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Causal action at a distance in a relativistic system
of two bound charged spinless particles: Hydrogenlike models
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We analyze the causal quantum behavior of two charged spinless particles having different
masses interacting via an action-at-a-distance relativistic scalar Coulomb potential. Developing de
Broglie's idea of splitting the potential energy between the particles, we show that the predictivity
constraints of relativistic predictive mechanics established by Droz-Vincent and Sudarshan are satis-
fied. In this way we develop a relativistic theory of hydrogenlike atoms in the framework of the
causal interpretation of quantum mechanics.

I. INTRODUCTION

In a set of preceding papers the problem of the relativ-
istic causal behavior of two correlated spinless particles
has been quite generally solved by Droz-Vincent et al. '

both in the classical and quantum cases in the frame of
predictive mechanics. For example, in two recent pa-
pers ' Droz-Vincent has shown that one can solve causal-
ly this problem for typical scattering processes and for the
Klein-Cxordon system of two particles interacting through
a nonlocal potential (provided this interaction potential
satisfies the predictivity constraints) such as, for example,
Gunion and Li s potential or the harmonic-oscillator po-
tential. In the case of two quantum correlated but nonin-
teracting spin-0 and spin-1 particles the solution also
yields a causal action-at-a-distance interpretation of the
Einstein-Podolsky-Rosen (EPR) paradox and interprets
the recent experimental results of Aspect et al. '

The philosophy behind this treatment is simple: X in-
teracting particles (labeled i = 1, . . . , N) moving in
space-time each have a proper time ~; so that they have in
the relativistic sense not one but X Hamiltonians 0; each
providing by quantization the left-hand side of a wave
equation. The Hamiltonians yield generating functions
leading to equations of motion in a Poisson-bracket form
involving the X independent parameters ~;. The predic-
tivity conditions can be written in the general form

I H(, HJ I =0,
where I, I denotes the usual Poisson brackets built from
couples of canonical variables. With the X equations

2

where H; are constants of the motion we obtain by sum-
mation the general master equation in configuration
space,

g(H; ——,'m; )=0

I

As one knows, the problem simplifies if one splits the
variables into external and internal variables, i.e.,
separates coordinates of the center of mass,

X= gm;x; gm; and P= gP;

from the relative coordinates,
1

zv =x~' xj and XI1 2 (+1 PJ )

As usual we write the scalar products in compact form
p =p p=pz p", etc., and take fi=c =1 and 8;&

——8/Bxl'.
We also use the projection operator II ~ op PP——~/P—
which transforms any vector R" into its projection
R"=IP R" in the systems' rest frame.

The aim of the present work is to extend the preceding
causal analysis to the particular case of two oppositely
charged particles of different masses (which do not radi-
ate) utilizing an action-at-a-distance Lorentz scalar elec-
tromagnetic interaction (Coulomb-like force).

We are conscious, of course, that this particular case
does not solve the general problem of the behavior of the
causal predictive treatment of two charged particles which

(i) move in an external electromagnetic field,
(ii) interact (for example, through Lienard-Wiechert po-

tentials),
(iii) radiate (due to their acceleration), and
(iv) possess self-energy. This problem will be discussed

in a subsequent publication.
In any case we are able to apply our causal analysis to

the study of hydrogenlike atoms in which the nucleus and
the electron both have real spacetime trajectories. In this
way we answer objections raised to the de Broglie-Bohm
causal interpretation of quantum mechanics.

II. THE COULOMB FIELD
AS A RELATIVISTIC SCALAR POTENTIAL

AND THE DE BROGLIE PARTITION

plus (N —1)!causality constraints,

H; HJ ———,(m; —m ) . —1

2 J

The standard treatment of the motion of a relativistic
spin-0 particle in an external Coulomb-like field, which
inserts the fourth component of the electromagnetic po-
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tentials 2& in the Klein-Gordon equation, does not yield
an equation automatically in a form appropriate to an
action-at-a-distance theory since it involves a coupling be-
tween the potential and the first time derivative of the
wave function. In the usual approach to the hydrogen
atom one assumes that the proton has infinite mass so
that in the rest frame of the proton A=O and Ao is in-
dependent of time. In this way one obtains a time-
independent wave equation where all the potential energy
of interaction Ao is ascribed to the electron. In this paper
we intend to develop an alternative theory of Coulomb in-
teraction which does not rely on working in a particular
frame, i.e., which is Lorentz covariant, and which does
not require the. assumption of infinite proton mass. This
we do by using a scalar Coulomb field. Our wave equa-
tions take a form which is immediately relevant to predic-
tive mechanics and moreover, as we argue in Sec. IV, we
feel we are able to give a more coherent account of H-like
atoms. First of all we justify treating the Coulomb field
as a Lorentz scalar.

In the theory of photons of nonzero mass p& (Refs. 11
and 12) a third photon state appears with helicity J3 ——0
associated with longitudinal waves (having quanta yl ), in
addition to the helicities J3 ——+1 associated with trans-
verse waves (with quanta y T ). The Lagrangian density
I- = ——,I'z I'" ——

2p& AzA" is no longer gauge invari-

ant, and imposing the Coulomb gauge B&M"=0, one ob-
tains the wave equation 0&I'" =p& M, where
W'=3 "exp(iS). The main result of this approach is that
the physical solutions of this equation correspond to in-
dependent fields (E,H and A, V, respectively) which are
weakly coupled by p, r (pr ( 10 g). Two sets of distinct
plane-wave solutions are now possible: transverse and
longitudinal. The longitudinal solutions in particular
essentially involve a wave A 7V since E,H almost
vanish for p&~0, and A ~~K, V =]K

~ ~

A
~
/v, where

v =K +pr2. Since B„Ar —Br 2„-0 we can put
A& -d& F(x ), where F(x") is a scalar function.

It has been shown by Deser' that the first-order action
describing the Proca field splits into a transverse part IT,
which differs from the usual Maxwell action not only
through the mass term but also through the absence of an
instantaneous Coulomb interaction, and a longitudinal
and contact part Il +Io. The part II contains a contri-
bution from a massive free Lorentz scalar field and a term
coupling to the longitudinal current j". Since the latter is
scaled by the photon mass it is negligible with respect to
the Lorentz scalar field, and hence the plane-wave longi-
tudinal solution behaves like a scalar particle of spin zero.
For the assumed magnitude of p&, the scalar field reduces
to an unscreened Coulomb field.

Furthermore, one can show' that the two sets of solu-
tions, longitudinal and transverse, are effectively decou-
pled [coupling -(pr/v) ] and constitute two distinct
phase spaces when the energy of yI is negligible in com-
parison with the energy of yT. For pe&0 the distinction
between the- transverse and longitudinal modes is not a co-
variant one, but in the zero-mass limit the longitudinal
wave essentially describes a spin-0 scalar field.

For the above reason we shall assume that the Coulomb
interaction between two charged particles may be treated

P)„P",=(m)+ V))

P2„Pz =(m2+ Vz)
(2.1)

%'e intend to relate the potentials V&, V2 to V.
Now, we know that the total scalar Hamiltonian of the

system must have the form —,
' P, + ,

'
Pq 2c—V—

= —,(m
& +mz ) where Vis the scalar potential energy of

interaction, and c is a constant having the dimension of
mass which is to be determined. Let us suppose that the
Hamiltonians of the individual particles are given by

1
—,P) —c) V= —,m)

(2.2)

where c~,cq are constants with 2c =c~+cz. Comparing
the expressions given for the momenta squared by (2.1)
and (2.2) we immediately find that

V, = —m, +(m, '+2c, V)'",

V2 ———m2+(m2 +2c2 V)'
(2.3)

If we now consider the case where Vis small in relation to
m& and m2 so that we may neglect V, then expanding
the square root terms in (2.3) yields V~

——(c ~ /m ~ ) V,

V2 ——(cz/m2)V. Comparing these expressions with those
given by de Broglie' for nonrelativistic interacting parti-
cles shows that c&

——cz ——c=p=m~m2/(m~+mq), the re-
duced mass. Finally, then, our energy relations in the ex-
act relativistic case are

P~ ——(m~+ V&) =m& +2pV,

V&
———m&+(m~ +2@V)'~

P2 ——(mq+ V2) =m2 +2@V,

Vp ———mp+(m2 +2p V)'

(2.4)

Our demonstration of these formulas evidently rests on
the assumption of the partition of potential energy pro-
posed by de Broglie for nonrelativistic systems. Such a
partition is not arbitrary and as shown by Lucas' follows
from the law of action and reaction. Clearly, de Broglie's
expressions for the partition are modified in the relativis-
tic regime. In the case where m

~ &~m2 we see from (2.4)

as a Lorentz scalar field. In order to write down a wave
equation for each particle in such a system, however, we
need to know how to partition the Coulomb potential en-
ergy V in some way so that we may treat each particle as
moving in an "external field. " We do this in accordance
with a method originally developed by de Broglie. '

Consider in classical relativistic mechanics a particle of
mass m placed in an external scalar potential 8'. Then,
as is well known, its momentum P& satisfies

P„P"=(m + W)

If now we treat this particle as one component (of mass
m

& ) of a Coulomb-interacting two-body system (the other
particle having mass m2) we can write, following the
ideas of de Broglie, the following system of equations:
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( b, +m' E'+2—VE+ V'—)/=0 . (2.7)

This equation is to be compared with our system of equa-
tions (2.5) or (4.5) in the case where m2»m& ——m. We
find that m ~ behaves as a free particle and that m satis-
fies

( 6+I E+—2Vm)$=—0 . (2.8)

In (2.7) and (2.8) let us write E =m +e. Then a compar-
ison of these relations shows that (2.7) is identical with
(2.8) in the approximation where V and Ve may be
neglected. Essentially, then, it is only in the nonrelativis-
tic limit that the two approaches coincide. We show this
explicitly by cd;.ulating energy levels in Sec. IV.

III. CAUSAL INTERACTING
KLEIN-GORDON SYSTEM

In order to demonstrate that the system (2.5) is causal
we shall, following Cufaro-Petroni eI; ai. ,

' work with the
quantum potential formalism since this is relevant to the
subsequent discussion. Writing g =exp[R (x &,x 2 )

+ i W'(x &,x2 )] the real parts of Eqs. (2.5) are the
Hamilton- Jacobi-like equations:

~) =
~ B)„8B)8'+U) —pV= —,m)

~2 =
2 82„8'8~28'+ U2 —p p = —,

'
m 2

(3.1)

~here p=m&m&/(m, +m, ) is the reduced mass and
U&, U2 are quantum potentials,

that particle m~ effectively becomes free and all the in-
teraction energy is associated with particle m 2.

%'e may now quantize our interacting system by replac-
ing P;&~i d;„, i =1,2, in (2.4) to obtain

(

i+mal

+2@V)g(x &,x2) =0,
(2.5)

( 2+mq +2p V)g(x &,x2) =0 .

Here g is a wave function in the configuration space of
the system and

ZcV= (2.6)
(
—p—

)
1/2

where z"=z"—(z„P )P~/P, P" being the momentum of
the center of mass. In the c.m. rest frame z =0, z'=z',
i =1,2, 3, and the potential acts instantaneously.

The equations (2.5) form our starting point for a causal,
relativistic theory of two interacting'quantum particles,
each having trajectories in spacetime. Of course we must
show that these relations, involving as they do action at a
distance, do not conflict with relativistic causality. This
we shall do in the next section.

Finally, we point out the relation of our approach to the
usual theory where V is the fourth component of a vector.
For a particle of mass m in an external field 2& the
minimal-substitution Klein-Gordon equation is

(id„Ap)(i—'d" A")g=m—f .

When Az ——( V, O) where V is independent of time, we
write P=e ' 'P(x) to obtain

U( ————,(Cl)R+8)ORB~(R),

U2 ————,( pR+B2pRB~2R) .
(3.2)

The imaginary parts of (2.5) give the conservation equa-
tions

(3.3)

(0)„+By„)W =P„. (3.6)

Using (3.5) we immediately deduce from (3.2) that
U&

——U2 ——U, say, and moreover that U = U(z"). Taking
the difference of Eqs. (3.3) and noting from (3.6) that

~8'=CI2W, we find using Eqs. (3.5) and (3.6) that
P"0&z R =P"02&R =0. In terms of the coordinate-
difference operator (m~+mz)B/Bz"= m, B2~—m2B~„ this
yields

p BR
Bz"

It follows that the quantum potential U is a function only
of z~=zl' (z, P )P"/P sin—ce R =R (z"), the same
functional dependence as the Coulomb potential (2.6).

Bearing in mind the above considerations we now con-
struct a Hamiltonian system corresponding to Eq. (3.1),
our intention being to map this fictitious Hamilton-Jacobi
system into the Klein-Gordon system under consideration.
We thus define in analogy to Eq. (3.1), using the
Hamilton- Jacobi characteristic function to define by
means of a canonical transformation momenta
P;&——8;&8' the following two Hamiltonians:

H, = , P, + U(z ) —p V(z ), —
(3.7)

H2 = , P2 + U (z ) —Iu, V(—z) .

As regards the predictivity constraint IH&, H2 I =0, it is
straightforward to show that the Poisson brackets of two
Hamiltonians having the form H

&

———,
'

P& + 8'&,
~2= —,P2 + 8'2 reduce to

When the potentials have the form of those appearing in

To prove causality we must first of all study the struc-
ture of the Hamiltonians (left-hand sides) in (3.1). Let us
restrict ourselves to solutions which are eigenstates of the
center-of-mass momentum operator —i r)/BX"= —i (B~„
+B2p), that is,

g( x ~,x z ) =exp( iP„X")P(z"),
(3.4)

m )x ) +m2xpXl"=
m~+m2

where Pz is a constant timelike vector. Then

(3.5)
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(3.1) we immediately deduce [by writing 8 W& /Bx ~z

=(Bz /Bx~z)(BW&/Bz ), for example] that the Poisson
brackets vanish everywhere in eight-dimensional relativis-
tic phase space. This ensures that the position coordinates
x,", i =1,2, of each particle depend only on the proper
time associated with that particle.

One finds from (3.7) that

I P„,H) I = IP„,Hg I =0
so that the c.m. momentum is a constant of the motion.
It follows that we can slice spacetime with three-planes
orthogonal to P„and connect the two particles by space-
like lines lying in these hyperplanes.

Note that the positions xq, x2 are coordinates canonical
to the momenta P&,P2 in the rest frame of the c.m. , i.e.,
when P=O where P& ——(PO, P). In this frame the poten-
tial acts instantaneously.

We have thus shown that when the c.m. is represented
by a plane wave, the relativistic Klein-Gordon system of
two charged bodies of different mass interacting via a
Coulomb potential is causal, i.e., the paths of the particles
are timelike, the Cauchy problem is solvable, and the
theory is Poincare invariant.

Although the effective potential acting on each particle
depends only on z, that is, it does not depend on the rela-
tive time in the c.m. rest frame, the wave function

P =exp[R (z ) +iP„X"+i W'(z) ]

particles, it actually masks, under the guise of an approxi-
mation technique, a crucial methodological step, viz. , the
representatiori of configuration-space motion in real space
(we ignore here the fact that the orthodox interpretation
of quantum mechanics has no concept of particle trajecto-
ry and think in terms of the imagery of the causal inter-
pretation which has). The validity of leaving out of ac-
count the correlated nature of electron and proton
motions is by no means clear, in particular in relation to
photon emission. After all, for systems such as deuteron
or positronium where the masses are nearly the same, one
could not make the assumption that the motions may be
reduced to that of one of the particles in real spacetime
having energy levels independent of the other particle.
Similarly, a complete (and correct) theory of H-like atoms
should take into account from the outset that we are deal-
ing with a correlated two-body system, regardless of
whether or not the magnitudes of the contributions to the
energy levels are similar for each particle.

This is the approach we shall develop below. We shall
indeed represent configuration-space motions in spacetime
but it is the motion of two correlated particles, rather than
one, that we are studying.

A. Separation into c.m. and relative motions

Transforming to c.m. and relative coordinates (X,z) the
system (2.5) becomes

is not so restricted: P"B)W'/Bzj*&0. In fact, taking the
difference of Eqs. (3.1) and substituting (3.6), we find m&+m2

2
2@1)x+ z—

Pl ] +Pl2

1 2 2 2 2P +m2 —m&
Vl )+Pl2

(3.8)

m] +Pl2

+m) +2pV Q(X,z)=0,
2

2fPz 2
X+ z+ a

Pl ) +Pl2

(4.1)

IV. CAUSAL NONLOCAL THEORY
OF HYDROGENLIKE ATOMS

In textbook discussions of the hydrogen atom, which
reduce the configuration space motion to the motion of a
fictitious reduced mass particle in real space, it is some-
times stated that the emission of a photon is associated
with the transition of an electron between stationary
states. In fact, there is nothing in the mathematical for-
mulation which enables one to draw this conclusion—
rather all that can be said is that the relative energy of
proton and electron changes on emission and no more de-
tailed account is possible. To make the claim that it is the
electron alone which possesses energy levels consistent, a
further assumption is introduced that the nucleus is fixed
so that the electron is effectively a test charge moving in
an external field. As a consequence no partitioning of the
potential energy of the field is necessary, it all being as-
sumed to be associated with the electron. This step is jus-
tified' by the fact that the effect of the motion of the nu-
cleus is of a higher order of smallness even than relativis-
tic corrections to the energy levels calculated from the
Schrodinger equation.

While such a procedure may be mathematically con-
sistent when there is a large disparity in the masses of the

+my +2@V f(X,z)=0. (4.2)

Assuming the wave function may be expressed in the
form g=g(X)p(z), adding (1/m~)X(4. 1) to (I/mz)
X(4.2) and dividing by g yields

m)mq + +p(m &+mq+2V) =0 .
(m)+mz)

(4.3)

The difference of (4.1) and (4.2) gives, after dividing by P,

m) —mq

m)+my
2~xI

+m) —mp —0 . (4.4)

Since (4.3) is true for arbitrary X and z, we must have

xk =C

where c is a constant and so the c.m. and relative motions
have been separated, subject to (4.4).

Restricting ourselves to the ansatz (3.4), i.e.,
/=exp(iP„X"), we see that c = P. In this case (4.3)—
and (4.4) reduce to
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P m&m2
2

2 +p(m ~+m2+2V) P(z) =0,
(m)+mq)

m2(nucleus) »m ~(electron) yields finally,
(4.5)

(Ze ) (Ze )
o=m&+m2 1— neZ,2 2 4

2 ml 2 22iP" 1ng =P +m ~
—mz

az~
(4.6)

m~+m2

Equation (4.6) determines how P depends on the relative
time and will be recognized as (3.8). Given that P has the
form (3 4), (4.5) and (4.6) are equivalent to (2.5) and form
the basis of our subsequent discussion.

When m
&

——m2 ——m we recover from these last two rela-
tions equations similar to those proposed by Gunion and
Li to describe a system of interacting spinless quarks:

neglecting higher-order terms. As expected, we recover
the correct nonrelativistic limit. The first relativistic
correction differs from that calculated in the usual ap-
proach which employs the fourth component of 3„in the
Klein-Gordon or Dirac equations. We note that the ener-
gy levels calculated by Komar from wave equations
similar to ours differ from those given above since he did
not work with a center-of-mass coordinate X".

From (4.6) we can derive the relative-time dependence
of P in the c.m. rest frame. In this frame,

(m~ —m2)[Po —(m~+m2) ]
(jzo 2Po(m)+m2)

where a is a constant, so that the phase of the wave func-
tion g is given by

W =P,X'+az'+S (z),
since z"=(z,z ')=(O, z'), and so S(z') =S(z ').

The relative wave function therefore has the form

(4.7)

P=exptR (z)+i [az +S(z)]I .

Substituting this into (4.5) we find, noting that b,,=b,, in
the c.m. rest frame,

where

1 R+iS E R+iS
2p

(4.8)

E = [Po' —(m, +m, )'][Po' —(m 2
—m, )']/8Po'p, (4.9)

This of course has the form of the well-known reduced
mass Schrodinger equation for a two-body system in-
teracting via the potential V. ' Solving (4.9) for Po we
obtain

Pp2 —m, '+ m 22+4pE

+2(m& +2pE)'~ (mz +2pE)'
We now pass to the nonrelativistic limit by supposing

that E is small in relation to m
&

or m2. We find

[m("+m2 +2m, mp(m, +mp )]
Po ——m, +m, +E —E'

4m]m2(m]+m2)

+&(E') .
Using the standard energy levels E for hydrogenlike
atoms calculated from (4.8) and assuming that

[Cl, —,'P +m —+mV]/=0 and P"
Z

The first equation here differs from that of Gunion and
Li in that we have taken into account the de Broglie parti-
tion of potential energy introduced in order to ensure the
validity of the law of action and reaction.

B. Nonrelativistic limit

Pp
Pip=

2

Po
P2o= +

2

(mq —m, )
2 2

2Pp

(m2 —m) )
2 2

2Po

so that P&p+P2p ——Po. These are exact relativistic formu-
las. In the nonrelativistic limit where Pp ——m&+m2+E,
we have

Pip=m, +aE, e=
m )+m2

m]
P2o=m2+PE, 13=

m] +m2
We see that each particle has well-defined energy levels:

nonrelativistically E~ aE, E2 PE——. Howev——er, this does
not mean that one of the particles "jumps" on photon
emission, independently of the other, so that we could ex-
pect two radiation spectra having frequencies in the ratio
of the masses. Rather, emission is a process involving the
simultaneous action of all the parts of the system correlat-
ed by the nonlocal quantum potential. There is just one
observed energy E which is a parameter associated with
the whole system. No more detailed account of photon
emission is possible. We are able, though, to discuss the
system in terms of two real correlated trajectories in
spacetime without having to neglect the motion of one of
the particles. Insofar as parts of correlated systems can-
not be simply dropped from consideration, and all physi-
cal effects ascribed to the remaining parts, as we believe to
be the case, then any particle placed in an external field
should be treated as forming a whole with the source of
the field (however distant). One cannot talk of the energy
levels of the particle —they are associated with the system,
however disparate the masses may be. Such a notion, de-
rived from the quantum theory, is clearly in line with the
tenets of the Wheeler-Feynman theory.

D. Particle velocities

In the relativistic case the three-velocity of each particle
is given by the guidance formula,

C. Particle energies

Each particle in our interacting system has an energy
given by P;p ——8;p8' i =1,2. Working in the c.m. frame
(P~;+P2; ——P=0, i =1,2', 3) we find from (4.7),
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V;8'
3;o8

V;S
, i=1,2,

P;o

where we have used (4.7). In the nonrelativistic case this
evidently reduces to

v;= — VS, i =1,2 .
m-

The standard solution to (4.8) yields for the phase,

S=ktan-', , keZz'

V. TOWARDS A RESOLUTION OF OBJECTIONS
TO THE CAUSAL INTERPRETATION

OF QUANTUM MECHANICS

The causal representation of quantum phenomena
developed by de Broglie ' and Bohm provides, in the
one-body relativistic and nonrelativistic cases (based on
the Schrodinger and Klein-Cxordon equations), a model
which is consistent with all the predictions of orthodox
quantum mechanics but which ascribes to a particle real
motion in spacetime. The extension of this approach to
the many-body case has, however, been problematical for

from which we find the general expressions for the veloci-
ties in the plane z =0,

v(= . ( —z,z,O), vp —— v), l =1,2, 3
mlz 'z; m2

Clearly, in the ground state each particle is at rest due to
the quantum potential U balancing V. The magnitudes of
the velocities are given by

k

m, (z tz )'

Since v;.V V =0, where V V is the Coulomb force, we see
that'the paths of the particles are circles in the c.m.
frame.

two reasons. First, the many-body wave function evolves
in configuration space and a mapping of the individual
correlated particle motions into spacetime is required.
Second, the many-body quantum potential acts nonlocally
at a distance which suggests an inconsistency with the
causality requirements of the theory of relativity.

One can overcome the first problem on the basis of the
early form of the causal interpretation by associating par-
ticle momenta with the gradients of the phase of the
configuration-space wave function. In this view the parti-
cles each have trajectories in spacetime and are correlated
nonlocally by the quantum potential. There is only one
Hamilton-Jacobi equation for the whole system, however.
The extension of this method to relativistic quantum
mechanics is not possible since it provides no way of
proving compatibility between nonlocality and causality.

A way of resolving this problem is provided by the
methods of predictive mechanics. This scheme, which
employs % relativistic equations rather than one, enables
'one to go beyond the original de Broglie-Bohm theory by
demonstrating that causality is preserved even in an
action-at-a-distance context. We have shown in detail in
this paper how to carry this through for H-like atoms
[and more generally for any two-body system interacting
via a potential of the form P' = V(z )], taking into account
the de Broglie partition of potential energy. Moreover,
the causal interpretation gives a sound theoretical basis
for the application of predictive mechanics in the quan-
turn domain.

Our present treatment is evidently provisional and in
later publications we shall extend it to include spin by us-
ing the Feynman —Gell-Mann formalism. In thi$ way a
comparison with the results of the Bethe-Salpeter theory
will be possible.
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