) ]' (dXtjo/ds)/2M'(eff), (70)

where

a2 ———b2 . (61) Mtj(eff)=2m(eff)I1 —[w(O, eff)/c) a b I'~, (71)

Applying the boundary conditions at to& ——+ ao yields
the relations

and we have set

G =w(O, eff)m(eff) . (72)
312——A 24, 222 ——A 14,

+12 14~ ~22 +24 ~

The asymptotic composite four-vectors become:
Incoming states

1

Z1 2 (zlz+z14)
I s~ —so

(62) XIJQ is the fourth component of the composite's four-
vector, and G is assumed to be the same constant for
every composite formed in a given system.

From (70), it follows that the relation between the ener-

gy of the composite and the derivative of the fourth com-
ponent of its four-vector is

=B1zexp( —as),
dXtjoIds = , (w IGc)Et—J (73)

Z2= [zlz( —s)+224( —s)] I,

=2 1zexp( —as ) .

Outgoing states

(63) Thus, Eq. (69) implies the conservation of energy and
momentum in the observer's t&me. Similarly, the orbital
angular momentum (which is zero) and the internal angu-
lar momenta ("spin") are also conserved.

It follows that the masses of the scattering composites
of Fig. 1 are given by

1z3 Y(zzz+z14) I .-.,
=A zz exp(as ),

Z4 — [zzz( —s)+z24( —s)
(64)

=Bzzexp(as) .

With the boundary conditions, the frequency condition
(54) becomes

MJ ——(G/2wc)[1 —(vz/c) ]' dZqo/ds, J= 1,2, 3,4 .

The composite velocities defined by dZJ/dZJQ are

v1/C =B12/B1zo i

v2/C = A12/g 12Q,

v3/C = A22/2 22Q

v4/C =$22/B22Q

(74)

(75)

(312+Azz) (B„+Bzz)=2Xaz b, ,

or, applying (60),

X a2.b2 ——2Xa2.b2 .

For the case a2.b2&0, this implies

(66)

(67)

or all the constituents in the system are excited into the
configuration of Fig. 1.

The relations (60) and (61) yield

(~ 1z+ ~22) = —(B1z+Bzz»

so that from (63) and (64),

From (60) and (61), it follows that specifying the constant
a2 and the initial energies and velocities of the incoming
composites M[1] and M[2] completely determines the en-
ergies and momenta of the final state. However, the con-
stant a2 cannot be determined from the kinematics of the
initial state. We have already assumed that a2 along with
the "internal" constants a4 and b4 are determined by the
intrinsic properties of the system. These, at least in part,
may depend on the selection rules, i.e., which composite
states exist in the observer s initial and final states. Clear-
ly this is a problem which needs to be further investigated.

— The internal states of all four composites are described
by the same relative vector which equals

a4exp(iws)+ b4exp( i ws), — (76)
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where the frequency w =F4, is given by

[w/w(0)] =(4X) (2/c) /I I+4[4%a(0)/c] a2 b2.4[4Am(0)/c] a4 bqj . (77)

j =i2Ga4&&14 . (78)

However, since A =0, the right-hand side of the equation
must become indeterminate for nontrivial solutions, or the
internal constants must satisfy (56). Note that the com-
posites all have equal spin:

their interactions. In analogy to "color" in ihe quark
model, the new attribute will be denoted as "tint." The
potential Vis assumed to be

N 4 3
V= 1 ——, g g g [fgB(0)CcD(0)/c] (xgg —xJB)

I,J A, BC,D

B. Excitations of the p composites

Consider now the excitations of composites from the
system of qI l, qI3 constituents. The qI2 and q&4 constitu-
ent. solutions are taken to be identically equal to zero. As
long as any of the 1—3 constituents are virtual, the con-
stants 3 and B must equal zero. Because of the condi-
tions (50), the system is equivalent to the models of the
type produced in I: Excitation of four constituents qll,
q2~, q&3, q23 leads to forward/backward scattering of
equal-mass composites, excitation of the appropriate six
constituents leads to the second model of I. However, no
matter how many constituents are excited, it is not diffi-
cult to verify that elastic scattering can take place in the
forward/backward direction only. Thus, the composites
behave very much like point particles. For this reason we
have referred to the 1—3 constituents as the p (for "point-
like" ) constituents and the resulting composites as the p
composites.

In summary, redefining the four-vectors for the physi-
cal constituents in terms of symmetric and antisymmetric
combinations of the original constituent four-vectors leads
to the descriptions of composites of the p type and the x
type, respectively. The p composite particles can scatter
only in the restricted sense of the models of I, e.g., only
forward/backward elastic scattering. The x composites
can scatter at arbitrary angles. For the x composite
scattering, the initial energies and velocities of the com-
posites are not enough to uniquely determine the final
state. The intrinsic parameter a2 must also be known.

In the last section, solutions to the equations of motion
were obtained for the constituents outside the interaction
interval. In those solutions, the orbital angular momenta
can take on arbitrary values. Thus we can interpret the
model as follows: Only constituents that are "aimed" for
a head-on collision will scatter, and in this sense, the com-
posites act like point particles with a zero interaction
range. However, scattering at arbitrary angles can take
place for the x composites, so that if the observer is un-
able to measure the initial zero-orbital angular momentum
state, he may interpret the scattering as due to the com-
posite being extended in space and/or as having a finite
interaction range.

VII. ADDITION OF "TINT"

A. Constituent-particle solutions

where the couplings are factorizable into the "f cou-
plings" and the "tint couplings. " The constituent masses
are taken to be equal.

Following Sec. II, we define new constants f~B and
CcD through their product:

[f~BCCD/fAB(0)CcD(0)) =(12K) g xr.xr/Vc
I=I

C =(CCD ) (81)

In analogy to the color quark model, it will be assumed
that the constituents of different C behave similarly; i.e.,
the matrix C is given the form

&l' &l2'

Cl2

,

&l2 &l22 2

Cl2 2

2

2

(82)

The matrix C is diagonalized by the matrix A. given in
(20) in Sec. III with m& ——m = —,'M. The matrix f is di-
agonalized by y in (31). We continue to examine the spe-
cial case where f„=fz, and fo f, . The solutio——ns
may be written as

xr =sr+~X~
where

(83)

(84)

YI= YI

~'= —,(fo'+f„')(C)'+2C„'),
(85)

(86)

W=P w

with

(87)

P'= ——„[(fo'+f')(C)'+2C)2 )I1 —Q~~@0,'],

(80)

where the vector xr has components (x I~ ). Tint-coupling
matrices are defined by

The coupling matrix is now enlarged in order to
describe both two- and three-body composite states and and



MARCIA J. KING

fr=2 —1 2

and

2(fo'+f ' o

0

0

0 0
0fo' —f '0

0 0 0

0

0
0

fo' f—'

(89)

when s is outside the interval. Thus, if s is outside the in-
teraction interval, all terms in the constituent solutions be-
come linear in s except 8'3, 8'4, S'3, and 8'4, which
remain oscillatory with equal frequencies. We will find
that these terms are associated with the internal motion of
the composite states. The remaining terms describe the
space-time evolution of the composite's center-of-energy
four-vector.

B. Definition of the physical constituents
and intrinsic numbers

0, =A. 'C I(, =

We have, then,

C1 +2C12

0

0

0

C1 —C12

0

0

0

C1 —C1

(90)

Following Secs. V and VI, we define the physical con-
stituents by the following linear combinations of the solu-
tions (83):

1

ZI1 —T(xl 1+XI2) r

1

I2 Y( I1 X12) r

(p2) 11 0

(p2) 22 (p2) 33 0

(p )22 ——a )0, C='1,2,3,
(p )33"——(p )44")0,
(p )33 —(p )44 (0, C=2,3,

(91)

where the positivity assumptions have been added. Thus,
the solutions for W'A exhibit the following behavior:

I
ZI3 = T(XI3+XI4) r

1ZI4= 2 (XI3—XI4)

zI, ——aI1exp(as)+bI1exp( —as)+A(W1+W3),

zI 3 —aI 3exp(as ) +bI3exp( —as ) +A ( W1 —W3 )

(93)

The solutions once again fall into two groups which can
be expressed as follows.

p constituents:

8'1 ' linear in s,
8'1 ' oscillatory in s,
W2 exponential in s,
8 3 4. exponential in s

~3 4 ~3 4 oscillatory in s ~

In Sec. V, solutions outside the interaction interval
—so &s ~so were obtained under the assumption that the
asymptotic constituents must pair up into free composite
particles. As a result, attractive and repulsive forces be-
came exactly equal and opposite in magnitude, i.e.,

where

N N N N

g aI1 ——g aI3 ——Q bI1 ——g bI3 ——0 .
I=1 I=1 I =1 I=1

x constituents:

*»——a»exp(as ) +bI2exp( —as )+A (W2+ W4),

zI4 ——aI4exp(as )+bI4exp( —as)+A(W2 —W4)

with

N N N

g a12 g aI4 g bI2 g bI4

(94)

(95)

(96)

and

f11'(o)=f33'(o) = —f13'(o» Using (80), (79), (83), and the solutions above to calcu-
late the frequencies, and imposing the frequency condition

f222(0) =f~2(0)= —f24'(o)

(outside interaction interval). Keeping the same assump-
tion when tint is added, we find that C1 (0)= —2C12 (0)

I

[to1/u1& (0)] =[ur /to (0)]
= [a/a(0) ]

N 4 3

I=1 A =1 C=1

we obtain

=(4N) (2/c)
4 - 3

1+12(4N/c) g g [(P (0))waII( Ajccaz b~]
A =1 C=1

(98)

The x and p constituents are related through the fre-
quency (98) and through the frequency condition (97).

In Sec. VI, the four columns of the matrix r were de-
fined as the I', X, I, and 8 numbers of the constituents,

I

respectively. The three columns of the A, matrix are now
added as the T, Y, and I numbers, respectively. Collec-
tively, we shall denote all of the above as intrinsic num-
bers, in analogy to the additive quantum numbers of
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quantum particle physics. The corresponding intrinsic
numbers of composite states are the sums of the intrinsic
numbers of the individual constituents.

The excitation of the p constituents follows in the simi-
lar manner to Sec. VI, and are not considered further in
this paper. The x constituents are discussed below.

C. Formation of x composite states

ZI2 ——AI2exp(as)+BI2exp( —as )+AW4,

zI4 ——AI4exp(as )+BI4exp( —as ) —) W4

with
N N

AI2, 4 y (aI2,4+~a2)=N) a2,I=I
N

g BI2,4 g (bI24+Ab2)=NAb2 .

(100)

(101)

The p-constituent solutions are assumed to be identical-
ly zero. It follows that 3=0, and from (98), the intrinsic
amplitudes of the x composites are constrained by

12(4N/c) g g [(f3 (0))ggj~ ~Icc&w baal= —1 .

It is convenient to reexpress the solutions zzz in the
rm

The frequency condition becomes
N 4

g AIw'BIw ——2N(Aa2) (Ab2) .
1=13=1

(102)

The internal oscillatory terms 8'4 and 8'4 must caIl-
cel in forming composite four-vectors. This can be ac-
complished in one of the three ways below.
M composites (8=0):

z (ZI2+2J4) [ 2 (tII2+IIJ4)+ j~l cD&2 1 p(a~)+[ z (bI2+bJ4)+ jkIcDb2 1exp( —as) .

8 composites (8=I):

3 (ZI2 +ZJ2 +~x2 ) 3 (o12 +oJ2 +ak2 +&2 )exp(a& ) + —,(bI2 +bJ2 + bk2 +b2 )exp( —as ) + 8'4
1 2 3 & 1 2 3 1 1 2 3 1 1

8 composites (8= —1):

3 (ZI4 +ZJ4 +z/c4 ) 3 (aI4 +aJ4 +ak4 +a2')exP(as )+ ,
'

(bI4 +bJ4—+bk4 + b2')exP( —as )—W4'

(103)

(104)

(105)

All x composite states have X=1. By requiring all an-
ticomposites (obtained by reversing the sign of s) to. have
X= —1, we obtain the relation

Incoming:

Z
&
——8&2exp( —as ), Z2 ——A ~2exp( —as ),C C c c

C Ca2 ———b2 . (106) Outgoing:

For simplicity, we shall examine solutions for which
8'4' ——0. By limiting the examples to such systems, we
find that there is no way to physically distinguish the
8=1 and 8 = —1, since the four-vectors take the same
form and we have assumed the internal states are not
measurable. In addition, the intrinsic property of tint is
not measurable either.

In the paper so far, we have left the asymptotic four-
vectors in the exponential form, with the understanding
that as s ~+so, the exponents are to be replaced by terms
linear in s. We shall continue to do so.

Z3 ——A 22 exp(as ), Z4 ——822exp(as )
C C C

2 2

g ~I2 =N j) I CD& &
= —g BI2 .

M'[3]

(109)

(110)

D. M- M scattering

The 12 constituents

qI2 qI4 I =1,2, C =1,2, 3,C C (107)

\

C=)

are excited into the configuration of Fig. 2. The schemat-
ic diagram represents the existence of three different sys-
tems corresponding to two-body scattering of M particles.
Each of the three is characterized by a different tint.

Applying the boundary conditions at s~+so to the
constituent solutions (100), we obtain the asymptotic M-
composite four-vectors.

FIG. 2. Twelve, constituents are excited to form three
separate scattering systems corresponding to MM~MM. Each
of the three is characterized by a different value of tint C. The
example in the text corresponds to the superposition of the three
systems.
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It follows from (110) that

(dZ& /ds+dZ2/ds) ~.

= (dZ3 /ds +dZ4 /ds) ~,

or space-time conservation laws hold separately for each
of the systems.

Substituting (110) into the frequency condition (102)
yields

K (Aa2) =2%(ka2) (112)

For a2&0, it follows that %=2, or all the constituents of
the system are excited into the scattering states. For
a2 ——0, arbitrary X is allowed, but the example reduces to
the cases described in I, and leads, for example, to elastic
scattering only in the forward/backward direction.

In the general case a2&0, the frequency condition is sa-
tisfied provided there exists three scattering systems of
differing tint. The physically interesting case is when the
M-composite four-vectors have superimposed trajectories,
i.e.,

C

q3

cally observable composite four-vectors by

Z~ ——B&N exp( —as ), Z„=2 IN exp( —as ),IN IN

Z~ ——BoUT exp(as ), Zz =A oUTexp(as ),OUT OUT
(117)

FIG. 3. Eighteen constituents are excited into the six separate
reactions MB~MB. (Note that for C=3, the notation C+ 1

stands for 1, etc.) The example in the text corresponds to the
superposition of the six systems.

1 2 3 1 2 3~12 ~I2 ~I2 & BI2 BI2 BI2 (113) we apply the boundary conditions

In this case, the observer sees only two M composites in
the initial and final states, respectively. Note that the su-
perposition of the M-composite center-of-mass four-
vectors does not imply superpositions of the constituent
trajectories.

E. M- B scattering

To verify the space-time conservation laws for M-M
scattering, we implicitly used (73) to relate energy of the
M composite to the fourth component of its four-vector:

BI2 ——BI4 ——BgN, C =1,2, 3, I =1,2, 3,
BI2 ——BI4 =BOUT~ C =1,2, 3, I =4 5,6,
322 ——224 ——354 ——352 ——0, C =1,2,3,C C C C

C C C C~ 32 ~44 ~ 34 ~42 ~OUT

C C C CA ] 2 =3 ]4 =A 64 =c4 62 =2OUT 7

C =1,2, 3,
C=1,2, 3 .

Then the relations (101) yield

2('4 IN+ ~oUT) (+/3)+2 3(BIN+BoUT )

(118)

(119)

dZIIO/ds = , (w/Gc)EII .— (73)

For a three-body harmonic-oscillator state, or B particle,
the analogous relation is

and from (73) and (114), the space-time conservation laws
follow.

After applying the boundary conditions, the frequency
condition becomes

dZI&zo/ds = ,
' (w/Gc)EIIx— (114) XQ2' ——6a2', (120)

where w =w4 ——w4 . G is given by (72), and it is as-
sumed that for a given system of constituents, 6 is the
same for all composites.

Consider the example where 18 constituents, namely,

qI2 qI4 C =1,2, 3, I=1,2, . . . , 6,

or, for the general case a2'&0, it follows that %=6. All
constituents of the X=6 system are excited into the
scattering M and B composite particles.

The intrinsic numbers for the M-B system remain un-
changed in the initial and final state, and are given by

are excited into the configuration shown in Fig. 3. The
schematic illustration represents six separate reactions
MB~MB. From (101), it follows that

6 6

g ~I2 g ~I4 ~I~I CDa2

X=0, B =0, T= —, , F=O, I =O.2

F. B-B scattering

(121)

6 6

g BI2 g BI4 (116)
As a final example, take the case of B-B scattering

where 48 constituents

In order to describe two-composite scattering, we take the
case when the composite four-vectors are superimposed,
noting that the six reactions are interpreted as a single one
to the observer, who is not able to distinguish the different
tints or 2=2 and 2=4 B particles. Denoting the physi-

qI2~qI4~ C=1 2 3 I=1 2. . -. 8 (122)

are excited into the configurations depicted in Fig. 4.
Again take the case when the systems are superimposed.
The observer sees two B composites in the initial and final
state which have the following four-vectors
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FICx. 4. Forty-eight constituents are excited into the six reac-
tions BB~BB, which are superimposed in the example con-
sidered in the text.

Incoming:

Z
&

——Bt~exp( —as ),
Z2 ——At~exp( —as) .

Outgoing:

Z3 —A oU'r exp(as ),
Z4 ——BQUTexp(as ),

(123)

(+IN+~OUT) (BIN+BOUT) N( 2 (126)

or, for a2'&0, N=9. The remaining constituents q9q and

g 94 can be taken to be virtual particles.
Once again, all intrinsic numbers are conserved in the

reaction.

VIII. SUMMARY

Restricting our attention at first to the simpler case of
two-constituent particles, we introduced a model based on
a system consisting of 4N constituents, qz~, I = 1, . . . , N,
3=1,2,3,4. (That is, there are N each of four kinds of
constituents. ) It was found that constituent solutions are
linear combinations of a kinematic term and a set of nor-
mal coordinates 8'z, the latter being subsequently identi-
fied with the intrinsic properties of the composite parti-
cles. Their coefficients are denoted as intrinsic numbers.

where the boundary conditions below have been applied.

C C C C C C+12 +14 ~82 +72 ~85 ~74 IN

C C C C C C
+32 +42 ~52 +34 ~44 ~54 ~OUT

C C C C~ 82 ~ 85 ~42 ~44
(124)

C C C C C C~12 ~22 ~32 ~14 ~24 ~34 ~IN
C C C C C C

~52 ~62 ~72 ~54 ~64 ~74 ~OUT
C C C C+22 +62 +24 +64 0 ~

From (101), it follows that

3(~ IN +~OUT ) (N~3 )a z' ———3(Btx +BoUT ), (125)

which, in turn, implies the space-time conservation laws.
The frequency condition becomes

Boundary conditions which imply the confinement of
the constituents and the asymptotic formation of compos-
ite particles were formulated. This led to a constraint,
denoted as the "frequency condition, " which is a state-
ment that the internal behavior of the composite particles
cannot depend upon the kinematic behavior of the com-
posites.

At this point, it would have been possible to construct
scattering examples similar to those of I. However, all
such examples suffer the same drawback, namely, the
presence of zero-mass particles. Therefore, in Sec. V, we
introduced a mechanism to avoid this difficulty. It was
demonstrated that asymptotically in s the system of con-
stituents breaks up into two identical but noninteracting
systems. This suggests the definition of a new set of con-
stituent solutions which are symmetric. or antisymmetric
under the exchange of identical constituents. These linear
combinations of the original solutions (i.e., the solutions
obtained in Sec. IV), which we labeled the physical con-
stituents, were used to construct composite-particle four-
vectors for finite s as well.

With the aid of the physical constituents, realistic ex-
amples of composite scattering were introduced in Sec.
VI. The system of 4N physical constituents breaks up
naturally into two systems of 2N constituents each: We
have called the first system the p (pointlike) constituents;
and the second system the x (extended) constituents.
Each system is characterized by its own set of intrinsic
numbers.

The excited p composite particles can undergo elastic
scattering in the forward/backward angles only. Thus
they behave much like point particles which do not scatter
unless they suffer head-on collisions. Constituents of the
second system form the x composites. The scattering be-
tween x composites can occur at arbitrary angles although
the relative orbital angular momentum is zero both in the
initial and the final states. The initial-value problem was
discussed.

In Sec. VII, the system of constituent particles was en-
larged to 3 X4 N constituents qzz (where C= 1,2,3). Con-
stituents characterized by different values of C are as-
sumed to behave similarly. Constituent solutions are
linear combinations of a kinematic term and a set of nor-
mal coordinates 8'z. In analogy to color in the quark
model, we called the new attribute of the constituents tint.
Asymptotic two-body composites are formed by constitu-
ent pairs of the same tint. The three-body composite par-
ticles are composed of three constituents all of different
tint. It was assumed that tint is not an observable proper-
ty of the composites. A reinterpretation of the scattering
system as linear combinations of physically indistinguish-
able systems was made. Examples of x composite scatter-
ing were given, involving two- and three-constituent com-
posite particles. Intrinsic numbers are conserved in all re-
actions.

IX. CONCLUSIONS AND DISCUSSION

The formalism developed in I and this paper represents
an unusual approach to describing particle interactions.
To be sure, there is already a long history of investigation
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of relativistic action-at-a-distance theories. In recent
years, a considerable effort has been concentrated on the
development of Hamiltonian formulations based upon
Dirac's theory of constraints, since this formalism pro-
vides a direct prescription for quantization. The work
here takes an alternative approach to the application of
constraints, and is carried out within the Lagrangian for-
malism. Further, we do not attempt to associate the evo-
lution parameter s with the physical clock, and regard it
as an unmeasurable quantity. That is not to say there is
not a connection with the foregoing Hamiltonian ap-
proaches, but it needs investigation.

Especially because of the novelty of the present ap-
proach, it may be helpful to spell out what has gone into
the formalism in the way of assumptions, and what has so
far come out. This is summarized below.

Assumptions.
(1) Lorentz-invariant Lagrangian which is the square

root of the product of the potential and kinematic terms.
L is a function of the single unmeasurable evolution pa-
rameter s.

(2) Attractive and repulsive harmonic-oscillator forces
acting pairwise between constituent particles.

(3) Coupling matrices can be diagonalized.
(4) Asymptotic selection rules (which includes constitu-

ent confinement) and the frequency condition.
(5) System has intrinsic properties which are indepen-

dent of composite momenta and energies.
(6) Physical constituents as linear combinations of

harmonic-oscillator solutions.
(7) Opposite X number for particles and their antiparti-

cles.
(8) Superposition of physically indistinguishable scatter-

ing systems.
Results.
(1) Relativistic harmonic-oscillator solutions which are

quite different from the nonrelativistic case. Frequency
depends on amplitudes, linear combinations of solutions
are not solutions of harmonic-oscillator equations.

(2) Normal modes of oscillation analogous to internal
symmetries.

(3) Definition of physical constituents leads to p and x
composites characterized by different intrinsic numbers.

(4) Interactions between composite particles by means
of constituent exchange.

(5) Constituent confinement and harmonic-oscillator
potential imply conservation of energy, momentum, and
angular momentum (Lorentz-invariance leads to conserva-
tion laws in s, not tQB).

(6} Analog to particle-antiparticle pair creation and an-
nihilation.

(7) Composite particles are composed of either (a) two
constituents of the same tint, but opposite B number, or
(b) three constituents of all different tint, but same B
number.

(8) Conservation of intrinsic numbers in composite
scattering.

(9) Fixed relative values of internal angular momenta.
(10) Restricted values of angular momentum for

scattering composites; namely, zero orbital angular
momentum in initial and final states, even with arbitrary

I=13=1

N 4
(127)

I=M+1 3 =1

Thus, one Lagrangian, for arbitrary (large) X, can serve to
describe any scattering process.
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APPENDIX: DEFINITION
OF INTERACTION INTERVAL

Consider the differential equation

y(s) =a'y(s),
where in the interval

(Al)

—Sp ($ (Sp (A2)

the constant a is finite and positive, and outside the in-

terval u is identically equal to zero. Then the solutions
can be written

y (s)=A s+B, s & —so,

y (s) =a exp(as ) +b exp( —as ), —so & s &so, (A3)

y+(s)=A+s+B+, s )so .

Further, assume that

cusp +Q 1

so that

(A4)

scattering angle.
(11) Although space-time conservation laws hold for

composite scattering, physica/ initial conditions are not
enough to determine the final state. Knowledge of intrin-
sic parameter necessary.

(12) Many-particle systems with (a) virtual particles, (b)
vacuum states.

From this, it appears that the approach is potentially
interesting, but there are problems to be understood, espe-
cially the determination of the intrinsic properties of the
system, and thus the determination of the final state from
initial conditions.

Finally, as we have seen, the classical theory presented
here has many of the aspects generally associated with

quantum field theories and quantum mechanics. Thus, it
is reasonable to continue the development of the classical
theory before trying to adopt rules for quantizing it.

Rote added in proof. The frequency condition (54), in

principle, allows the total system of constituents to be bro-
ken up into two or more separate systems related through
the frequency alone. This is accomplished by imposing
additional conditions, for example,I 4
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y(s)-a exp(as) as s~sQ,

y(s)-b exp( —as) as s~ —so .

(A5)

y (s)=a exp(aso)[a(s —so)+1],

y+ (s) = b—exp(aso )[a(s +so ) —1] .
(A6)

Matching solutions and their derivatives at the end points
of the interval (A2), we are able to write the solutions out-
side of the interval in terms of the constants a and b:

Alternatively, in the solution y (s), we impose

exp(+as )-+ [a exp(iso ) ]s —(aso+ 1)exp(aso ) . (A7)
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