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In the frame of Nelson stochastic quantization for dynamical systems on a manifold, we consider
diffusion processes with Brownian covariance given by a Riemannian metric on the manifold. The
dynamics is specified through a stochastic variational principle for a generalization of the classical
action, with a given kinetic metric. The resulting programming equation, of the Hamilton-Jacobi
type, depends on both metrics, the Brownian one and the kinetic one. We introduce a simple notion
of compatibility between the two metrics, such that the programming equation and the continuity
equation lead to the Schrédinger equation on the manifold.

I. INTRODUCTION

It is very well known that Nelson stochastic mechan-
ics’? provides an approach to quantization of dynamical
systems based on the theory of stochastic processes and
physically equivalent to the operator approach. Here we
consider dynamical systems on a manifold M, whose
dynamics is ruled, at the classical level, by a Lagrangian
of the type

Z(q,§)=5mg;(q(1)g (1)g /(1) —Vig(1)), (m

for a given kinetic metric g = {g;;}. We consider the gen-
eral case, where g can be also not positive definite, as, for
example, in the case of a particle moving on a space-time
with the Einstein metric, where ¢ has the meaning of an
auxiliary invariant parameter (proper time).

In the stochastic quantization procedure, g () is pro-
moted to a stochastic process on the manifold, with speci-
fied kinematical properties.

In particular we assume that g (z) performs a diffusion
on M, with a given Brownian metric 7= {5} (see Sec. I).
It is important to remark explicitly here that the two
metrics g and 7 play a completely different role. The ki-
netic metric g rules the dynamics and could not be posi-
tive definite. The Brownian metric 7 describes the noise
acting on the trajectories ¢ (¢) and must be always positive
definite. The aim of this paper is to investigate the rela-
tions between the two metrics, necessary for a complete
consistency of the stochastic quantization procedure.

The dynamics for the stochastic process g(t) can be
specified through an appropriate form of Newton’s second
principle of dynamics (see Refs. 1—4). In Ref. 4 we have
shown that the notion of geodesic correction to stochastic
parallel displacement plays a very important role in the
formulation of the second principle of dynamics. Here we
introduce dynamical laws through a stochastic variational
action principle, following the strategy advocated in Ref.
5 (see also Refs. 1 and 6). Then the resulting program-
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ming equation, of the Hamilton-Jacobi type, depends on
both metrics. In order to obtain complete consistency of
the stochastic quantization procedure, it is necessary to
assume a kind of compatibility condition between the two
metrics, simply expressed as follows. Starting from the
kinetic metric g={g;} and the Brownian metric
n={n"}, let us introduce the inverse matrices g and 7;;,
defined by

gijgjk=5f, "7ij77jk=55c . 2)
Then the compatibility condition is expressed as

gy n'=gH. (3)
When g is positive definite, then (3) requires =g, but
when g is not positive definite (as, for example, in the case
of a particle moving in a gravitational background with
Einstein metric g), then the relation (3) can have many
different solutions. If the compatibility condition is satis-
fied, then the programming equation and the continuity
equation lead, through a standard procedure, to the
Schrodinger equation on the manifold, so that the con-
sistency of the stochastic quantization procedure ‘is as-
sured.

The paper is organized as follows. In Sec. II we recall
all kinematical and dynamical structural properties of the
processes employed in the stochastic quantization pro-
cedure. In Sec. III we derive the programming equation
from the stochastic variational principle. In Sec. IV we
introduce the compatibility condition and verify that it
leads to the Schrodinger equation. Finally Sec. V is de-
voted to some conclusions and outlook for future develop-
ments of the theory.

II. THE KINEMATICAL AND DYNAMICAL FRAME

Let us consider the configuration-space manifold M,
with a given positive-definite n={%"}. We introduce a
class of trial diffusion processes [ty,ti]€Et—q(2)EM,
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with density p(-,7) with respect to the invariant measure
on M given by V/7dx, where 1 here denotes the deter-
minant of 7;; and dx is the Lebesgue measure. We as-
sume that the kinematics of the process is ruled by the
given conditional expectations

E(A¢() | g(t)=x)=[v{,)(x,0) +mi(x)]At +0O (At?) ,
@)
E(Aqi(t)Aqi() | q(1)=x)=2vn"(x)At + O(AL?) . Q)

In (4) and (5), Ag'(t)=q'(t +At)—q(¢) in a generic local
chart, At >0 and v, ,(-,t) is a given controlling field, be-
longing to the tangent space TM,. Moreover

mi(x)=—vp*T% , ‘ (6)

where T are the Christoffel symbols associated to n and v
is a diffusion coefficient, to be specified later. Notice"*
that m' does not transform as a vector under a change of
local charts, in agreement with the fact that Ag’ is a vec-
tor only up to the order At!/? (see Ref. 6). The density p
satisfies the Fokker-Planck equation

3ip=—Vilpv{s)+vAp, (7)

where V is the gradient with respect to the connection
given by I' and A is the associated Laplace-Beltrami
operator.

Through standard methods, one can also introduce
the drift field v_)(-,#) for the time-inverted process,
given by

1,2,4

vi_ (x,t)=v{ ) (x,0)—=2vn"V;p/p , v (8)
and the current and osmotic velocities

v =5 iy +v{_)),
) ) ) - 9
ui(x,0) =7 Wi —vi_))=vn"V;p/p .

In terms of the current velocity v, Eq. (7) assumes the
form of a continuity equation

3,p+Vi(pv)=0. (10)

We assume p(-,t;) and v(+>(',t),togtgt{ as control-
ling fields. The associated process, defined by (4) and (5),
plays the role of trial process in the stochastic variational
principle, introduced later. The physical processes will be
selected as the critical processes, making stationary the
action.

For the sake of simplicity we consider smooth process-
es, where p is smooth and nowhere zero and v, is
smooth and bounded. But our considerations can be easi-
ly extended to a class of much more singular processes, as
introduced by Carlen in Ref. 7 (see also Ref. 6).

According to the general strategy of Ref. 5, let us intro-
duce the stochastic Lagrangian, associated to a generic
process ¢ (t), in the time-invariant form

f(x,t):%mgijvf+)v{'_)—V, (11)
strictly related to the expression (1) for the classical La-

grangian (see also Refs. 1 and 6). Then the action is given
by

2
A= [ E(ZL(q0),0)dt . (12)
0

Critical processes make A stationary (84 =0), under
appropriate boundary conditions, when p(-,#,) and
v(4+)(*,t) undergo generic variations 8p(-,z;) and
Sv(4,(+,t). Notice that here the Brownian metric 7 is kept
fixed. The more general case, where 7 is also varied, is
analyzed in Ref. 8.

III. THE PROGRAMMING EQUATION

-In order to give a very handy expression for 84, by fol-
lowing the same method as in Ref. 5, it is convenient to
introduce the forward Lagrangian

1 . . i
J(+)(x,t): —Z-mgijuf+)u{+)+mvvk(gijnj Uz_’_))—'V

(13)

and the analogous time-inverted backward one .7 (_).
Notice that ., is a function only of v, . Moreover, a

simple integration by parts shows that

E(L(q(t),))=E(L +)(q(1),0), (14)

so that . and .¥ 4 are equivalent in the definition of the
action given by (12).

For a given smooth function S(-) on M, let us also in-
troduce the auxiliary function S(-,#), defined by

t
Sx=— [ E(L (4 qt),t') | g(t)=x)dt’

+E(S(g(t))) | g(t)=x) . (15)
Clearly one has S(-,#;)=S(*) and
(D(+)S)(x,t)=f(+)(x,t) , (16)

where the forward stochastic derivative D) is given by*
D=3, +v(, ) V;+VvA . 17

From (12), (14), and (15) one immediately finds
A=E(S(q(t1))—E(S(q(ty),t5)) . (18)

As a consequence of (16), under the stated variation v,
we have

8D(+)S+D(+)SS=83(+), (19)

where 8D, =8v{,,V;.

Let us now take the expectation in (19) and integrate on
[20,21]. By exploiting (13) and (9) we find, as in the flat
case,

t .
fto‘dzE((v,-s—mg,-juf>5u§1,>=E(aS(q<z0),to)). (20)

Let us now take the variation 64 in (18). Taking into ac-

count that averages are given by
E(F(g(n,0)= [ Fx,0p(x,)V7ndx ,

and that 85| =0, exploiting also (20), we finally have the
basic variation formula
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t . .
5A=fS,(x)8p(x,t1)\/')_7dx— fS(x,to)Sp(x,to)\/ﬁdx‘f' ftol dt fp(x,t)[mg,-j(x)v’(x,t)—V,~S(x,t)]6vf+)(x,t)\/ﬁdx .

Now we consider the critical processes for which §4 =0
under variations v, such that the boundary terms at ¢,
and t; in (21) cancel each other. For these critical pro-
cesses, since dv ) is otherwise arbitrary, we must have
the following relation between v and S:

mg,-jvj=V,-S, v':g”VJS/m . (22)
Therefore, the continuity equation (10) becomes
3:p+Vi(pgV;S)/m =0, (23)

while (16) with (22) leads to the programming equation of
the Hamilton-Jacobi type

|

3,8+ —g"ViSV,;S+V
—2mV[gYV,RV;R+V,(gYV;R)]=0, (24

where g is defined by

g i=n*nlgy (25)
and R is related to p by
p(x,t)=exp[2R(x,?)] . (26)

In the flat case, Egs. (23) and (24) lead immediately to the
Schrédinger equation through the canonical® ansatz for
the wave function

Y(x,t)=exp[R (x,t)+iS(x,t)/#] , (27
where v and 7 are related by
fi=2mv . (28)

In the nonflat case, considered here, some additional con-
dition, relating g;; and 7", must be introduced.

IV. THE COMPATIBILITY CONDITION

Let us assume that g;; and 1 are related through the
basic compatibility condition (3), which can be also stated
as g =g, on the basis of (25). If this condition is satis-
fied, then a very straightforward calculation, as in the flat
case, shows that the wave function ¢, defined in (27), as a
consequence of (23) and (24), satisfies the Schrodinger
equation

. #
zﬁ8,¢=——2;Ag¢+ vy, (29)

where A, is the Laplace-Beltrami operator associated to
the kinetic metric g. If g is of Lorentz (—1,—1,—1,1)
signature then A, is in fact a d’Alembertian. Vice versa,
if (29) is enforced to be equivalent to (23) and (24), then
the compatibility condition (3) must necessarily hold.

Let us notice a very important fact. In the program-
ming equation (24), the term in the square brackets de-
pends both on the kinetic metric g and the Brownian
metric 77. But if the compatibility condition is satisfied,
then any dependence on 7 will in fact disappear, in agree-

2n

T
ment with (29), where nothing about 7 is left.
Let us also remark that as a consequence of (3) we have

det(n,-j)z |det(g,~j) l , (30)

therefore any divergence V,f’ can be calculated by taking
V; according to the connection associated to 1 or to g,
since

Vif'=8;{f[det(n;)]/*} /[ det(n;;)]'/* . 31

It is very simple to verify that, if g is positive definite,
then the compatibility condition is in fact equivalent to
the equality p=g. This provides an independent justifica-
tion to the fact that in the standard treatment!~* the co-
variance of the Brownian noise is taken in agreement with
the positive definite kinetic metric.

On the other hand, Lagrangian variational principles
have a meaning also in the case where g is not positive de-
finite. In these cases the compatibility condition allows to
employ a Brownian metric different from the metric ap-
pearing in the Lagrangian. For example, in the Lorentzi-
an case, one can immediately see that the metric

n=2utu¥—g", u,v=0,1,2,3, (32)

is positive definite and compatible with g, provided
u={ut(x)} is a smooth field of time oriented velocities,
i.e., for example,

ubu,=1, u°>1. (33)

We refer to Ref. 6 for a more detailed analysis of this ex-
ample, of interest for the quantization of dynamical sys-
tems subject to gravitational forces.

V. CONCLUSIONS AND OUTLOOK

We have considered the stochastic quantization pro-
cedure by keeping separated the kinetic metric, appearing
in the Lagrangian, and the Brownian metric, appearing in
the covariance (5) of the trial processes. We have found
that a consistent formulation of the procedure, leading to
Schrédinger equation, enforces a kind of compatibility re-
lation between the two metrics. If also the kinetic metric
is positive definite, then compatibility implies that the two
metrics must coincide. If the kinetic metric is not positive
definite, then our procedure allows to apply also in this
case the stochastic quantization method, which must em-
ploy a positive-definite Brownian metric, necessarily dif-
ferent from (but compatible with) the kinetic metric. In
order to get a better possible physical understanding of
the underlying Brownian metric, it would be useful to
consider stochastic variational principles where also the
Brownian metric 7 is subject to variations, together with
the drift v(,,. Work on this subject is in progress and
will be reported elsewhere.®
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