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N =4 remaining supersymmetry in a Kaluza-Klein monopole background
in D = 11 supergravity theory
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Upon seven-torus compactification of eleven-dimensional supergravity, a Kaluza-Klein monopole
is embedded into one U(1) group of the isometry group U(1} . Four independent Killing spinors
remain unbroken in this background.

Higher-dimensional general relativity (Kaluza-Klein
theories)' is a promising candidate to unify gauge theories
and gravity. However, dimensions of Kaluza-Klein
theories are completely arbitrary unless constrained by su-
persymmetry. Requirement of the absence of states with
spiri higher than 2 puts an upper limit to the dimension of
D ( 11 for Riemmanian space and D (24 for quasi-
Riemmanian space. Although the quantum behavior of
Kaluza-Klein theories is not well studied yet, the super-
symmetry will soften ultraviolet divergences compared to
nonsupersymmetric cases. Furthermore, the topologically
nontrivial solutions will play an important role in non-
perturbative effects.

The finite-energy Kaluza-Klein monopole solutions
have been studied recently. They are spherically sym-
metric and static, and are the usual magnetic monopoles
in the asymptotic region of four space-time dimensions.
This monopole solution is regular at the origin and the
space-time geometry is intrinsically interwoven with the
internal space in which direction the monopole is embed-
ded.

It is interesting to examine the remaining supersym-
metry in the background of Kaluza-Klein monopoles. In
eleven-dimensional supergravity which is maximal in the
pseudo-Riemmanian Kaluza-Klein theory, the fate of su-
persymmetry upon compactifications has been rather ex-
tensively studied. Some of them are the seven-torus
( X =8), round seven-sphere ( X =8), left squashed
(lV =-1) and right squashed (X=0) seven-sphere, 'o M»"
(X=2) and Mpq" (N =O,p&q) manifold, " where the
number of remainirig supersymmetries is given inside the
parentheses. A table of known compactifications and sur-
viving supersymmetry can be found in Ref. 12. Most in-
terestingly, the K3 && T3 solution' is an example with four
surviving supersymmetries, but without isometry group
corresponding to K . It turns out that there is an N =4
supersymmetric solution in the seven-torus compactifica-
tion with a Kaluza-Klein monopole embedded into one
U(l) group of the isometry U(1) group. It is noteworthy
that the Kaluza-Klein monopole solution is a unique ex-
ample of X =4 supersymmetry with an isometry group.

The bosonic parts in D = 11, X = 1 supergravity
relevant for the background are
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The background solutions with Kaluza-Klein monopole
are obtained by the following vacuum expectation values
(VEV's):
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The VEV's for the elfbein are

e'"=dt,
e"=e'"dr
e'"=e' 'r de
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where

Here early alphabet letters are used as frame labels, while

e'~'=e r sing dP,
e' '=e "~ [dx +ntcg(cos8 1)dg]—,
e'"=dx', . . . , e'")=dx" .

Here e =1+
~

n
~

R/2r, R =21cg, and n is the monopole
charge. The indices inside the parentheses are for the
frame indices. The spherically symmetric and static
monopole solutions carrying the magnetic charge in more
than one U(1) direction of the isometry group U(1) simul-
taneously are shown to be absent.

The number of independent supersymmetries will be
determined by the Killing spinor equation

D q =(a ——,
' ~ "'r„,)q =0,
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mid-alphabet letters are employed for world indices.
The relevant spin connections are
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The flat indices are raised and lowered with the metric
qzz ——diag( —1, +1, . . . , +1), and co~" ———A@M ". Of
course, the flat-space limit without monopoles is obtained
by putting n =0. Aiso since the Kaluza-Klein monopole
solutions [equivalently Taub-Nut (Newman-Unti-
Tamburino) solutions' ] are regular at the origin, all spin
connections are also regular.

The convenient choices for the I matrix with the Clif-
ford algebra I I"„,1 ~ I

= —2g„~ are

—1 0
0

—o; 0

0 1

5 = —l Qp'V172'V3 =
] 0

and o.; is the Pauli spin matrix. I8 and I4 are 8X8 and
4&4 identity matrices. The aj. and PJ are defined as
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where VJ ——(AJ. ,+J ) with two-component spinor AJ and
Pz. The Majorana condition g= —Cg gives the relation-
ship between A,

&
and XJ as

Observe that I 5, I 5+1, and I 8+1 are o.2-, o.3-, and o.1-like
in 4X4 block matrices. In these representations, I p and
I 2 are symmetric, while all other I -matrices are antisym-
metric. Thus the charge conjugation matrix C is

C = 'Vp'V 2 X I 8 ~

The spinor representation of the tangent space group
SO(1,10) is of 32 components, which are represented by

gT ——(4), . . . , +8),

I p=ppX &8 I;=p; X l8, l =1,2, 3, +J = —02AJ- (10)
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Here

The P& is dependent, and there are only 16 independent
components corresponding to eight kz.

Since spin connections ~M with M =t, r, 6, . . . , 11
vanish, their corresponding Killing spinor equations are
trivial as

a 9=a,~=a6n= . - =ally

Thus the Killing spinor g is independent of coordinates
t, r,x, . . . , x ". The Killing spinor equation in the 0
direction reads

8%.+— %'+ —my~' ' 4~ +4——0

(12)
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0
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Notice that all eight +J. are not independent, but VJ. (j= 1, . . . , 4) are related to %z+q (j = 1, . . . , 4).
The Killing spinor equation in the P direction reads
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Finally the Killing spinor equation in the fifth direction is
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Solutions for these equations are obtained in a straightfor-
ward way. The qij (j =1, . . . , 4) are given by
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The +J+4 (j= 1, . . . , 4) are related to )Iij by

gJ +4 +l+J

[DM~ N]g 4 +MN ~AB ) ~ CMN I
AB

Here I AB are the 55 SO(1,10) generators. The nonvanish-
ing C~N for the positive monopole charge are

where the upper (lower) sign corresponds to the positive
(negative) monopole charge. Thus there are four indepen-
dent Killing spinors )Ii~ (j =1, . . . , 4) for Eq. (4), and we
obtain % =4 remaining supersymmetries in the Kaluza-
Klein monopole backgrounds (2) and (3). In the limit of
vanishing monopole charge (n =0), the mixing terms be-
tween O'J and O'1+4 (j =1, . . . , 4) due to co~(~" ' in Eq.
(12), ~~(")(5) and ~~(e)(5) in Eq. (13), and ~(5")( ) in Eq. (14)
disappear. Then 4~+4 (j =1, . . . , 4') become independent
of 4J., and we recover the well-known N =8 solutions of
seven-torus cornpactifications.

It may be worthwhile to comment upon the consistency
condition of Eq. (4), which is
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where C'J=g'[A' (T~C&) —5'~]. Due to PJ in the C'
term, all the supersymmetries are completely broken,

(SV)~0, (20)

in the Kaluza-Klein monopole backgrounds. Thus one
cannot expect some remaining supersymmetry generally
in the Kaluza-Klein monopole background.

It is remarkable that the Kaluza-Klein monopole solu-
tion in D=11 supergravity is unique in giving %=4

and form the SO(3) subalgebra [T;,T~]=e;JkTk. Similar
results hold also for the negatively charged monopole.

Now let us briefly consider the problem of remaining
supersymmetries in D-dimensional supergravity theories
other than the 11-dimensional one. The solutions for
equations of motion in the torus compactifications are
still given by Eq. (3) with the monopole embedded into
one U(l) group of the isometry group U(l) . Vacuum
expectation values of all the bosonic fields vanish, except
vielbeins which have the identical vacuum expectation
value as in Eq. (3). But if theories contain several fer-
mionic fields other than the gravitino field, the remaining
supersymmetry can be drastically altered in this Kaluza-
Klein monopole background. For example in D =6,
%=2 supergravity, ' the supersymmetry transformation
law for the gaugino i(i of Yang-Mills supermultiplets in
the Sp(1) direction is [Eq. (22) of Ref. 15 or Eq. (21) of
Ref. 16]
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remaining supersymmetries with nonvanishing isometry
group.
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