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The possibility of unitarizing the conform al supergravity of Kaku, Townsend, arid van
Nieuwerihuizen is investigated by examining the representation content of its linearized equations.
Conformal (Weyl) gravitons are seen to correspond to a pair of helicity-conjugate, irreducible, and
nonunitary representations of so{4,2). The solutions of the linearized gravitino field equation are
seen to carry both unitary and nonunitary representations of so(4,2). The linearized constraint equa-
tion of Kaku et al. , however, removes the unitary conterit from the gravitino field equation. The
solution space of the linearized constraint and field equations of conformal supergravity is seen to
carry a direct sum of two nonunitary and irreducible representations of the superalgebra su(2, 2/1).
These results ixnply that current models of conforInal supergravity cannot be unitarized without
breaking both su(2, 2/1) and so(4,2) symmetries. A suggestion as to how one might construct a uni-
tary model of conforrnal supergravity is made.

I. INTRODUCTION

Since their introduction to the literature a decade ago,
models of supergravity have been studied with great inten-
sity, and many wonderful results have followed. The
self-consistent coupling of spin- —, and spin-2 fields, the
tremendous improvement in ultraviolet behavior, and the
possibility of truly unifying the other 2 —, fundamental
forces with gravity each constitute a separate miracle.
Yet while supergravities have surmounted several impor-
tant problems in quantum field theory, they have also
been seen to possess technical difficulties which block
their implementation as complete physical theories.

The situation for conformal supergravities' is especial-
ly acute. Owing to their explicit scale invariance, these
models are, from the start, at least power-counting renor-
malizable. Moreover, these models have local internal
symmetries of the type su(X)u( I) and so allow a partic-
ularly natural embedding of the local gauge groups of ele-
mentary particle physics. Yet these models are obstructed
by a grave lack of unitarity.

It is commonly believed that this lack of unitarity is the
inevitable consequence of the higher derivatives which ap-
pear in the Lagrange functions of these models. For when
one examines the poles of the propagators, it is seen that
they are not all positive, and so follows the possibility of
negative probabilities in scattering calculations. But these
models are not simply Lagrangian field theories; they also
involve constraints which are independent of the equa-
tions of motion. Since it is known that such constraints
can sometimes prevent the negative poles from contribut-
ing to scattering calculations, the situation for conformal
supergravities invites a closer inspection.

In Ref. 4 it was demonstrated how an appeal to confor-
mal invariance could greatly simplify the analysis of a
higher-derivative field theory. Therein it was shown that
the solution space of the massless dipole equation carries
an irreducible minimal-weight representation of so(4,2).
Such representations are endowed with a unique (up to
scaling) invariant inner product, the positivity or indefi-

niteness of which is fixed by the minimal weight of the
representation In . turn, the positivity (indefiniteness) of
this inner product directly implies both the possibility
(impossibility) of constructing an invariant Hilbert space
of states and the positivity (indefiniteness) of the poles of
the propagators. Thus, by identifying the particular
minimal-weight representation that is carried by the solu-
tions of the field equation, the question of unitarity could
be resolved in a succinct and canonical manner.

In this letter we present the results of a similar analysis
applied to the linearized equations of %=1 conformal
supergravity. To determine the representations of so(4, 2)
which are carried by the physical (nongauge) solutions of
these equations, we employed the manifestly covariant
formalism developed in Refs. 6—8. Rather than repeat
that development here, let us instead give a brief synopsis
of this technique.

We denote by K the cone in R

O=y =&y yb=(yo—) —(y]) —(yp)

—(y3)' —(y~)'+ (y5 )'

with Ay, identified with y, for all A, HR —IOI. The pro-
jective space thus defined is locally isomorphic to Min-
kowski space. The coordinate transformation which con-
nects the two is given by

x„=(y4+ys) 'y,

&+ =74+3's ~

xa = (y4+ys )
—2 2

Note that x+ and xit are superfluous parameters; x~ van-
ishes on the cone and x+ is identified with 4&+ for all
A, HR —IOI. The singularity at y4+ys ——0 corresponds to
infinity in Minkowski space.

We identify fields over K with fields over R which
are homogeneous functions of the coordinates Iy, I, i.e.,

y. a y(y) =~y(y) m~z
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To ensure that the action of so(4,2) on the fiber space is
both linear and faithful, we adopt spinorial and tensorial
indices which transform according to, respectively, the
4@4- and 6-dimensional representations of so(4,2).

Now according to a theorem by Mack and Salam,
there corresponds to each conformally invariant field
theory over Minkowski space an equivalent "conformal"
field theory over the projective cone C. To write down
this equivalent field theory is relatively simple. One first
chooses a conformal tensor field with the same type of in-
dices (i.e., tensorial or spinorial or both) and the same
symmetry among the indices as the origina1 Minkowski
field. One then imposes subsidiary conditions on this
field to ensure that the second-order Casimir operator Qz
of so(4,2) is simply a polynomial in X (the degree of
homogeneity) times the identity matrix. Next, the degree
N is chosen such that this eigenvalue coincides exactly
with the eigenvalue of Qz for the original Minkowski
field. One then adopts the conformal wave equation ap-
propriate to that value of %. (See Ref. 8.) Finally, one
confirms by a coordinate and field transformation that
the wave equation and subsidiary conditions on the con-
formal field are physically equivalent to original equations
in Minkowski space (that is, differing at most by a choice
of gauge).

The manifest covariance of the conformal field theoiy
thus obtained allows one to view the solution space of its
wave equation as a tensor product of a finite-dimensional
module and the infinite-dimensional module of a scalar
field. This tensor product can be decomposed by identify-
ing the (relative) ground states of the constituent submo-
dules (see Refs. 3 and 8). If we impose the subsidiary con-
ditions on the conformal field, we eliminate from this ten-
sor product all but the subrepresentation carried by the
physical and (special) gauge solutions of the wave equa-
tion. By identifying and quotienting away the subspace of
gauge solutions, we then bare the physical content of the
theory.

II. THE LINEARIZED FIELD EQUATIONS

The field equations of Weyl gravity and superconfor-
mal gravity can be linearized by first expanding the
gauge field e'& associated with local translations about
the Minkowski metric b",

e'„(x)~5'„+h '„(x),

of the full conformal group. Moreover, if the field P"
satisfies the additional constraint'

O=a"@" a—@" iy,e""a y (5)

then the system of Eqs. (2)—(4) is invariant under the ac-
tion of the superconformal algebra su(2, 2/1). Thus this
linearization retains the global gauge invariance of the
original gauge theory.

Now the solutions of Eqs. (2) and (3) are known to con-
tain nonunitary ghosts. ' ' However, it is not yet clear
as to whether or not these ghosts can be removed by a
suitable choice of constraint. Certainly, if their solution
spaces carry representations of so(4,2) which?iave no uni-
tary subrepresentations, then no invariant unitarizing con-
straint will be possible. On the other hand, if unitary
subrepresentations do exist, one should be able to discover
and impose invariant constraints which project away the
remaining nonunitary subrepresentations and thereby "un-
itarize" the theory. %'ith these two possibilities in mind
we shall now determine explicitly the representation con-
tent of Eqs. (2) and (3).

III. THE CONTENT
OF I.INEARIZED WEYI, GRAUITY

6,bh' (y) =0,
y, h' (y)=0,

(7a)

(7b)

B,h' (y) =0 . (7c)
In order to demonstrate the physical equivalence of this
set of equations with the linearized field equation of Weyl
gravity, we simply apply the coordinate transformation
(1). Thus setting

h (x)= h' (y), a=0, 1,2, 3, +,Bp & ~&b,b

()x Bxp
we obtain from (6)

0=El h"'+SCIL "h +SUB'h" +16 &""h

(9a)

Let h ' be a symmetric conformal tensor field of degree
N =0, satisfying the wave equation

(a, a')2h'"(y) =0,
and the subsidiary conditions

and then dropping all interaction terms from the field
equations. In this manner one obtains

0— 2h ~B+8

0 2h BB

(9b)

(9c)
0= 'h~ — a~a,h~' — a O,h~'

——,
' (P' —28"8 )BgB h~~

for Weyl gravity and (2) plus

0= (a) )P' ——,'y~(a q) ——,'a~(a) )(a y),
0= 3"—8 "() 2

(3)

for superconformal gravity. These equations are obvious-
ly Poincare invariant. One can verify that if h, P, and 3
have, respectively, conformal degrees 0, ——,', and —1,
then each of these equations is invariant under the action

0=x+ '(Oh "++SCIL "h + ) —4 (Bgh " + Sh " )

—16a ~(a,h "+6h")
O=x, -' 2h'+ 4(a,h "+6h"—),
O=x Cl h++ —8x+ ' (B~h ++Sh +)

+SB (8 h "~+Sh )+16(B„h +6h ),
and from Eqs. (7)

0=h„~+4+ 'h +B,+
(}—hP+ h B+ h ++

(9e)
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0=ash '+86

0=Rgb +6h

(10c)

(Iod)

The subsidiary conditions (7), however, reduce this com-
plicated module to

Using Eqs. (10) we can eliminate the subsidiary fields hh, h+, h"+, h", and h++ from the wave equations
(9). We then obtain

0=o'h„.—oa~a, h'~ —oa"a,h~'

——,
' (oe"—2a~a )a,a,h",

o= 'a&h' —-', ~O a,a,a'~,
(1 la)

(1 lb)

0=a'a, a,A. '~, (1 lc)

which is exactly the linearized equation of Weyl gravity
(1) with a conformally invariant gauge fixing.

Now it is evident that the solution space of (6) is just
the tensor product of the»0-dimensional representation
D ( —2,0,0) [to specify the various representations of
so(4,2) we have adopted the notation of Mack" ] of so(4,2)
carried by the indices of h and the infinite-dimensional
representation carried by the solution space of the scalar
dipole equation

t D(2, 2,0)sD(2, 0,2) I ~D(0, 1, 1) . (13)

The invariant subspace which carries D(0, 1, 1) consists of
special gauge fields of the form

h~ (y)=a'A (y)+a A'(y)

with A satisfying

(a, a')'A~(y) =0,
y, A'(y) =0,
a, A'(y)=0 .

By quotienting away this subspace of gauge solutions we
obtain a space of "physical" solutions which carries the
representation D(2, 2,0)SD(2,0,2). Now in order for a
representation D(Eo,j &,jz) of so(4,2) to be unitary, we
must have

Eo &J1+Jz+» J]J2 &0
(14)

(a, a') P(y) =0 . (12) Eo &J1+Jz+ l J]Jp = .

It was shown in Ref. 4 that the solution space of (12) car-
ries the indecomposable representation D(1,—,, —, )
—+D(0,0,0) of so(4,2). We are thus interested in the ten-
sor product

[D(1,—,', —,
' )~D(0,0,0)]g D( —2, 0,0) .

A calculation of the sort described in Refs. 3 and 8 reveals
that this tensor product is equivalent to a direct sum of
three indecomposable modules:

D(2, 2, 0)

The physical solutions thus carry a representation of
so(4,2) which has no unitary subrepresentation. We con-
clude that Weyl gravity cannot be unitarized without
breaking conformal invariance. The nonunitary represen-
tation D(2, 2,0) and its helicity conjugate D(2, 0,2) no
doubt correspond to the two helicity +» ghosts found by
Stelle.

IV. THE CONTENT
OF THE CONFORMAL &GRAVITINO EQUATION

Let 4' be a conformal Rarita-Schwinger field' of de-
gree X= —1 satisfying the wave equation

, D(0, 1, 1)~D(2,0,2)~D(0, 1, 1) .

D( —1, —,, —,

(a, a')4'(y) =0
and the subsidiary conditions

(y P)(a p) II'(y) =0,
P, 4'(y) =0,
y, V'(y) =0 .

(15)

(16a)

(16c)

We now rewrite these equations using the coordinate
transformation (1) and the following field transformation:

D(1, —,', —,
' )~D(2,0, 1

(17)

D(0,0,0)

S ID( —1, 2, 2 )~D( —2,0,0)I .

where

P = 1+—x 'y(&( —
& &2)

2
From (15) we obtain
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0= p"+4a "p

0= p+ —2a„p"—8p

0 yB

o= q~+4a~p 2—(a y)q~ 4—y~p,
0= p+ 2a„—pl' 8+——2(a y )p++2y„f",
0= g —2(a.y)g

and from (16a) we obtain

(18a)

(18b)

(18c)

(18d)

(18e)

(18f)

gED D(1——, —,', —,
'

)

D(2, 1,0)

D(2, 0, 1) ~D(1,—,', —, ) .

D(0,0,0)

0"= 2 l(a yW "+2y "0'1
y+= ,

' l(a y-)q+ y,q~—],
ay

(19a)

(19b)

(19c)

Substituting Eqs. (19) back into the wave equations (18)
we find Eqs. (18d)—(18f) vanish identically, while Eqs.
(18a)—(18c) give third-order equations for P", g+, and

P; viz. ,

0= (a y)g" +2 y "++4a "(a y)p

The tensor product D&EDD, p is, of course, rather com-
plicated. There is, however, a theorem by Zuckerman'
which greatly simplifies the analysis-of tensor products
between finite- and infinite-dimensional representations of
a semisimple Lie group. Applying Zuckerman's theorem,
we were able to deduce directly the existence of the fol-
lowing subrepresentation:

D( —,, —,',0)

—2(a y)a„+—12(a y)g

o= (a.y)q' .

The subsidiary conditions (16b) and (16c) lead to

o=q+,

D( —,, —,', 1) D(-, ,0, —, ) ~D( —,, —, , 1),

D( —2, 0, 2 )

o=y 0"
o=a„y~+6q'.

as well as its helicity conjugate

D(-', ,0, -', )

Thus, we arrive at

o= (a y)y~ ——,'oy~a q ——,'a~(a y)a 1t, (20a)

o=z(a y)a„1t ~, (20b)
~D( —, , —,',0) ~D( —,, 1, —, ), (23)

which is the linearized field equation for the gravitino of
conformal supergravity accompanied by a conformally in-
variant gauge fixing.

To determine the representation content of these equa-
tions we return to the conformal wave equation (15). Ob-
serve that the solution space of this equation is just the
tensor product of the 8-dimensional spinor representation

D,p
=D( ——,, —, ,0)eD( ——,,0, —, )

D( ——,', —,',0)

within the tensor product DQED(3D p The existence of
both these subrepresentations was also confirmed by
direct calculation.

By imposing the subsidiary conditions (16), one reduces
the entire tensor product to a subrepresentation of
(22)e (23), viz. ,

with the solution space of the wave equation of conformal
QED,

D( —,',0, —,
'

) g
D(-, , 1, —,

'
)

D( —,', —,',o)&
(a,a') A (y ) =0 . (21)

(24)

As was seen in Ref. 8, the solutions of (21) carry the in-
decomposable representation

The invariant subspace D( 2, 2, 1)@D(—,, 1, —, ) is spanned
by gauge solutions of the form
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'p'(y ) =8'g(y )

with g(y ) satisfying

(&,&')'g(y) =(y /3)(B P)g(y) =0 .

Quotienting away this gauge subspace, we are left with
a physical subspace which carries

cover the irreducible "massless" representations of
su(2, 2/1). In their notation this representation is

D=D, ( —,, —,,0; —, )eD, ( —, ,0, —,; ——, ) .3 3 . 3 3 3. 3

Upon restriction to the even part of the superalgebra,
su(2, 2)u(1)-so(4, 2)u(l) the representation D reduces
to

ID( —,, —,,0)eD( —,', 0, —', )}eID( —,', —,',0)~D( —,',0, —,')} .

(24')

The first two representations are perfectly unitary. In
fact, upon restriction to the Poincare subgroup, these rep-
resentations become exactly the irreducible unitary repre-
sentations D(m=0, s=+ —, ) of H. The representations
D( —', , —', , 0) and D( —, , 0, —', ), however, do not fulfill the cri-
teria (14). The conformal gravitino field thus contains a
pair of unitary, helicity + —, particles along with a pair of
nonunitary, helicity + —, ghosts in its physical subspace.

However, just as in the case of linear conformal quan-
tum gravity (Ref. 3), there exists a constraint which re-
moves the nonunitary ghosts from the theory. We found
this constraint by noting that there are two types of duali-
ty which one can impose on the field 4':

p7'p'(y ) = + p'(y ),
g o(a, b, c)y'B"'Il'(y) =+i@' '"'~yd d, +f(y ) .

(25)

(26)

g o(a, b, c)y.'8 4'(y) =+i f37@' '"'~yd'd, 'kf(y ),
which allows one to split (24) into unitary and nonunitary
sectors. If one imposes (27) with the upper sign, then the
ghost representations D( —,', —,',0) and D( —,',0, —, ) are elim-

inated from (24); choosing the opposite sign removes in-
stead the unitary massless representations D( —,', —,,0) and
D(-, , 0, —, ).

In terms of the Minkowski field P~(x), this double-
duality condition is

(27)

a~q (x) a"q~(x) =+ 'y—,~~'~a, q (x)—.

Observe that the lower sign coincides with the constraint
(4) of linearized conformal supergravity. This means that
the physical gravitinos are absent from conformal super-
gravity and so one is left with only nonunitary spin- —,

ghosts in the gravitino sector.

V. THE su(2, 2/1) CONTENT
OF CONFORMAL SUPERGRAVITY

To uncover the representation of su(2, 2/1) that is car-
ried by the physical solutions of Eqs. (2)—(5), we simply
adopted the analysis that Flato and Fronsdal' used to dis-

Here g denotes a sum over the permutations of the in-

dices a, b, and c and o(a, b,c)=+1,—1, respectively, for
even and odd permutations. Combining (25) and (26) we
obtained a condition of double duality:

D i,.„„,„„,=ID(-,', —,', 0)g D(-,' ) }e ID( —,',0, —', )eD( ——,
'

) }

e ID(2, 1,0)C3ID(0) }pe ID(2, 0, 1)D(0) }

e ID(2, 2,0)D(0)}e ID(2, 0,2)D(0)

It is evident that this reduction corresponds precisely to
the two axially charged conformal gravitinos, the two
neutral axial photons, and the two neutral conformal
gravitons of conformal supergravity. Since both
D, ( —,', —,,0; —, ) and D, ( —,,0, —,'; ——', ) are nonunitary and ir-
reducible, ' we conclude that the conformal supergravity
of Kaku et al. is inherently nonunitarizable.

VI. DISCUSSION

Ii may seem a surprise that the constraint that permits
the superalgebra to close is identical to the constraint that
removes the physical particles from the gravitino field
equation. We stress that this should not be interpreted as
supersymmetry actually worsening the situation with
respect to unitarity; for the existence of a symmetry group
should not be confused with the unitarity or nonunitarity
of its representations. The real impact of the gravitino
constraint is that it projects onto a particular, in fact the
maximal, su(2, 2/1) module lying within the solution space
of the field equations (2)—(4). From a purely mathemati-
cal point of view it is rather coincidental that this module
is nonunitary.

Yet from another perspective this, lack of unitarity is
not so accidental. The X= 1 conformal supergravity of
Kaku et al., ' and the models of extended conformal super-
gravity as well, are supersymmetric extensions of Weyl
gravity. We saw in Sec. III that in terms of representa-
tions of so(4,2), the physical content of Weyl gravity is a
direct sum of two nonunitary irreducible representations.
Since a unitary representation of a supergroup must also
be unitary with respect to each subgroup of the super-
group, there was never any real chance of obtaining a uni-
tary model of conformal supergravity by extending Weyl
gravity.

In a recent paper Fronsdal' has proposed a unitary al-
ternative to Weyl gravity. Like Kaku et al. ' Fronsdal re-
lies on so(4,2) gauge invariance as a constructive principle.
However, he imposes a different constraint on the field
strengths; instead of setting the curvature associated with
local translations equal to zero, Fronsdal generalized the
unitarizing constraint of Ref. 3. By this choice of con-
straint, he avoided the nonunitary theory of Weyl and ob-
tained instead a unitary model of conformal gravity.

We saw in Sec. IV that the conformal gravitino can be
unitarized by imposing the double-duality condition
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invariance, we expect to find a unitary version of confor-
mal supergravity.

It is remarkable that the linearized constraint of
Fronsdal's model can also be formulated as a condition of
double duality. We strongly suspect that these two unitar-
izing constraints are, in fact, supersymmetric partners in a
linear su(2, 2/I)-invariant theory of massless spin- —,

' and
spin-2 particles. Indeed, by generalizing these two con-
straints to a form compatible with local su(2, 2/l) gauge
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