PHYSICAL REVIEW D

VOLUME 31, NUMBER 2

15 JANUARY 1985

Multisoliton solutions to Einstein’s equations

J. Ibanez
Departament Fisica Teorica, Facultat de Ciencies, Universitat de Palma de Mallorca, Spain

E. Verdaguer
Departament Fisica Teorica, Facultat de Ciencies, Universitat Autonoma de Barcelona, Spain
(Received 31 May 1984)

We discuss a multisoliton solution to Einstein’s equations in vacuum. The solution is interpreted
as many gravitational solitons propagating and colliding on a homogeneous cosmological back-
ground. Following a previous letter, we characterize the solitons by their localizability and by their
peculiar properties under collisions. Furthermore, we define an associated frame-dependent velocity
field which illustrates the solitonic character of these gravitational solitons in the classical sense.

I. INTRODUCTION

The solutions to Einstein’s equations in vacuum ob-
tained by the inverse scattering technique (or soliton tech-
nique) of Belinskii and Zakharov' are generally known as
soliton solutions. The name “soliton” is applied because
of the technique used rather than as a consequence of
specific properties of these solutions. In fact, Belinskii
and Zakharov succeeded in a generalization of the inverse
scattering method to general relativity. That method is
used to solve certain nonlinear equations, such as the
Korteweg-de Vries equation, for example, Ref. 2, and it is
known to give solitonlike (solitary wave) solutions. These
classical solitons are characterized by their localizability,
by their peculiar behavior under collisions, and by having
an associated velocity of propagation.

The soliton solutions in general relativity, however, gen-
erally have no resemblance to the classical solitons. All
that is required to obtain such solutions is to have vacuum
metrics with two commuting Killing vectors. For exam-
ple, one can assume a stationary axisymmetric back-
ground metric and obtain a new solution as a soliton solu-
tion, but the stationarity of this solution prevents any
comparison with a classical soliton.

However, taking two spacelike Killing vectors, one can
obtain nonstationary solutions. Some of these solutions
have properties similar to the classical solitons. Belinskii
and Fargion® studied the first of such “solitonlike” soliton
solutions. They found a family of nondiagonal metrics
which could be interpreted as two inhomogeneities propa-
gating on a homogeneous cosmological background. The
soliton structure in this case was revealed in the localiza-
bility of the metric components. They also defined a velo-
city of propagation for such inhomogeneities, but this be-
ing greater than the velocity of light, for some solutions,
could not be interpreted as a velocity of physical propaga-
tion.

Ibafiez and Verdaguer* studied a simple diagonal metric
in detail. It contained four solitons, two of which collid-
ed, so that their behavior under collisions could be exam-
ined. It was suggested that the gravitational solitons
(gravisolitons) have many similarities to the classical soli-
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tons because of their localization and their properties
under collision. The analysis was based on intrinsic prop-
erties of the solution (deduced from the Riemann tensor)
rather than on properties of the metric components.

In this paper we continue such an analysis and extend it
in two ways. On the one hand, we generalize the results
to a multisoliton solution. It is a rather straightforward
generalization of the four-soliton results: the qualitative
behavior of the multisoliton metric is similar to that of
the four-soliton one. In the general case, however, the sol-
itons collide several times and we can confirm some of the
features which appear in the single-collision case.

On the other hand, we define a velocity field associated
with the solitons. Although such a definition is frame
dependent, the velocity is never greater than 1 and this
suggests that the solitons propagate curvature and energy
in some sense.

Finally we should mention that the multisoliton solu-
tions are inhomogeneous cosmological models. They
represent highly inhomogeneous universes which evolve
towards homogeneous Kasner models with gravitational
waves. They are an example of the creation of a back-
ground of gravitational waves as a consequence of initial
inhomogeneities, in the line of the work of Adams et al.’

The plan of the paper is as follows. In Sec. II the 4m-
soliton solution is given and the properties of the metric
components are analyzed in the different asymptotic re-
gions of the space-time. The main conclusion is that the
solutions represent 4m inhomogeneities propagating and
colliding several times on a cosmological Kasner back-
ground. ,

In Sec. III the Riemann tensor of the metric is studied.
The scalar invariants (two in our case) are given, and the
components of the Riemann tensor are projected onto a
physically meaningful null tetrad. This analysis shows
that the solitons evolve towards pure gravitational waves
as the background expands. This is seen from the intrin-
sic properties of the metric classification in the different
asymptotic regions.

In Sec. IV a velocity field associated with the solitons is
proposed and its properties are studied. By means of the
Bel-Robinson tensor we associate a superenergy density
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and a superenergy flux with the solitons. The results, al-
though valid in a peculiar frame, are suggestive and illus-
trate our previous interpretation that the solitons start as
quasiparticles and evolve towards pure gravitational
waves.

In Sec. V the optical scalars are studied. We study the
shear and expansion of null rays produced by the solitons.
The convergence of null rays produced by the solitons and
the shear induced by them resemble that produced by
gravitational plane waves in cosmological backgrounds.®
We should emphasize here that these solutions are very
simple and are an example of plane waves that can be
studied analytically.

II. THE METRIC

In this paper we study a family of exact solutions of the
vacuum Einstein equations. These solutions have been ob-
tained by the inverse scattering technique developed by
Belinskii and Zakharov.! This technique has been re-
viewed in several references’ and we shall not repeat it
here.

We recall that with this technique new vacuum solu-
tions of Einstein’s equations can be generated when there
are two commuting Killing vectors (we assume here two
spacelike Killing vectors), namely, when the metric has
the form

ds?=f(t,z)(dz* —dt?)+gu (t,2) dx®dx? ,
(1
a,b=1,2.

A new solution is obtained when a particular “seed” solu-
tion (f,go) is known.

The main ingredients of the generating technique are
the so-called “pole trajectories” with equations

pi®—2(z; —iw; ) +1°=0 ,
(2)

0 .
zi=z;y—z, i=1,...,n

where 7 is the “soliton number” and z” and w; are arbi-
trary real constants. We shall only consider the case when
w; =0, i.e., complex poles. For a complex pole trajectory
U;, its complex conjugate is also a pole trajectory. Thus
complex poles always appear in pairs. (For a discussion
of real poles see Carr and Verdaguer® and Belinskii and
Francaviglia.”)

From the solutions of (2) and the seed metric (fy,g0),
new solutions (f,g) can be obtained using only algebraic
manipulations. Explicit solutions of (2) have been given
by Carr and Verdaguer.® For complex poles, Eq. (2) has
two different solutions:
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These solutions satisfy ot =1/07
l<oi" <.

The behavior of (3) in the different asymptotic regions
is

and O<o; <1,

0’,~_=1——;—-+O(t_2) ,
| z; | <<t— oo (interaction region)
172
(w4202 -2
o =1— |— 't . +0(t™Y,
| z; | =t— oo (light-cone region) (4)

2
of=é[l+0(z“)] , t<<|z|—> oo (far region)

[expressions inverse to (4) correspond to o} ].

The first region (interaction region) is contained in the
intersection of the causal cones of each z (12=z?). The
f%r region is the region not causally connected with any
Z;.

As the seed metric we will use the Kasner metric,
which is a Bianchi type-I solution. It can be written in
the form (1) as

ds?=t® =V 2dz? —dr?) 411 0ax2 41 0y . (5)

8=0 corresponds to the axisymmetric Kasner metric. For
8> 1 the z axis is expanding and for & <1 it is contract-
ing. Flat space is given by 8=1. The Kasner metric has
a volume expansion proportional to ¢ ~!.°

All the new solutions obtained via the inverse scattering
technique are inhomogeneous along the z axis and have
the Kasner singularity at ¢t =0. However, depending on
the soliton number 7, on the prescription taken for o, o+
or ¢~ and on the choice of the arbitrary parameters, they
can have very different properties. A general analysis of
these properties has been carried out by Carr and Ver-
daguer.® Here we are interested in a family of solutions
which exhibit a solitonic character, i.e., a multisoliton
solution which can be interpreted as physical solitons
propagating on a homogeneous (Kasner) background.
The simplest such multisoliton solutions are given by the
diagonal metrics.?

82k210'k0'1 64wk2w120k2012
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FIG. 1. The t-z diagrams for m =1 and m =2 solutions.
The solitons propagate near the light cones. Soliton collisions
are represented by black dots.

where

_ 2 16wk20 k2

He=(=0'+ 1 op @
and where we take o;" for i even and o} for i odd, so that
from (6) and the limits on o given above, the metric (6)
tends to the seed metric in the interaction region and in
the far regions. The inhomogeneities are thus localized on

the “light-cone” regions ( | z; | ~1).
The parameters z represent the “origins” of the soli-
tons and w; their “widths.” Since one can take one of the

2z as zero the relevant parameters of the solution (6) are
]

4m (2m —1 z2s, 2m w;’s, and the seed parameter 8).

In order to interpret these solutions, it is convenient to
draw the t-z diagrams of Fig. 1. In these diagrams the
light cones from the z are shown. The solitons propagate
roughly along the lines of the light cones so that we have
in general 4m solitons and m(2m —1) collisions, the
latter represented by black dots.

A qualitative picture of the multisoliton solutions can
be easily given by studying the metric components in the
asymptotic regions. With the asymptotic values for o
given in (4) we obtain the following limits for the metric
(hereafter the K index on a quantity refers to the value of
that quantity for the Kasner seed solution):

g1 ~gX[14+0(z"1], far region
g ~gX[1+0(~"], causal region (8)
g1 ~gN[14+0(~12)], light-cone region

g5, behaves like g1;. For the coefficient f we obtain

f~fX[1+0(z"1], far region

9)
 4mm —6)
[~
IT wi?
k=1
2m
X TT [2we®+w?) — (wy —€wy)* — 242
k’,cl>=11
X[14+0(t~1], causal region
where
€,=-+1forieven, ¢,=—1fori odd . (10)

In the light-cone region we must distinguish the different
light cones. For the light cone with origin z_ we obtain

K 4m(4m —6) 2m wkaIZ 2
S~ I (L0’ 426”2+ (i +2) 2 — e (oaxy) PP = ——— 1 [1+07 D], (1)
= kiXkl
H (xki2+wk2) k’,c1>ll i
k=1
! . 0 ..
where starting at z, _; and undergoing one collision, one has
o o f~fX/w*, and so on. For the soliton traveling to the
Zyi =Zp —2; (12) right starting at z{, and undergoing 2m —1 collisions, one

and where xj; =(wi?+2z;%2)!/?—2z;; for solitons traveling
in the positive z direction (“to the right”) and
X =(wi > +2;;2)2 4 z;; for solitons traveling in the op-
posite direction (“to the left”).

The expression (11) has different limits on the different
light cones. To illustrate this, we shall take
w; ~w << | zy; | . This case is particularly interesting since
for small w the solitions are very localized so that one can
follow them almost from the start. For the soliton travel-
ing to the right, starting at z2 and never colliding, one
has f~fX/w% For the soliton traveling to the right,

has f~fX/w*", which agrees with the asymptotic value
in the causal region. Thus it appears that each collision
increases the value of the coefficient f relative to its value
in the corresponding Kasner background. After each col-
lision the solitons have a greater longitudinal expansion
along their direction of propagation.

Thus the multisoliton metric tends to the Kasner seed
metric in the far region, and in the causal region as well,
but with a different expansion coefficient f. The differ-
ence is related to the number of collisions. In the light-
cone region it differs in O(1/Vt) from that of the back-
ground, which is typical of gravitational waves in expand-
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FIG. 2. (a) The volume expansion () is graphed against the
propagation axis z for m =1. The Kasner parameter is §=0.
The widths and origin of the solitons are w;=w,=0.05 and
z9=0 and z)=1. The different curves from bottom to top cor-
respond to the time sequence ¢ =0.1 (before collision), t=0.5
(collision time), and ¢ =0.9 (after collision). (b) This is the same
as (a), but taking the widths and origins of the solitons to have
the values: w;=0.1, w,=0.05, and z{=2z3=0. ‘

ing cosmological backgrounds. One should not interpret
this to mean that in the light-cone region the multisoliton
gravitational field tends to that of the Kasner seed. In
fact, as we shall see from the Riemann tensor, the metric

in that region tends to a Petrov type-N (pure radiation)
metric, which is completely different from the Kasner
seed (Petrov type-I metric).

To illustrate the inflation produced by the passage of a
soliton on a volume element, we represent in Fig. 2(a) the
volume expansion Q=(1/V)dV/dt for a metric with
m =1, where V =fg,; g2;- We also see in this figure the
solitonic character of the metric: the shape of the solitons
is unchanged after the collision.

An interesting case occurs when we consider z? =0 for
all i, but w;w; (otherwise the metric is just the seed
solution). In this case the collision takes place exactly at
t =0. When m =1 this solution represents only two soli-
tons, which appear at z =0 and propagate along the z axis
in opposite directions. However, this solution is com-
pletely different from the diagonal two-pole complex solu-
tion (m =+ ), which differs completely from the Kasner
seed in the far region.® Figure 2(b) represents the volume
expansion with m =1 for this case. Only two solitons ap-
pear with characteristics similar to those of Fig. 2(a).

III. RIEMANN TENSOR

The intrinsic properties of the space-time are described
by the Riemann tensor and its invariants. Thus, in order
to see the solitonic character of the solution (6) one must
investigate the Riemann tensor. The nonvanishing com-
ponents of the Riemann tensor are given by Carr and Ver-
daguer® as

1 | 822 g22
ROI — = — — Sée 1 | Dee
o 2f | 8» g2
&2 f , 822 f'
—s = —o——1, (132
2gzz f 2 gn f
1 gll gl 2
R®2 —p —_—_ S 1ol
e 2f | gn 811
&u f . 8u f
— 5 —=—5—"=1|, (13b)
‘eu f ? g f]
R%p=e3=—e;—e,, (13¢)
1 |8&n g1 &n
R  —p—— — st 1ot ofl
o 2f g -’ gu &
L &u f 8u f
— 5= (13d)
2g11 f Zgn f

(dots and primes mean 3, and 3,, respectively). e;, ey,
and e; are the “electric” components of the gravitational
field and b is the “magnetic” component. '

Using the fact that the solutions of the pole equations
satisfy the equations®

. 20,(1—0;%)
gi=——

, 82,'0','2(1—0',‘) (14)
sy O =",
tH; ! t’H;(1+0;)
the expressions (13) are easily evaluated. Therefore the
derivatives of the metric (6) can be written as a function
of o ie .
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In the far region the Riemann tensor tends to the Kas-
ner Riemann tensor. The same thing occurs in the in-
teraction region, although as we mentioned above, the
longitudinal expansion is rescaled by a certain factor.

In the light-cone regions we must distinguish the right-
directed solitons from the left-directed solitons. Thus for
the right-directed solitons,

ey ~—e;y, e3~0 N b~e1 ’ (15a)
and for the left-directed solitons,
ej~—ey, e3~0, b~—e; . (15b)

The asymptotic values for the different solitons have a
behavior similar to that of the coefficient f, as discussed
in Sec. II. Thus for the solitons which never collide,
lei | ~(1/f%)Vw /V't. For the solitons which experi-
ence one collision, | e | ~(1/f %" w /V't, and so on.
(We have assumed w; ~w << |z |.) Hence the value of
e, decreases with each collision. The sign of e; reverses
in passing from right-directed to left-directed solitons.

The metric (6) is of Petrov type I, as is the Kasner
metric, except in the light-cone regions where it is of
Petrov type N, which is typical of pure gravitational
waves. Thus, the metric (6) represents inhomogeneities
propagating on a Kasner background which evolve to-
wards pure gravitational waves. In this sense, the metric
(6) shows how primordial gravitational waves can be pro-
duced as a consequence of irregularities near the cosmo-
logical singularity.

This interpretation is supported by studying the com-
ponents of the Riemann tensor in the null tetrad consist-

ing of the vectors M, 1, and th:

- 1 T__1 4
n_m(a,+az), 1—‘/5?(8, a;)
= | By +i—n 9|, (16)
V2 | Ven Ve
1 1 1
m*=—— 9, —I d, | .
V2 VEnu * V' 82 g

The nonvanishing components of the Riemann tensor in
this tetrad are

¢0=R#vaﬂn#m "nmP= %(32 —ep)+b,

¢2=%R,wagn“l"(n“lﬁ——mam*ﬁ)=—%e3 , (17)

V4= R yuapl*m*"1°m*F=3(ey —e;)—b .

¥ and 1, represent the radiative part of the field, whereas
1), contains the Coulomb part. v, gives the radiative com-
ponent along the left-directed waves and i, along the
right-directed waves.

In the light-cone regions ¥, ~0, so that only the radia-
tive part remains. For the right-directed solitions 1,~0
and ¢4~ —2e; while for the left-directed solitons
o~ —2e; and Y, ~0. Figure 3 shows the component .
First, only left-directed solitons appear. Afterwards, only
the solitons that do not collide appear because the “inten-

%
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FIG. 3. This shows the time evolution of the Riemann com-

ponent Y for m =1. The parameters are the same as in Fig.
2(a), but with the times increasing from right to left.

sity” of the left-directed solitons which collide is much
smaller. '

Finally one must study the scalar invariants of the
Riemann tensor. For this metric there are only two in-
variants different from zero:

I1=7%(e>+e,’+e32—2b7) ,
(18)
12:‘2‘(613+823+933+3b233) .

The evolution in time of one of these invariants has been
given by Ibafiez and Verdaguer* for m =1, and it clearly
shows a solitonic behavior. The qualitative behavior of
the other invariant is similar.

We can summarize this section by saying that the
metric (6) represents intrinsic inhomogeneities propa-
gating on a Kasner background which behave as classical
solitons (i.e., they are localized and have shapes which are
not changed by collisions as seen in Fig. 3) and evolve to-
wards gravitational waves.

At this point a question naturally arises: do the solitons
carry some kind of energy and can we define a velocity of
propagation?

IV. THE VELOCITY

In general relativity we do not have a local definition
for the energy of the gravitational field. Several quanti-
ties have been proposed for the energy density or energy
flux of the gravitational field. One of these is the Bel-
Robinson tensor TH**# which'is defined as the gravita-
tional analog of the electromagnetic stress-energy tensor.
It therefore represents the energy density of local relative
acceleration. However, the Bel-Robinson tensor does not
have dimensions of an energy density, but of the square of
an energy density. The Bel-Robinson tensor is given by

THvaB — RHpaR "pﬂa—l—*R Hpac* R "pB,, , (19)
where *R*¥*# is the dual tensor of R#"5,
* R#vaB — puvpo R paaﬂ . (20)

e=THFy U Ul TEpresents the superenergy density as
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seen by an observer with velocity u* (u*u,=—1), and

P%= — (85 4uuy, ) TP u u,u, (21)
is the corresponding Poynting vector.

Now we define an orthonormal tetrad given by

P
’ 2= ’
” V82 g

_’0= 8,, €=

=
VEn

(22)

By projecting the Riemann tensor and its dual onto this
tetrad, we can calculate the superenergy density and the
Poynting vector, as seen by an observer at rest in this
frame:

e:e12+e22+e32+2b2:E2+§2 ,
PO=pl=p2=0, (23)
P3=2(e;—ey)b=2(EXB) .

From (23) the analogy with electromagnetism is clear.
There is only an energy flux along the z direction. For
the Kasner metric, P>=0 (since the magnetic component
b vanishes). The effect of the solitons on the superenergy
density is to diminish it, due to the expansion of the
volume of the space produced by the passage of the soli-
tons.

An interesting characteristic quantity associated with
the solitons is their velocity of propagation. Belinskii and
Fargion® defined this velocity as the velocity of the world
line of the peak of the soliton field of the metric. In some
instances the velocity defined in this way was greater than
the velocity of light, and hence could not represent a
physical velocity.

From (23), and bearing in mind the interpretation of the
Bel-Robinson tensor as a quantity that in some sense de-
scribes the energy carried by the solitons, we define a velo-
city field associated with them. This velocity field de-
scribes, at least qualitatively, the velocity of the solitons
and is defined as the ratio of the superenergy tensor flux
(Poynting vector) to the superenergy density:

3
() =L (24)
€

It is important to note that the definition (24) is not co-
variant, and that it is a velocity measured with respect to
the orthonormal frame (22). Nevertheless, we think it is

representative of the solitonic behavior of these inhomo-

geneities. From (23) we obtain
2(e;—ey)b
v= .
e’ +ey +e;2+2b?

Initially at #—O0, the velocity field satisfies |v | ~0
everywhere. On the light-cone regions | v | -1—0 (1/1),
and in the far region and interaction region |v | ~O0.
This can be interpreted as having a flux of radiation local-
ized mainly on the light cones from the origin. First, at
the origin, the two competing fluxes, right and left direct-
ed, almost cancel. Later, as the right- (left-) directed radi-

(25)

S

-1 | 1
0 7

z

FIG. 4. Time evolution of the soliton velocity field v for

m =1. The parameters and time sequence are the same as in

Fig. 2(a), but w;=w,=0.08. The top curve shows the velocity
field at ¢ =>5.

ation flux gets far from the origin, the canceling effect of
the left- (right-) directed flux is gradually reduced.

In Fig. 4 the time evolution of the velocity field of the
metric is shown for the case m =1. Initially one can see
the four solitons, with some tails, moving in opposite
directions from their points of origin. The two inner soli-
tons collide, while the two outer solitons become bounded
by a step decreasing in the velocity modulus. In the in-
teraction region for the model considered, we soon have
many points moving nearly at the speed of light. In Fig.
4 this velocity field at a much later time is shown. The ir-
regular tails present at earlier times have disappeared and
only a smooth and localized soliton propagating at the
speed of light remains. An interpretation of this fact
could be that the gravitational solitons represent the re-
sulting net flux of localized energy. Initially their motion
is slow and particlelike, but later they approach the speed
of light leaving behind their slow tails and becoming pure
gravitational waves. ,

Although this velocity is given in a peculiar frame, it is
never greater than one which shows that one can interpret
it as the velocity propagation of the gravitational field
(and this qualitative result is independent of the reference
frame).

V. OPTICAL SCALARS

For a metric of the type being considered here, there is
a preferred null geodesic congruence and two optical sca-
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lars, the expansion and shear of this null congruence,
which intrinsically characterize the metric. Therefore it is
of interest to study the effect produced by the solitons on
these scalars.

Another reason for their study, as emphasized in a pre-
vious papc:r,4 is that several authors (Kahn and Penrose,!°
Szekeres,!! and Nutku and Halil?) have given examples
of colliding plane gravitational waves on flat space, in
which a singularity inevitably appears. Later Tipler'3
proved that the collision of any plane waves, gravitational
or electromagnetic, requires a singularity, either in the
past or in the future of the interaction. Centrella and
Matzner® studied the collision of plane gravitational
waves in an expanding vacuum cosmology and found that
the expansion avoids the singularity. However, Tipler’s
theorem still holds because a singularity occurs in the
past.

Here we see an explicit example of this by studying the
focusing effect of the solitons upon a null congruence de-
fined by a null vector n defined by the conditions
n°=n®=n and n'=n?=0. The geodesic equation for
such a null vector is simply

(9, 498;)(nf)=0. (26)
We choose the normalization
I
n= Var n= ‘/_if(a,+a,). (27)
From (27) we define a null tetrad:
S 7L
n= \/if(at+82) > 1= ‘/5(8,—8,) ’
fim b |—L g +—L 5 (28)
V2 V&1 * V' 82 N
_..=_1_ 1 5 — i 3
V2 VEu * V 8x an

The vectors 1, Th, and ™* are parallel transported along
the null congruence defined by 1.
The expansion of this congruence is

1 1
0 1 z
FIG. 5. Time evolution of the shear o produced by the soli-

tons on the null geodesic congruence defined by the vector 1.
The parameters and time sequence are the same as in Fig. 2(a).

— L, u __ 1 1
0=5nt, = It (29)
Unless t— 0, 6 cannot go to zero, and always remains
positive (0>0). Therefore these null rays cannot con-
verge to a singularity in the future.* For an m =1 metric,
the expansion was given in Ref. 4.
The shear of the congruence is given by

1 _&n_ &u

! 8n &n

(30)

Figure 5 shows the effect of the solitons upon the shear of
the congruence n* (in the case considered in this figure,
0%=0). The shear suffers a jump as the congruence
crosses a soliton, so the left-directed solitons appear more
clearly than the right-directed solitons. Compare this fig-
ure with the Riemann component 1, in Fig. 3. After the
passage of the solitons the shear slowly approaches the
Kasner shear. This behavior is very similar to the col-
lision of plane gravitational waves in an expanding
cosmology.®
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