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We give the conformal transformation law for the effective action for conformally invariant field
theories on general curved space-times. It is shown that this law can be used to obtain almost all
known renormalized stress tensors for such theories. It can also be used to obtain approximate re-
normalized stress tensors; for example, we derive as a special case Page’s approximation for static

Einstein space-times.

I. INTRODUCTION

Two years ago Page' introduced a scheme for approxi-
mating the renormalized stress tensor associated with a
thermal quantum state of a conformally invariant field
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theory in a static Einstein space-time. In recent months
interest has been revived in this scheme since it was
shown by the numerical work of Howard? that this ap-
proximation was extremely (perhaps unreasonably) good
for the Hartle-Hawking® vacuum state of a Schwarzschild
black hole.

Page’s approximation scheme relied on making a con-
formal transformation to the optical (ultrastatic) metric
on the space-time. This metric has the important proper-
ty that the coincidence limit of the second DeWitt coeffi-
cient,* a,(x,x), the so-called trace anomaly, vanishes. In
this paper we shall show how Page’s work can be ob-
tained, as a special case, from a knowledge of the general
conformal transformation law of the one-loop effective
action. ‘This transformation law is derived in Sec. II and
it is shown that it can take a particularly simple form for
space-times which are conformal to those where a, van-
ishes. In Sec. III we present a number of examples and
show that in many simple cases our analysis enables one
to obtain the exact renormalized stress tensor. Section IV
provides the connection between this effective-action for-
malism and the states and Green’s functions of the theory.

The work presented here is largely based on work per-
formed by one of us (M.R.B.) about five years ago. None
of it was published at that time; then its relevance was un-
clear, in particular its accuracy as an approximation
scheme was unknown. Time has shown that, even in non-
trivial cases, it is remarkably good. Why this should be so
remains an open question.

II. THE GENERAL SCHEME

We shall deal entirely with free conformally invariant
field theories with spin s=0, +, or 1. In anticipation of
our use of dimensional regularization we shall work with
an n-dimensional space-time manifold.

If S[®] denotes the classical action functional of the
theory then the vacuum-to-vacuum amplitude is defined
by the functional integral

where N is a metric-independent normalization constant.
The |in) and |out) vacuum states are defined relative to
the background field P.

We shall restrict ourselves to the one-loop O (#) ap-
proximation to the vacuum-to-vacuum amplitude, in
which one keeps only the quadratic fluctuations about ®.
Performing the Gaussian functional integral one finds
W=S+#W" 4 - where

W= _ é Tr(1nGy) (2.2)
with Gg(x,x’') being the Schwinger-Feynman Green’s
function for the theory. W'V is equal to the one-loop ef-
fective action for the theory.

As it stands Eq. (2.2) is meaningless and it must be
given a meaning through renormalization theory. Using
dimensional regularization® we define the renormalized
one-loop effective action W' by adding counterterms to
cancel precisely those terms in W'!) that appears as poles

at n=4. To be specific, we define
w=whpAaw®), _,, 2.3)

where the counterterms AW'!), which are independent of
®, are given by®

AW = 2L [ gy g12R,  ROA_IR ,R®+ L R?)
(n —4)
n b(s) fd”xgI/Z(RabcdRade_4RabRab+R2)
(n —4)

(2.4)

with the coefficients a (s) and b (s) given in Table I..

We now wish to consider the properties of Wy under
conformal transformations. .[We shall henceforth drop
the superscript (1) for convenience but remind the reader
that we will always be dealing with the one-loop effective
action.] We write g,, —=e ~?°g,, and generally distinguish
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TABLE L. The coefficients a(s) and b(s) for Eq. (2.4) ac-
cording to dimensional regularization.

s=0 s = —;— s=1
(57607%)a (s) 3 18 36
(576072)b (s) -1 —11 —62

quantities in the conformal space by a tilde. The bare ef-
fective action preserves the symmetries of the field theory
and so is invariant under the conformal transformation,
whence ‘

Wrlgl—Wrlg]l=—(AW[g] —AW[gDn=4 .  (2.5)

Using the n-dimensional conformal transformation laws
of the Appendix, one can show that

(AWl —AWI[g]),—s=a(s)A[w;g]+b(s)Blw;g] , (2.6)
where
Alwiga]= [ d*x g"*{(RapeaR ¥~ 2R R+ $R D00
+ 3[R +3(0w —w,.0°)]
X [Dw——a);dw;d]} (2.7)
and
Blwigwp)= [ d*x g'*{(RgpaR !~ 4R, R+ R)0>
+4Rabcu;"w;b—-2Rco;cw5c

+2(0..0°) 40,0 Oo} .

(2.8),

In writing Eq. (2.6) we have discarded total divergences.
From Egs. (2.5) and (2.6) we find that under conformal
transformation Wy[g] transforms according to the rule

Wrl8l=Wrlgl—a(s)A[w;g]—b(s)Blw;g]. (2.9)
By employing the identity

S5

2.
50 (2.10)

% o)
F[e 2 gcd] =—28a s F{gcd]
gab

0=0

we find
TRaa=a(s)(RabcdRab‘{d—-2RabRab+ %R2+_§‘DR)
+b(5)(RapeaR ™™ —4RppR®+R?) ,  (2.11)

where the renormalized effective stress tensor Tx% is de-
fined by

TR =2g 12 Wk . (2.12)

Bgab
Equation (2.11) is in agreement with the usual trace anom-
aly.b

The trace anomaly is proportional to the coincidence
limit of the second DeWitt coefficient, a,(x,x). Spaces in
which a,(x,x) vanishes have two important properties.
First, there exist states in which the renormalized stress

tensor vanishes identically.” Secondly, the Gaussian ap-
proximation is especially good in these spaces and Page!
has argued that the stress tensor should be approximately
zero in many cases of interest. Both these points will be
discussed further in Sec. IV.

These properties suggest that it should be of interest to
look for conformal factors @ such that

TRaa[g]:() .

In such a space we may then set Tx*’[g]=0, as an exact
statement for the first class of states or as an approxima-
tion for the second class. Equation (2.9) then enables us

to obtain an expression for Tg?[g]. To this end we first
note that

S

80

(2.13)

{a(s)4[w;g]+b(s)B[w;g]} = /*Tr%I8] -
g fixed

(2.14)

Thus when Tr%,[2]=0 we can write

SWh
T ab[ ]:Zg—l/Z
18 8gab
[}
=2g7 12—~ {a(s)4[w;g]+b(s)B[w;g]}
Bgab o fixed
=a(s)T4+b(s)Tp®, (2.15)
where
TAab____gR cabdw;cd _ %(w;cw;C);ab
42820 0,q0*).. +(@,,0)? + F 0 @.,0°)]
—8(@,, ) w? — 800 ¥ w,, ') (2.16)
and
TBabZSRmbda);cd+8Rcabda);cw;d—-—8a);aca);c;b
—8(w,, ) w® — 800w, ')
+4gab[w;cdw;m’+(w;cw;c);dw;d'*‘ %(w;cw;c)zl .
(2.17)

It can be shown that the tensors T4 and Ty have the fol-
lowing properties when Eq. (2.13) is satisfied:

TAaa =RapeaR ade_'zRabR ab+ %R 2+ %DR , (2.18a)

TBaa =RabcdR ade_4RabRab+R2 ’ (2.18b)
TAab;b=TBab;b=O s (2.19)
T4[g]=T5"[g]=0. (2.20)

It is convenient to record the expanded version of Eq.
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(2.13). This is given by
TRaa[g] =a (S)TAaa[§]+b (S)TBaa[g]:O ’
where

T 4%[8]1=¢*{CapcaC™***+ TOR + TRO0+ TR ;00

(2.21)

+40(0w)
+8[((0)* — 0,0, — Ry %0’
_w;cww[:lw"‘(“);a“);a);bw;b] }
(2.22)
and
Tp%[g]=€**{RapeaR“***— 4R R+ R*
+8[(0w)* — 0,450 *® — R gp 0 °er’®
— 0w, 0w —(@,,0'%).,01} .
(2.23)

In the cases where we solve Eq. (2.21) we exactly solve the
equations

T,.%[g]1=0 (2.24)

and
T3%[8]1=0.

This allows the resulting solutions to be used to obtain the
stress tensors for any spin without extra work.

Although for simplicity we have used dimensional reg-
ularization to obtain our results we wish to stress that the
crucial result is independent of the regularization scheme
used: Egs. (2.7) and (2.8) define four-dimensional actions
possessing the property that the tensors formed by taking
their variation with respect to the metric have traces pro-
portional to the trace anomaly.

Finally we note that for regularization schemes other
than dimensional regularization the trace anomaly can
take the form

Tr% =a(s)(RgpeaR“***— 2Ry R®®+ $R*+ $0R)

(2.25)

+ b (s)(Rapea R —4Rzp R+ R?)+c(s)OR ,
(2.26)

where c(s) can be nonzero for spin-1 fields. This coeffi-
cient may be adjusted by adding a term proportional to
R? to the effective Lagrangian if that is thought to be
desirable.. Here we shall not discuss it further and we take
¢ (s) to be zero for all spins.

1II. EXAMPLES

We shall list below a number of examples where the
formalism of the previous section may be used to obtain
an effective stress tensor. We shall for brevity only give
the results for scalar fields although, of course, one can in
all cases find corresponding results for spin + and 1.
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A. Conformally flat spaces

Consider a space which is conformally related to the
whole of Minkowski space and choose coordinates in
which the metric takes the form g,, =e ~*7,,. Equation
(2.21) is trivially satisfied if we choose = —X. Using the
identity R,,[e ~2?g]=0 we find

W;ap + ;0035 — 3 8ap ;0= — 5 (Rap — s Reap) (3.1)
which enables us to write

T,%=-[g®40R —R?)+4RR®—4R ] (3.2)
and

Tp%=2[g+R?>— +R4R®)+R“R% —2RR®] (3.3)

and Eq. (2.15) yields Tz for arbitrary spin.
In this case the conformal space is just Minkowski

' space and the appropriate state there is the Minkowski

vacuum which has vanishing stress tensor. Equations
(3.2) and (3.3) thus define the exact stress tensor in the
conformal Minkowski vacuum on the original space-time,
in agreement with the results of Ref. 8.

B. Static Einstein space-times

The second general class of space-times where one can
find a solution to Eqgs. (2.24) and (2.25) is the set of static
Einstein space-times, that is, space-times where R,, =0
and there exists a curl-free Killing vector field K. In such
a case the following equations hold:

Kiain=0, (3.4)

Kape =CapeaK? (3.5)
’and

7K, . .K.4=0 . (3.6)

We can introduce a time coordinate ¢ associated with K
in the sense that K*=(d/d¢)°. Equations (3.4), (3.5), and
(3.6) are then sufficient to show that

o[ T1=27T)t ++In(—K?)

satisfies the equations

Ow=0 - 3.7
and

20°%0,5@0°?).4 +0(0,40°%) = + Cpappeg C? . (3.8)
In turn, these equations imply that o satisfies Eqgs. (2.24)
and (2.25). ]

Below we shall see that o[ 7] yields the approximate re-
normalized stress tensor for a thermal state with tempera-
ture T. The vacuum stress tensor T ?’[0] defined by w[0]
is a rather complicated function of K¢ however the
finite-temperature corrections are relatively simple: one
can write



TR “[T]=Tg[0]

+TLa(s) +b(s)]——

agpb
Ok? g 2K K +8CK Kd}
4 1 | a 4K°K°
+2Talo)+b(] 7 87—~ (3.9)

It is interesting to note that the second term vanishes for
scalar fields leaving the thermal part of the stress tensor
isotropic.

As a particularly simple example we can consider
Rindler space with its associated Killing vector field K.

31 EFFECTIVE ACTIONS AND CONFORMAL TRANSFORMATIONS

2517
For scalar fields we find
1 4K°K®
TR T]= QrT)—1]— |g®— 22
=“1T] 1440 2 Lem 1% [g K2
(3.10)

Clearly we have Tx%[1/27]=0, in agreement with the
fact that the thermal Rindler state with temperature 1/27
is identical to the Minkowski vacuum.

A more interesting example of the use of the above re-
sults is provided by Schwarzschild space-time. The result
for the renormalized expectation value of the stress tensor
in a thermal state with the Hawking® temperature
Ty =1/87M can be expressed through the equations

TA“”’[TH]=—24"—16R;[(3r6+6r5R +9r*R24+12r°R3 4 13r2R*+ 14rR*—41R ) U
+8R*r*+7°R +rR*+2R*) V4 72R W] (3.11)
and
TB“”[T;,]: 8r61R4 [(#642r°R +3r*R?>+47°R3+3r2R* L 2rR5—23R ) U
+8R3(r*+r%R +rR2+2R3jVab+24R6W“”] , (3.12)
[
where R =2M and the tensors U%, V% and W% are W =diag(3,1,0,0)% . (3.15)

given in Schwarzschild coordinates (t,7,0,¢) by

Equations (3. 11) and (3.12) are in agreement with the re-

U%y, =diag(—3,1,1,1)%, , (3.13) sults of Page,! and correspond to the approximate renor-
. ) . malized stress tensor in the Hartle-Hawking vacuum.
Ve =d1ag(072, —1,-1)% (3.14) The stress tensor for a state with arbitrary temperature
and T can be obtained with the help of Eq. (3.9) which yields
]
472 167 R 2 2yyab
T4®[T]=T,%[T 247 (T — Tyt r* —(T*—TpHRNU + —— ————(T*—Tx)V*®  (3.16)
4PIT]=T,4 [ ul+ 3r2(r—R)2[ H I 3 %r_R) H
and
: )
Tp®[T)=T®[Ty]+ —(—4—R)7[8772( T*—Ty*r*—(T*—Ty*)R?JU + 16#2————2( R 2 (T?—Ty*)Veb. (3.17)
r r-\r —

In particular, if we set 7=0 we obtain an approximate ex-
pression for the renormalized stress tensor in the
Boulware vacuum!® which agrees with all known proper-
ties of the exact stress tensor.

C. Flat-space curl-free conformal Killing vector fields

The quantum field theory associated with the curl-free

—

conformal Killing vector fnelds in ﬂat space is discussed
in Ref. 11. Choosing @ =+ In(—K?) one finds that

O0w =0 (3.18)

and

(Dw)z—w;abw‘“b—w;cw;cﬂw—(w;aw;“);bw;b=0 (3.19)
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so that Egs. (2.24) and (2.25) are satisfied. Then for scalar
fields Eq. (2.15) yields

(OK?—3K*01nK?)?
16K*

» 4K°K°
T

R ab__ __ 1
144072

(3.20)

in agreement with the exact results of Ref. 11. This exact
agreement is a consequence of the vanishing stress in the
appropriate conformal state in the related ultrastatic
space.!!

D. Flat-space Killing vector fields

Since K,.; =0 for a Killing vector field in flat space
there are only two independent scalar invariants that one

(vi—v)? v’ 4L, (v)Ly(vy)
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can form from K¢ these one can choose to be K? and
K?*,K%% Seeking solutions to Eqgs. (2.24) and (2.25) of
the form w=w(K? K% ,K?%?) one finds the solutions

o=+ In[K°L,(v))](+)+ In[K°L,(v,)], (3.21)
where
L,(v)=(K,,.K*—v8,%)K, (3.22)

and (4 ) means that either logarithm is a solution on its
own and also their sum is a solution. Here v; and v, are
the roots of the quadratic equation

V4 H(OK v+ det(K, %) =0 (3.23)

which is the characteristic equation of the covariantly
constant matrix K.

The corresponding stress tensor can be written

TRab: -

gab+(

38407% | [K°L.(v))]?

In the particular case of the Rindler Killing vector field
[OK?= —4 and one has v;=0 and v,=1. Choosing the
nontrivial solution gives

242 agb
Tpot— ——L(BK) Jpw SKKTH D 52s)
14407 16K K
or, in Rindler coordinates (7,§,y,2),
1 .
Tr% = — —————diag(—3,1,1,1)° (3.26)
Rb= " aa0m26" OF b

in agreement with Ref. 12.

The final two examples we give in this section are flat-
space Casimir effects. In both cases we look for solutions
to the equation [lw=0 which respect the symmetries of
the background space-time. For flat-space solutions to
Ow=0 to satisfy Egs. (2.24) and (2.25) they must also
satisfy the equation

D@,,0%) +20"%w,p0°),, =0 . (3.27)

E. Casimir effect for parallel plates

For flat space periodically identified in the x direction
with period a we seek solutions w=w(x) such that
e ~®¥) =g —@*+a) The solution (ignoring the trivial addi-

tive constant) is w= —2wix /a. The corresponding stress
tensor is given by
4_2
Tgr% = ——— diag(1,—3,1,1)¢ (3.28)
R'5= a400* € b

in agreement with Ref. 13.

vi—v2)[K°L (v))]

2
Vi 4L, (vy)Ly(vy)
(+) + . (3.24)
(KL [P v [K°Lo()]
r
The solution w= —mix /a gives the stress tensor for the

scalar field satisfying Dirichlet boundary conditions; this
is obtained by replacing a by 2a in Eq. (3.28).

F. Casimir effect for the wedge

We use cylindrical polar coordinates for which the line
element is

ds’=—dt’>+dr*+r?d6*+dz* (0<0<a).

We seek a solution of the form w=w(r,0) where e ~°"?

= ¢ ~?n0+a)  The solution is given by w=Inr —27i (8/a)
and the corresponding stress tensor is

L
AP —
R0 14400204

—5 =

472 a?
a 2

diag(1,1,—3,1)% .

(3.29)

Equation (3.29) gives the result for periodic boundary con-
ditions; as before, the result for Dirichlet boundary condi-
tions is obtained by replacing a by 2a and agrees with
Ref. 14.

1V. STATES AND GREEN’S FUNCTIONS

In this section we shall answer the question, what does
it all mean? The results of Sec. II were obtained by a sort
of magic in n-dimensional space-times. Here we shall
work entirely with the physical, four-dimensional world
and show how a given renormalized stress tensor is related
to a given state of the matter field in the space-time. For
simplicity we shall discuss only the scalar field; a similar
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.analysis holds for other spins.

Let us suppose that the scalar field ¢ is in some unit-
norm state | S). We define the Feynman Green’s func-
tion for this state as

G(x,x")=i(S | T[(x)$(x)]|S) ,

where T denotes time ordering. G must be symmetric in
x and x' and must satisfy the inhomogeneous wave equa-
tion

4.1)

(O—1R)G (x,x")= —8(x,x") . 4.2)

Different states | S) will correspond to different solutions
of Eq. (4.2). We shall consider those states whose two-
point functions have the Hadamard form.!* It is known
that symmetric Green’s functions of this form must have
the following structure:'®

. 1/2
Glx,x")=— | A&

4.3
87?2 | o+ie @3)

+vin(oc+ie)+w |,

where v and w have the covariant Taylor series expan-
sions

v (%,X") = 3V (x)0%"— %vab;c(x Jolcbot+0(0?), (4.4)
W (x,x") =w(x) — 5w,.q(x)o%+ Lwgp (x)0%*
— [ Wape (%) — W, g (x)]0%P0° +0(0?)

(4.5)
where 0°=0°? and
pab = L (CeabdR , +2cctabd Ly 4.6)
w“b=t“b——%t‘cg“b+ +R %y + 3w — +g%w), 4.7
1% =35 (RapeaR*®®—Rp R+ OR) , (4.8)
1%, =0. (4.9)

To this order in o, the state dependence of G is contained
in the arbitrary scalar w(x) and the symmetric tensor
t%(x) which is arbitrary except for conditions (4.8) and
4.9).

This result is quite general and is a well-defined state-
ment about the finite function G (x,x')—no use is made
of any renormalization theory. Now, if we compute the
renormalized expectation value in the state |.S) of the
stress tensor operator of the scalar field, the answer is’

TRab: 12 (tab_+_vab1n“2) ,

Py (4.10)

where p is an arbitrary renormalization mass and the
symmetric tensor v, Eq. (4.6), is conserved and trace-
free—indeed it is the usual local renormalization ambigu-
ity which can be written as

b_ 1 —1/2_0 4 ‘
V=358 'ng f d"x gl/zccdefCCdef .

Equation (4.10) makes plain the correspondence be-
tween renormalized stress tensors and the Green’s func-
tions of the theory—the crucial link is provided by the
conserved tensor ¢ whose trace is proportional to the

(4.11)

2519

curvature invariant a,—Eq. (4.8). It is worth emphasiz-
ing that there is nothing anomalous about the trace of this
tensor where it appears in the Taylor series expansion of
the Feynman function—it is only the trace of Eq. (4.10)
that can be said to be anomalous.

If a space-time is such that a, vanishes then there can
exist states for which 2% being zero satisfies Egs. (4.8) and
(4.9). For these states the renormalized stress tensor is
essentially zero. We shall call such states zero-energy
states. If a space-time i$ conformal to one where a, van-
ishes then Eq. (2.15) gives the renormalized stress tensor,
where it is to be understood that the expectation value is
taken in a state which is the conformal image of a zero-
energy state.

So far all we have said has been exact. However, the
status of the use of the above analysis as an approxima-
tion scheme is less precise—it is more of an art. For ex-
ample, we know of no reason (other than the pleasantly
vague arguments of Page!) why Egs. (3.11) and (3.12) give
such a good approximation to the Hartle-Hawking stress
tensor. Our procedure necessarily neglects any vacuum
energy in the conformally related, ultrastatic space-time.
In Schwarzschild space-time there are states which are the
conformal images of zero-energy states in the ultrastatic
space-time; they are apparently close to but not equal to
the Boulware vacuum.

V. CONCLUSION

We hope to have demonstrated that the conformal
transformation law for the renormalized effective action
provides a compact and elegant way of studying proper-
ties of conformally invariant field theories in curved
space-time. It is amusing that one can obtain from this
law expressions for almost all known renormalized stress
tensors in curved and topologically nontrivial flat space-
times—the result for the Casimir wedge is particularly
pretty. Even where one does not obtain the exact stress
tensor it appears that one gets a good approximation.

For states of matter which are the conformal images of
zero-energy states Eq. (2.15) gives a general analytic ex-
pression for the renormalized stress tensor. This allows
one to phrase the general back-reaction problem as

Gab___TRab , (5.1)

where TR is given by Eq. (2.15) and w is determined
from Eq. (2.21).

Where these states only approximate states of physical
interest—for example, in Schwarzschild space-time—this
procedure will yield an approximate solution of the physi-
cal problem. The recent work of York!” represents a first
step in obtaining an iterative solution of these equations
for black holes in boxes. It would be of great interest to
find a solution @ of Eq. (2.21) that yields a stress tensor
which approximates the renormalized stress tensor for the
Unruh vacuum.!® Then one could look for nonstatic,
spherically symmetric solutions of Eq. (5.1) and so discov-
er what happens to an evaporating black hole.
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APPENDIX

Our space-time conventions follow those of Ref. 19.
The following n-dimensional conformal transformation
laws were used in Sec. II:

Rabcd[g]:ezw(Rabcd[g]+8{a[cwb]d]) , (A1)
Rb[g]=e>{R%[g]+ 5 [(n —2)0’s+8%40% ]} ,  (A2)
R[g]=e®[R(g)+ 3(n —1a%], (A3)
O =e2?[0d—(n —2)0*%.,] , (A4)

where g,, =e ~2°g,, and
0 =4+ 0y ) — 28% 0 0, - (AS)

The following four-dimensional identities were used in
Sec. III:

Vase —Vases =R%bcVa » (A6)
C%ed:a =Ro(a;c)— +8b1aR;c » ' (A7)
Coped C— R 1y gR%4 2R , R+ LR , (A8)
Cacde Cb°* =7 8ab Coae C* . (A9)
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