
PHYSICAL REVIEW D VOLUME 31, NUMBER 10 15 MAY 1985

Proof of summed form of proper-time expansion for propagator in curved space-time
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We consider the Schwinger-DeWitt proper-time expansion of the kernel of the Feynman propaga-
tor in curved space-time. We prove that the proper-time expansion can be written in a new form,
conjectured by Parker and Toms, in which all the terms containing the scalar curvature R are gen-
erated by a simple overall exponential factor. This sums all terms containing R, including those
with nonconstant coefficients, in the proper-time series. This result is valid for an arbitrary space-
time and for any spin. It also applies to the heat kernel. This form of the expansion is of impor-
tance in connection with nonperturbative effects in quantum field theory.

I. INTRODUCTION

Of crucial importance for the investigation of quantum
field theories in curved space-time is the Feynman propa-
gator or Green's function. Exact results are known only
in certain special cases, and in general one must have
recourse to some approximation scheme. A very powerful
and general technique is to make an asymptotic expansion
of the kernel of the Green's function in powers of the
Riemann curvature tensor. The expansion parameter is
related to a fictitious proper time. The terms in this
proper-time Schwinger-DeWitt' or heat-kernel expansion
have a universal form in a general curved space-time.
However, so far the terms in the expansion are known ex-
plicitly only up to third order in the curvature.

It is possible that there may be infinite subsets of terms
in the series which converge and can be summed in closed
form. These nonlocal expressions would give informa-
tion about effects of physical significance which cannot be
obtained from the known terms of the series. DeWitt ef-
fectively performed such a partial summation in finding
an approximation from which he obtained certain nonlo-
cal terms in the effective action. Bekenstein and Parker
derived a Gaussian path-integral approximation for the
propagator which includes certain nonlocal effects.
Motivated by the form of this Gaussian approximation
for particular cases, Parker and Toms have recently sug-
gested an exact form for the coincidence limit of the
Feynman propagator for a scalar field which, they conjec-
ture, isolates and sums all terms containing the scalar cur-
vature R in the proper-time expansion. This includes
terms containing R with nonconstant coefficients. They
proceeded to prove this hypothesis to third order in the
proper time for general spacetimes. They also have shown
that the expression gives significant nonlocal terms in the
effective action for quantum fields in curved space-time,
and have extended their conjecture to higher spin. In ad-
dition to its physical significance, the new form of the
proper-time series should make it technically simpler to
obtain the terms of the expansion beyond third order in
the proper time. A significant fraction of the terms (those
containing R) in the original expansion will not be present
in the coefficients of the new form of the expansion.

II. THE PROPER- TIME EXPANSION
AND THE CONJECTURE OF PARKER AND TOMS

The Feynman propagator b, (x,x') of a scalar field cou-
pled to the curvature satisfies

[ +m +JR(x)]b(x,x') = —6(x,x'), (2.1)

where CI is the covariant Laplacian, g is an arbitrary di-
mensionless constant, and 5(x,x') is defined by

fdu„5(x,x ')f(x ) =f(x') with du„ the invariant volume
element. If we write

b.(x,x') = i (x,s
~

—x', 0)e ' 'ds (2.2)
0

[with Im(m ) &0 understood] then by virtue of (2.1) the

In the present paper, we shall prove their conjecture by
induction to all orders for a general space-time, and show
that the natural generalization of their result to fields of
higher spin also sums all terms involving R, and partially
sums extra terms produced by the spin connection and
Yang-Mills field as well. In fact, our method of proof
demonstrates that the proper-time expansion may be writ-
ten in a form in which the R dependence is summed be-
fore taking the coincidence limit. Exactly analogous re-
sults will be true for the heat kernel on a Riemannian
manifold.

The organization of the paper is as follows. In Sec. II
we introduce the Schwinger-DeWitt proper-time expan-
sion for a scalar field propagator and explain precisely the
conjecture of Parker and Toms. In Sec. III we prove some
important lemmas concerning the form of the metric in
Riemann normal coordinates and the structure of other
quantities appearing in the expansion as functions of the
curvature. Armed with these preliminaries, in Sec. IV we
are then able to prove the conjecture for scalar fields. In
Sec. V we present and prove the generalization of the con-
jecture to fields of higher spin. We offer some remarks on
the significance of our results in Sec. VI, and finally in an
appendix we display explicitly the coincidence limits of
the terms in the proper-time expansion as far as they are
known, both for the original version and the new simpli-
fied version, and also discuss the inclusion of background
gauge-field couplings.
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kernel (x,s
i
x', 0) must obey

i (x,s
~

x', 0) =(CI+gR)( x, s~ x',0)
3$

(2.3)

o'"V'+0 ——0,

jf, —o'"~+i = —~VM ( +OR )(~VM 'fj ))—
(2.8)

with the boundary condition lim, 0( x, s~ x', 0) =5(x,x, ').
Equation (2.3) is the Schrodinger equation for a particle
coupled to the curvature, with a fictitious "proper time"
$.

The Schwinger-DeWitt proper-time expansion for the
kernel is then'

which permit the iterative computation of the coincidence
limits fj(x,x).

Parker and Toms postulated that the coincidence limit
of the kernel (x,s

~

x',0) could be written in the form

( x,s
~
x,0)=i (4mis )

"~ F(x,x;is )

(x,s
~

x', 0) =i(4mis) "~ exp
io(x,x')

2$

Xexp[ is—(g —,
'—)R(x)],

where F(x,x;is) has the proper-time series

(2.9)

&& b vNI(x, x')F(x,x';is ), (2.4) F(x,x;is)=1+ g (is)jfJ(x,x)
j=l

(2.10)

i
g(x)

i

'~
/

g(x')
i

'~ det
—8 o.(x,x')

9x&Bx

(2.5)

o. and AvM satisfy the important relations'

where 2o(x,x') is the square of the proper arc length
along the geodesic from x' to x, and hvM(x, x') is the Van
Vleck-Morette' determinant defined by

hvM(x, x')

such that the fj (x,x) contain no terms which vanish when
R (but not its covariant derivatives) is replaced by zero.
Henceforth we shall describe this property by the term "R
independent. " In other words, all the dependence on R in
(2.4) and (2.7) is now comprised in the exponential in (2.9).
Our aim in the following two sections is to prove this con-
tention. For our method of proof it is convenient to con-
sider the kernel without taking the coincidence limit, writ-
ing it in the form

V o.V"o.= —2o. ,p

AvM ~ H+ 2K Vp, AVM QAVM

(2.6)
Xexp[ is(g ——,

' )R(x—')] . (2.11)

(x s
i
x 0) E(4~)s )

—d/2eiu(x, x')/2 g 1/2( i)F( ~ ).

F(x,x',is)= g (is)jfj(x,x'),
j=0

(2.7)

and then as a consequence of (2.3), the fJ(x,x') satisfy the
recurrence relations'

where Vz is the covariant derivative. F(x,x;is) is written
as a series In the course of proving the original conjecture it will

emerge that we can also prove the stronger assertion that
F(x,x';is) is R independent before we take the coin-
cidence limit. We should remark here that there are vari-
ous ways of writing (x,s

~

x', 0) which would reduce to
(2.9) in the coincidence limit, e.g.,

(x,s
~

x', 0) =i(4vris) "~ e' 'hvM'~ exp[ is(g ——, )R(x—)]F'(x,x';is),

(x,s
~

x', 0) =i(4vris) " e' 'hvM' exp[ —, is(g —, )—R(x)]—F "(x,x', is)exp[ —,'is(g ——,)R(x—')] .

Although, clearly

F(x,x;is ) =F '(x,x;is ) =F "(x,x;is ),

(2.12a)

(2.12b)

(2.13)

I, F', and I " will differ for noncoincident arguments, while all being R independent, as we shall see in Sec. IV. While
(2.12b) is preferable on account of its symmetry, (2.11) is more amenable to computation.

We find, on substituting (2.11) into (2.3), the following recurrence relations for fj(x,x ):

~ V~, (x,x')=0,
Jfj(x x') ~' ~„xfj«»')= —~vM '" x[~vM'"fl-i(»x')]+k[R(x') —«x)]fi i(x,x') ——,'R(x')f, )(x,x')

=
I
—M+ (g——,

'
)[R(x') —R (x)]Ifj,(x,x') H fj,(x,x') N„V"fj.—I (x,x'), —(2.14)

where

~VM ( ~VM )+ 6 R(x) &

—]/2 1/2~I.=~vM Vp~vM
(2.15)

In Sec. IV we shall use these recurrence relations to prove
the conjecture of Parker and Toms by induction, but first
we need to demonstrate that the coincidence limits of co-
variant derivatives of o(x,x'), f0(x,x'), and M, N& de-
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fined in (2.15), are R independent. The following section
will be devoted to the proof of these subtheorems.

III. R INDEPENDENCE OF DERIVATIVES
OF o, fp, M, N„ Explicitly,

~(), "),I ).,),)

are chosen so as to ensure that in the y coordinates

(3.2)

All the results in this section can be considered as
consequences of the structure of the metric g p(x) when
expanded as a Taylor series about x' in Riemann normal
coordinates y" with origin at x'. In this expansion the
coefficient of y '. . .y"" is a sum of terms each of which
is a product of curvature tensors at x', of which some
may be covariantly differentiated. The essential point is
that, for n ~ 2, each term has the following two proper-
ties.

(a) There are no "internal" contractions of indices
within any individual curvature tensor.

(b) All the undifferentiated curvature tensors have at
least one index which is not one of [a,Pp(, . . . , )((,„) and
hence is contracted with an index elsewhere in the product
of tensors.

We shall describe an object with these two properties as
"curvature connected. " Riemann normal coordinates may
be set up in the following way:" Given a point x, we de-
fine the transformation to normal coordinates y with ori-
gin x' by

Bkx v

Bx

By y —o

B x
~l ~2

y=O

B x

By 'By 'By ' =[2K'(~ P~ ~ )
—Q(& I & & )j

(3.3)

P&gap(x) =gap I y =a+gag, p( I y =ay +
1 ~n+ (gap, p, p„ I»=ay.. . . 'y + ' ' ' (3.4)

then the coefficients of y '. . .y"" may be written in terms
of Christoffel symbols and their derivatives. For instance,

aIld so on.
When the metric is Taylor expanded in these normal

coordinates about x',

where the coefficients

Ar ) Ark
~ ~ y=0

gaPp, =gapp, +~p) gxa, p+ I p, pf), a

j=~p agx p+ I p pf).

and furthermore,

(3.5)

g pp, p p, ,p g),p+~p, (I ~,p gx p+I"pp gx, x )+~
1

a(p , )gpss 2~p+ a(p) p2)A)gk~p+ + p&~p2jgg)A2 + 2 Rap)p gg @++~P
ill(~jj2k(
a(p), p28A)p+~a(p Pp )g g) p+Fa(p)l p2)/gal)A~)+~~P ~ (3 6)

By iterating this procedure, g ~„.. .„may be expressed as a sum of terms whose general form is

A' j
Fa( . . . )F,

~2 ~r + l~~r +2 ' ~r g Pr. + ) Pr, +2 ' Pr. g Pr. + )
'

Pyt

where each A, '; C [A, (, . . . , A, ; ),Pi and r) (r2 &. . . &rj
& n, together with similar terms with a and P inter-
changed.

Using the definition of the Riemann tensor

p(ap) i y=O 3 ~ (ap)p ~

and after differentiating (3.7),
~V & n v

u(a Pr) i y =O=+ 2 ~p(y P, a) .

(3 &)

(3.9)

2 R apy ——I at p y)+ I a)pFy)p (3.7)

in conjunction with. (3.2), we may solve for the sym-
metrized derivatives I („„.. .„)I» a from which the
expansion coefficients in (3.4) are constructed. We obtain
immediately from (3.7) and (3.2)"

Differentiating (3.7) again and using (3.8),

I "(,pys) I =o
3 2 p= ——, ( —,R

( pRs r)~p„Rp(s r p)), (3.10)—
and so on iteratively. In the process, by differentiating
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ga»») ''
pzk l »=O

2k+12 "~ ~ ~

(2k+2)(2k+1)

~k —&2k —j.PI'2kXR (3.11)

which is manifestly curvature connected, and

gap») ' ' '&2k —) l»=O
The curvature connectedness of the g p „.. . ~ l y o in

normal coordinates is the key to the proof of the R in-
dependence of F in (2.9), since it implies that any R
dependence may be traced to the quadratic term in (3.4).
We have, from (3.2), (3.5), (3.6), and (3.8),

(3.7) ( n —2) times and using (3.2) we can express
I a(„„.. .„)ly —o 1n terms of R a(„& „.. . z ) and con-

tractions of pairs of Christoffel symbols with less than
(n —1) derivatives, which have already been calculated.
The partial derivatives in R ~& & & . . . & ~

may be rewrit-

ten in terms of covariant derivatives as was done for the
metric tensor following (3.4). It is then clear from this
method of construction that each I („„.. .„)l» o for
n ~ 2 is curvature connected, and hence, because of the
form of g p „.. .~ stated earlier, ga»„. . .„ l „ois cur-

vature connected for n ~ 2. In the case of constant curva-
ture where all derivatives of the curvature are zero, it is
possible to calculate g p „.. . „explicitly, "

;cx Id18g (3.13)

the suffix "diag" indicating the coincidence limit. Dif-
ferentiating twice,

CT' apry p+ cT' aOpp='—(y ap

which implies, with (3.13)

;a ga
~;apdiag gap~ pdiag ~ p ~ (3.14)

A further differentiation gives, with use of (3.13) and
(3.14),

0.. pyd;, g
——0

and, differentiating a fourth time,

0 spy/0'. p+ 0' ~py0' pal+0' ~pg(7 py

+~ ar5~I p+~ ap»r5+~ ar~;VP5

(3.15)

+0 a60 ppy+0 a+;Ij,py5 +;apy5 .

Taking the coincidence limit and using (3.13), (3.14), and
(3.15) yields

the coefficients in (3.4), but in this case it is possible to
present a more elegant generally covariant proof founded
on the basic relationship for 0 in (2.6). We may calculate
the coincidence limit of o. . . . by successive differen-
tiation of (2.6). We immediately have

gap l y =o= + lap~ gap@) l
y=o=0 i

(3.12)

;5aPydiag+ ; yaP5 diag+ ;Pay5 diag (3.16)

2
gap», 1, l y=o ——

3 a(),),)p

where rj p =diag( + 1,—1,—1,—1).
We will now show that the coincidence limit of more

than four covariant derivatives of o.(w, x') is R indepen-
dent. In common with the other results which we will
prove later in this section, this can be demonstrated in
normal coordinates using the curvature connectedness of

I

which after rearranging indices and using (3.14) again im-
plies

1

~;aPrsdiag 3 ( arP5+Ra5Pr ) . (3.17)

Clearly this process may be continued indefinitely. After
differentiating (2.6) n times, taking the coincidence limit,
and using (3.13) and (3.14) we obtain

& I0 I
~~ ~~;a;a)a~. a; )a;+) a„diag ~ L; a;aj;pa) a; )a;+) ~ a )aj~) ~ a„Idiag

1 l,J
i&1 I &J

P ~ ~ ~j k k ) i —) i+) j—) j+1 k —) k+1i,j,k
i&j&k

where

0
l )

'
l[n/2] [n/2] ' '+ [n/2] [n/2] +

1 & [n/2]

(3.18)

n/2 (n even)

(n —1)/2 (n odd) . (3.19)

(3.18) relates a. . . . d;,g to coincidence limits of (r with smaller numbers of derivatives, once the indices in the first
term are rearranged into the right order. A typical step in this rearrangement would be

pj+) j ' ' an 'a) ' ' ' ajaj+) ' ' ' an ~ [ ajaj+)a(,'a) a( )pa)+) aj )1;aj+2 a„1=1
(3.20)

Let us suppose that cr . . . ,4&k &.n, are R independent. This is true for k =4, according to (3.17), provided not all,al akdiag
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the indices are internally contracted, which is sufficient to form the basis of the inductive procedure. We then see from
(3.20) and (3.18) that any dependence on R (and not its derivatives) could only be generated by letting all the derivatives
in the second term on the right-hand side (RHS) of (3.20) act on o. For n =4, as a consequence of (3.14) all the indices
in the curvature tensor in (3.20) could be contracted together to give R, but for n &4 this is impossible. Hence by induc-
tion cr . . . .a is R independent for all n & 5. Using this information about cr, we will now show that in the scalar case~n

foai . . a„diag =0

For fp satisfies, from (2.14),

a'"fp.„——0 .

Differentiating

~' afp;jK+~' fp;jKa=0

and hence, from (3.13) and (3.14),

In general, differentiating n times, and taking the coincidence limit,

&r j j jfQaa& . a,. &a,.+&
. a„diag ~ t ' a a f0 iKa~ a; icK;+i cKJ ia +i ' ' '

ace ~dicKg
l l,J

l (J

(3.21)

(3.22)

(3.23)

(3.24)

i,j,k
l (J (k

t ~)p 1 . + ~ ~ +f0.K~ 8 1 =0a;ajo'k~ 0;pal ai —1O'i+ ~ +j—~l j+] +k —~+k+ I a& a„~ 0;pidiag (3.25)

After rearranging indices in the first term in (3.25), we obtain an equation for fQ . . . a d' g Again, a typical rear-
rangement of a pair of indices is

' —1
I3

;cKi cK +icK ~ cK ~ f0;ai ' ' a cK
K

' '. '
c~ K g t c1 a iai f0;ai

I=1
aj —ipal+ l j—i ' j+2 cc

(3.26)

Hence if fp . . . d;,g
——.0,1&k &n, then from (3.25) and (3.26) fp . . . d' g=0. .The statement is true for n =1 by

(3.24). Hence

fp;ai . . a„diag (3.27)

Finally we shall show that M.a . . . a d;,. g is R independent for all n, and N&. , a d;,g is R independent provided there
is no u;, i = 1, . . . , n for which a; =p. From (3.12), we may write the normal coordinate expansion of g p in the form

(3.28)

where hap, h are curvature connected. If gap denotes the analytic continuation of gap to a spacetime of positive
(Riemannian) signature, then we have

1ng=trlog p, g=detg p .

Now g ~ may be written

(3.29)

(3.30)g p=(1+Z) p,
where lap ——5 p and Zap is the analytic continuation of ( —,Rajp&y y +h p). The logarithm of gap may then be defined
as a formal power series,

lngap ——ln(1+Z)ap —— g ( —1)"+' Zn

nn=1 aP
(3.31)

Hence, inserting (3.31) into (3.29) and then continuing back to the original spacetime,

ln( —g )= ,
' R„„y"y"+H, g =detg p—, (3.32)

where H is curvature connected. Only the term TR&„y y in (3.32) can contribute to R dependence when derivatives
with respect to y are taken. In normal coordinates we can express M and N& exclusively in terms of gap from (3.28) and
g from (3.32). We have

AvM'~ (x,x') =( —g) '~ =exp —,', R~ yi'y" ,'H———
1

(3.33)
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and

gg ~p
1 (3.34)

or

=(yi p ,'R——p~~yi'+h' p)g Bp+( ,'Rpp—~+Kp)dp, (3.35)

where

Kp="d h p ,'R —&R—&pyt'y y + ,'R zy—t'h p+ ,'g p'd H—68H—R j„p~ y"+ 2
"r) Hh (3.36)

and hence Kp is also curvature connected. Therefore,

M= — (Kp+R—pp~+d h ~p)( Rp y +— dpH ) y—j pB B—p—H+( Rp~—y" hp)( ——R p+ —3 BpH) . (3.37)

In normal coordinates with origin at x' the coincidence
limit corresponds to y =0. Md;, g

itself is clearly R in-
dependent, and it is apparent from the form of in (3.35)
that (Cl"M )d;,g is also R independent for any n.
A fortiori M. . . . ~ d;,g

is R free if the derivatives are not

contracted in pairs.
A similar argument may be applied to Nz. From (3.33)

and (2.15), in normal coordinates at x',

IV. PROOF OF THE CONJECTURE
OF PARKER AND TOMS

In this section we shall prove the conjecture of Parker
and Toms that for a scalar field the kernel (x,s

~

x', 0)
satisfying (2.3) has the expansion

I

(x,s
~

x', 0) =i(4~is) e' 'bvM'y (x,x')F(x,x', is)

(3.38)
where

X exp[ is(g —,
' —)R (x'—)], (4.1)

From (3.28) we may calculate the Christoffel symbol in
normal coordinates,

F(x,x',is)=1+ g (is)jf&(x,x') (4.2)
j=1

such that for each j, the coincidence limit fj(x,x) is R in-
dependent. In fact, it is necessary to prove the stronger
assertion that for all j, fj ~ . . . d;,g

is R independent for

any number n of derivatives. This will then imply that
each fj (x,x ') is R independent even for x&x '. Because
of the close relation between the kernel defined by (2.3),
and the heat kernel for an operator — +gR on a
Riemannian manifold, our proof will apply equally to the
asymptotic expansion for the heat kernel in powers of s.
The proof is by induction on both j and n. Let us assume
first that fk . . . ~ d;,g is R independent for all r, for all

k &j. We showed in Sec. III that this statement is true
for k =0. Let us also assume that fj. , d;,g

is R in-

dependent for all m &n. This is true for m =0, since the
coincidence limit of (2.14) yields

~ py= z g (gspy+gsy, ,p gpy, 5)

(3.39)3 (R pyp+R ypp)y~+ G py

where 6 && is curvature connected.

(3.40)N„~= —( , R„~+ 4 B~.B„H—+I'yq~Ny ),
so

1 1

Np;adiag 6 Rpa 4 ( ai)pH)diag t (3.41)

5N„~p dpN„~ —I „p.Ns——~ I ~pN„g. — .(3.42)

jfj diag = [(~fj —1 )diag+ ( fj —i )diag +Np diagfj —i' diagl ~

(4.3)

and hence by virtue of the first inductive hypothesis and
the results for M and N„proved in Sec. III, fj d;,g is R in-
dependent.

Differentiating (2.14) n times, taking the coincidence
limit, and using (3.13) and (3.14),

Each successive covariant derivative is constructed
from the previous one as in (3.42) so that any curvature
tensors arising from the Christoffel symbol in (3.39) will

' always be curvature connected, and hence 2V&. . . . d;,g isP, aj . andlag

R independent for all n ~ 1 and N„.~d;,g is R independent
for a~p.

We now have all the information about the individual
constituents of (2.14) which we need to prove the conjec-
ture, which will be the task of the following section.
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~ +Jfj;a) ~ ~ a diag+ $fj;a a) ~ . a ia (
~ a diag

m

o~P f I . ~ - ~ r ~paium- j;pa~ . . ai ~ai+~ . am &am+& a„]diag
' [O'

a& a„fj;p]diag
, m

l&m

[M;a& a„diag+(k 6~ );a& ~ a ]fj —i diqg

V [M.
m

[M. . . . . . . . . . .
, !~ ' Rai —1ui+1 m —1 m+1 u diag+ & 6 );a u a ' a a ~ ]

l&m

—X [M; d.g+(k ——»; ]f,
m

, ang J,a1 am —1am + 1 a„diag

d1ag~ j—1;a1 andiag Jj —1;p a1 a diag

~~rP;u~ a diagfj —i diag ~''p a . . a u d' f1a~ + 1 an iag g — a diag
m

Ip
pdiagJ j—1 a1 a„diag . (4.4)

;a1 .,an-+ i+' ' ' + "fj aa diag'nf 1 n
(4.5)

the expansion in (4.1) is R independent before taking the
coincidence limit.

We should emphasize that the terms in f~
which do not depend on R are exactly the same as those
in the original f~ . . . d;,g computed from . (2.8). This
can be shown by making the same inductive hypotheses as
were used in the proof of the main theorem. Clearly the

The indices in the second term can be rearranged to the
order a, . n„, introducing further terms consisting of fJ.
with less than n derivatives contracted into curvature ten-
sors. Such terms are R independent by the second induc-
tive hypothesis. The succeeding terms on the left-hand
side (LHS) of (4.4) are R independent by virtue of the re-
sult concerning o. in Sec. III, and the second inductive hy-
pothesis yet again. The terms on the RHS of (4.4) are R
independent as a consequence of the first inductive hy-
pothesis and the fact that the coincidence limits of deriva-
tives of M and X& (provided p is left as a free index) are
R independent. Hence fJ, d;,g is R independent. As

we remarked earlier, this statement is true
(a) for j=0 and all n and
(b) for any j and n =0, given it is true for all k &j.
Now we have shown that if fk. . . . d;,g is R indepen-

dent for all r, for k &j, and fJ a. . . d;, is R indep. en-

dent for all m &n, then f~ a. . . d;,g is also. R indepen-

dent. Hence this statement is true for all j and n by in-
duction. The conjecture of Parker and Toms is therefore
proved in general, and moreover since we can write

;a;Pfi(X~X ) =fJ' iagd()X+ iTfJ';adiag+ z
+' ~' fj;aPdiag+

I

statement is true with j =0, for all n, and since (4.3) has
the same form as the coincidence limit of (2.8) apart from
terms depending on R, the statement is also true for any j
with n =0 provided it holds for all k &j. Moreover, since
when we take derivatives of (2.14) these act only on R(x)
and not R(x'), the terms in (4.4) have the same form as
would be obtained by differentiating (2.8) apart from
those involving R and not its derivatives. Hence the
statement is proved by induction. We could also see this
more simply by expanding exp[ is(g—,'—)R(x' '—)] in (4.1)
and obtaining f~(x,x') as a function of the fk(x, x') by
comparing coefficients of (is)

On the other hand, if we were to use, for instance, the
alternative expansion (2.12a), then the recurrence relations
for f 1 would be somewhat more complicated owing to the
extra x dependence in the exponential. Nevertheless, we
could prove in a similar fashion as for the fJ earlier that
the coincidence limits of f~

and its derivatives are R in-
dependent and indeed it is clear from (2.12) and (2.12a)
that

+ I
fjdiag J j diag . (4.6)

However, the coincidence limits of derivatives of f 1
will differ from the corresponding quantities involving f~
by terms involving covariant derivatives of R. These
terms could be evaluated in principle by expanding
exp[ —is(g ——,

' )R(x')] in (4.1) and exp[ is(g —,
' —)R (x)—]

in (2.12a) as power series in ( is), and then comparing coef-
ficients of powers of is. Similar remarks apply to the oth-
er possible expansion written down in (2.12b).

Before leaving the case of the propagator for a scalar
field, we must point out that when background gauge
fields are contained in the covariant Laplacian, as happens



IAN JACK AND LEONARD PARKER 31
I

for Faddeev-Popov ghosts, or Higgs fields, then the situa-
tion is somewhat more involved, and is considered in de-
tail in the Appendix. The results of this section still hold
good even in this case.

We now assert that this expansion may be rewritten in the
form

( x g
~

x 0) i(4~ig )
—d/2eicr(x, x )/'2sg I/2( ~)G( ~. ~

)7

V. THE CASE OF HIGHER SPIN
&& exp[ is [—X(x') —,

' R—(x')]], (5.7)

We now turn to consider the kernel (x,s
~

x', 0) for the
propagator of a field with nonzero spin. The field then
carries indices according to the particular spin, and the
covariant derivative D& acting on the field contains the
appropriate spin connection. We may write

Dp =1~Vp Vp=op+rp (5.1)

where 1~ is the unit matrix for the particular representa-
tion of the gauge group 8 to which the field belongs and
I @ is the relevant spin connection. The case where back-
ground gauge fields are included in D& is considered in
the Appendix. Two covariant derivatives acting on the
field successively do not now commute (in contrast to the
scalar case) and we have

[D~,D„]= 8'p (5.2)

where W&„will be specified later. We shall consider D&
always to contain the correct spin connection for whatever
object it acts on, and denote B&Y by Y.&.

The kernel is now a bispinor (for half-integral spin) or
bitensor (for integral spin), transforming as a direct prod-
uct of two spinor or tensor representations, at x and x'.
Although the calculation will be perfectly general, we
shall exemplify it by reference to the spin- —,

' and spin-1
(vector) cases. Any higher-spin representation can be con-
structed as a direct product of two or more of these. '

Omitting matrix indices, the propagator now satisfies

[D +X(x)]b(x,x')= —5(x,x')1, (5.3)

where 1 is the unit matrix for the particular spin represen-
tation, and X(x) is a matrix whose form will be discussed
in detail later, which may include mass terms and in par-
ticular any imaginary mass term necessary to ensure con-
vergence.

If background gauge fields are included in the defini-
tion of the propagator then the form of X will be modi-
fied, as is discussed in the Appendix. However the argu-
ments of this section still apply. Since each of the matrix
indices of X transform as a spinor or tensor, the covariant
derivative acts according to

X.„=[D„,X] . (5.4)

The kernel (x,s
~

x',0) which gives b, (x,x') according to

A(x,x') = i f (x,s
~

x', 0)—ds (5.5)

has a Schwinger-DeWitt expansion' corresponding to
(2.4),

(x,s ix', 0)
=i(4vris) " e' '"" ' 'b, M' ( , xx) (G, xxis),

(5.6)

G(x,x', is)= g (is)gJ(x, x') .
j=o

o'"ao p =o

JSg —'"SJ; p
= —

gj —t;p"—
&ping —1'"

+ [ —M+ —', [R(x)—R(x')] jgj

+ [gi &X(x') —X(x )gj &] .

(5.8a)

(5.8b)

The proof that the coincidence limits of gz and all its
derivatives are R independent follows the same steps as in
the scalar case in Secs. III and IV, with some minor
differences in detail. The first is that although
go. , d;,s remains R independent for all n, it is in gen-

eral no longer zero. Differentiating (5.8a) twice and tak-
ing the coincidence limit,

go;aPdiag +So;Pa diag

We now have, from (5.2),

(5.9)

1

gO;aPd. g= 2 ~Pa (5.10)

and in general, in the analogous equation to (3.25) when
we rearrange indices in .go. i 1

. . t —lai+1. . .an lag

the order a~. . .a„, we obtain terms depending on 8', for
instance,

G(x,x', is) = g (is)jg~(x,x'),
j=0

where exp[ is—[X(x') —,—R(x')1]] is defined as a formal
matrix power series, such that the gj have the following
properties:

(1) The coincidence limits of gj and all its derivatives
are R independent for all j.

(2) There are no terms in the coincidence limits of gz or
any of its derivatives containing factors of X, unless they
also contain factors of either W or its derivatives, or
derivatives of X.

(3) Any terms in the coincidence limits of gJ, or its
derivatives, which contain X and also contain (a) deriva-
tives of X, or (b) W, or (c) derivatives of W, are such as to
sum to zero if X commutes with whichever quantities of
type (a), (b), or (c) are present.

The expansion (5.7) was first proposed in Ref. 7, where
it was pointed out that in the coincidence limit G was R
independent to order s . In the Appendix, the first three
nontrivial terms in G are written down explicitly, demon-
strating that properties (1)—(3) hold to this order. As a
corollary of statement (1) above, G(x,x';is) is evidently R
independent to all orders even for x&x'. As for the sca-
lar case, these results apply equally to the heat kernel for
an operator D+X(x) defin—ed on a Riemannian mani-
fold.

The proof of the statements following (5.7) is as fol-
lows: from (5.3), (5.5), and (5.7), the coefficients gj satisfy
a recurrence relation analogous to (2.14),
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j—i

~j+~~j''' ~ "' ~ ajaj+i ~ j j+i I &'' i —1~ I+i''' j—i 'aj+2'''an=go. . . . , . . . —~~ (R
1=1

+(W . . go. . . . . ).j j+1 & 1 j—1 ' j+2 n
(5.11)

Since cr and its derivatives are R independent, it is clear from (5.11) and (3.25) with g replacing f, that go.a, . . . a d;,g is
built up out of curvature tensors contracted with each other or with 8' together with terms involving 8'alone. There is
no explicit R dependence, and in fact there is none concealed in W'either. For spin —,, W has spinor indices,

. 1 ~ p g p8'~ ———4R spy y, y =ye, ,

where y' are the usual Dirac y matrices and e," is the vierbein with the properties

~ah ——e, ebg», g» ——el ev5ab .fL V

For spin 1, 8'has Lorentz indices'

(5.12)

(5.13)

( Wap)pa —— Rajjp —ly . (5.14)

The forms of Waji in (5.12) and (5.14) must be modified when background gauge fields are included. Details are given in
the Appendix. In products of several W's, the aP indices in (5.12) and (5.14) are completely independent of the spinor or
Lorentz indices p,o and hence they cannot be contracted together to give dependence o'n R.

Evidently the remainder of Sec. III carries over unaltered. However, Sec. IV requires some modification. Following
the procedure of that section we make the inductive hypotheses that

(a) the coincidence limits of gk and all its derivatives are R independent for all k &j and
(b) The coincidence limits of gj.a . . . a are R independent for all rn & n.
Then, differentiating (5.8b) n times, taking the coincidence limits and using (3.13) and (3.14), we have

jfj;al . a„diag ~8j;a al . a. la +1
. . andiag

~ j j ja;a J;pal . a; la;+1. . a la +1
. a„diag al . . ' a„Ãj;p diag

i,j
l (J

gj —1;p, a& ~ a„diag pdiagpVj —i ai ~ ~ a„diag ~( 'p;a;gj —i a&
~ a,. &a;+i . ~ a„)diag

j j jp;a,.a cj—1 al " ~ . a; .la +1 ~ a la. 1
~ ~ a„diag ' p;al ~ a„diag' —1 diag

E,J
l (J

1

(~;a& ~ a„diag 6;ai ~ a„++;a& ~ a„)gj—i diag

(M. . . . . . . . —-'R. . . . . . . +X, . . . . . . . . ).—;al al la. +1 a diag
—6;al. a- la. +1. a +;al . a lal+1. . a gj —1;a.diag

R' u~ ~ ~

;a;diag 6 ';a; +X;a,. )gj —i;ai ~ a,. &a; i
~ ~ a„diag

gj —I;ai . a„diag)+ [gj—I;a& ~ a diag'+] (5.15)

When we rearrange indices in terms in

g,.gj.aa, . . . a a . . . a d;,g, We Obtain termS inVOlVing

W as in (5.11), but according to the remarks following
(5.11), they do not introduce any R dependence. Hence,
given the inductive hypotheses and by virtue of the results
of Sec. III for M, N„, gj. . . . d;,g is R independent.
The coincidence limit of (5.8b)

jgj diag gj —1;p diag™diaggj—1 diag+ tgj —1 diag&+]
P .

implies that gJ d;ag is R independent given the first induc-
tive hypothesis, that gk. . . . d;,g is R independent for
k (..j and any r, arid we have already seen that

I

gp. al. . . a diag is R independent. Hence the inductive pro-
cesses can be initiated and gz. . . . d;,g is R independent
for every j and all n.

The second statement following (5.7) is readily proved
by induction, since it is only derivatives of X, and 8'and
its derivatives with which X may not commute. Cxiven
that statement (2) is true for gk. a . . . d;,g for k &j and
arbitrary r, and for gj. . . . a d;,g for I &n, then since
terms in gz &. . . . a d;,g not containing derivatives of X,,al a„ lag

or 8' or its derivatives, will give a vanishing contribution
to the commutator in (5.15), the statement is also true for
gj.a . . . a d,,g. Evidently for the same reason the statement
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(5.17)X.
( p! = [ 8'p, X],

and so terms containing 8' ~ contracted with X. p, which
are first encountered in evaluating g3d' g can yield extra
terms involving X and O'. It is still the case however that
all such terms sum to zero if X commutes with whichever
of 8' or its derivatives appears. This proves the third
statement following (5.,7). As in the scalar case, since the
coincidence limits of all derivatives of each gJ are A in-
dependent, the expansion (5.7) is R independent in gen-
eral, without taking the coincidence limit.

We could also postulate the alternative expansions

(x,s
~

x', 0) =i(4vris) " e'

Xexp{ is[X(—x) —,R(x—)1]}G'(x,x';is)

(5.18)

is true of gJ d;,~, given it holds for gk. . . . d;,~ with k &j,
and obviously it is true for go. . . . d;,~ for all n. Hence

the second statement is true in. general by induction. Con-
versely, terms involving X and also derivatives of X could
only be generated by the commutator in (5.15) and there-
fore would sum to zero if X commuted with the objects
concerned. On the other hand, terms involving X and 8'
or its derivatives can also be generated in a different
fashion, since from (5.2) and (5.4)

G(x,x')exp {——,
'

is [X(x')——,R (x') 1]}

=exp {——,is [X(x)——,R (x)]}6 "(x,x') . (5.21)

Expanding the exponentials and equating coefficients of
(is) we obtain

These expansions also share the properties of (5.7). The
immediate difficulty in proving this is that there is no
convenient expression for the derivative of
exp{ —is[X(x)——,R (x)1]},and hence it is not clear how
to obtain the recurrence relations for g~ and gz' from
(5.3), (5.5), and (5.18) or (5.19). This is easily overcome in
the case of (5.18) since, neglecting any complications due
to possible zero modes, the propagator also satisfies

b, (x,x')[D „+X(x')]=—5(x,x')1 (5.20)

and hence recurrence relations can be written down which
are similar in form to (5.8) except that derivatives are now
with respect to x' rather than x. The proof then carries
through as previously. In the case of (5.19), however,
another approach is evidently required. Comparing (5.7)
with (5.19), we see

or the symmetrical

(x,s ~x', 0) =i(4mis) ~ e'

X exp {——,is [X(x ) ——,R (x ) 1]}6 "(x,x ';is )

where

(5.22)

)& exp {—, is [X(x') ———,R (x') 1]}, (5.19) Y( x)= —,[ —,R(x) —X(x)] . (5.23)

where 6 ' and 6"have a series expression similar to 6 in
(5.7).

It is straightforward to show by induction that the solu-
tion for g J" in terms of gk, k =1, . . . ,j is

g J'( , x)x=g (J,x x)+[g~ )(x,x'.) Y(x') —Y(x)gi ((x,x')]+ , [gJ 2 Y—(x') —2Y(x)gJ 2Y(x')+ Y(x) 'g~ 2]

k

+ +, g l ( —1)'[Y(x)]'g) k(x x')[Y(x')]
' l=o . '. (5.24)

where

k~

l!(k—l )! bF(x,x')=y Dh(x, x') (5.27)

with y" as in (5.12). In order to be able to work with a
second-order operator as required for the Schwinger-
DeWitt expansion, we write

It is then a matter of tedious combinatorics, using in par-
ticular the relation so that, from (5.26),

(y.D) b, (x,x')= —5(x,x') . (5.28)

(5.25)

y "D&EF(x,x') = —6(x,x'), (5.26)

to show that the properties of gJ imply the same proper-
ties for g J".

Finally let us display explicitly the forms of X for the
particular cases of spin —,

' and spin 1. In the case of spin
—,', the propagator AF satisfies a first-order equation

Using (5.2) and (5.12) together with the usual y-matrix
properties, (5.28) may be written in the form (5.3) with

(5.29)

and hence X does commute with all quantities involved.
Thus for spin 2, there are no terms in the coincidence
limits of g~ or any of its derivatives which vanish when X
(but not its derivatives) is set to zero. In other words,
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G(x,x', is) remains R independent even when the R
dependence in X is taken into account.

For the spin-1 case, on the other hand, assuming that
(5.3) applies to the propagator for a quantum gauge
theory with a Feynman-type gauge, then

XPv —RPv1 ~ . (5.30)

Thus in this instance X does not commute with its deriva-
tives, nor with W and its derivatives as given by (5.14).
However, evidently the terms containing X can introduce
no R. dependence into the coincidence limits of gj and its
derivatives. The reader is referred to the Appendix for a
discussion of the inclusion of background gauge fields.

VI. CONCLUSION

We have now proved the theorem stated in Eq. (5.7)
and the paragraph following it. The quantity X of Eq.
(5.7) is given for spin —, in Eq. (5.29) and for a spin-1
Yang-Mills field in Eq. (5.30). In the scalar case, X is
given by gR and the theorem reduces to Eqs. (4.1) and
(4.2) with the fj(x,x') being R independent, even when x
and x' are not equal.

An immediate application of the theorem is in simplify-
ing the calculation of the higher-order coefficients of the
heat kernel or Schwinger-DeWitt expansion. We have
proved that, when written in the new form, the set of

I

1

8 1diag

terms containing the scalar curvature will not appear in
the expansion coefficients for any spin.

The new form of the expansion should also be useful in
probing nonlocal effects which could not be obtained
from a finite set of terms. In quantum field theory, for
example, the exponential term in Eq. (5.7) or Eq. (4.1)
gives rise to nonlocal curvature dependence of the effec-
tive coupling constants, and introduces significant modifi-
cations into the gravitational field equations. Finally, by
retaining a finite known set of terms in the expansion of I'
in Eq. (4.2) or G in Eq. (5.7), one obtains useful approxi-
mations for the heat kernel and Feynman propagator.
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APPENDIX

In this Appendix we list the explicit forms of the coin-
cidence limits of the first three nontrivial terms in the ex-
pansions of G, G in (5.6) and (5.7) so that the properties
stated after (5.7) may be checked in these cases. For an
operator of the form D +X where the covariant deriva-
tive D„satisfies the commutation relation (5.2), we have

(A 1)

g ]diag =

g2diag )80 pv + jgQ Rpvp~R 30 R + 6 X+ 12 ~ap

g3d;,s ———[18 R —17R.pR '"+2R„R"~'~+4R„. R&~' 9R . Rv—~i'~ ~ 2gR.
=l 2—

0

(A2)

(A3)

(A4)

+8R„R"—24R„,R ' —12R„~R + —", R —", RR

+—RR R — R R~ & "~+—R R RI ~ ~ —"R RI v vs~~
3 PVPCT 9 PV ~» 3 PV Pg 3 PV PCTT

+—R R" pR + 80R RI' &pR9 Iji VPCT ap 9 pvpcr a pg

—
45 ~ ~;r~ '—iI. II";eII' r' —6'o(&II' p)II' ~——,'. II'.p II' ~+ —,', W ~W~&W ~

I

+—60R»&8' O' ——,', R„8'

——„X(&X)——„(QX)X——,', X.„X'~——,'X' ——,', Xg ZP ~

60 ap 30 ap + 36 + 90;ap+ 30 R;pX' + 60 X.pp 'a 60 ~ p'aX p+ X

(A5)

and
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g3dgg ———[18R—17R. R'+2R. R'+4R. R' —9R
1

PV,P PV~P PVP(7, 1

/

+8R„,CIR~' 24—R„R"t" 12—R„, ClR"'~ ',"—R„R ~g'~+ "
, R—„,R

—R R" Q t'a'+ —R R~~ PRt'a
3 PV PET 9 PVP~ ap 9 pvpa a p3 45 ap p

—„.w p pw. , ' „(—&—w.p)w p „—w.—p w p+ ,
' w.—pw»w +—'R, w.pw»

+ „X,pW— ,. „W——
,~,p+ ,', XW.—pW P ,', W—.,—XWP ,', W—.,—W PX. (A6)

In the main text we considered explicitly the usual
propagators for fields Q of spin 0, —,', or 1 satisfying equa-
tions like (5.3) where the operator +X is derived simply
from the kinetic part of the action I [Q], in other words,
the part quadratic in Q. However, the Schwinger-DeWitt
or heat-kernel expansion is also a very powerful tool when
used in conjunction with the background-field meth-
od. ' ' In this case the field Q is written

Q=q+q, (A7)

where now q is the quantum field and q a classical back-
ground field. While some authors who work with the
background-field method find it convenient to continue to
use the usual propagator as before, ' ' so that all the
terms in the expansion of I[q+q] containing q are con-
sidered as interactions, some calculations are simplified by
using the full propagator in the presence of the back-
ground fields, ' ' ' so that the operator +X is that
which is associated with the full set of terms quadratic in

q in the expansion of I[q+q], and then X and D& may
acquire contributions from the background fields q. In
this appendix we will consider in detail the modifications
induced by including a background gauge field A„, but no
other background fields. The covariant derivative in (5.1)
will now become in general,

Dp ——V'p1~ —i' Ap, (A8)

A. Spin 0

Let us suppose we have an n-dimensiona1 multiplet of'
scalar fields transforming under a representation of the
gauge group with generators t~. These generators are
chosen to be Hermitian and satisfy

where Az is the matrix-valued vector-gauge connection
with coupling constant e~. The forms of 8' p and X for
each spin will now be modified and are displayed below.
(Scalar and spinor background fields may also be intro-
duced without further alteration in Wap, but the forms of
X will then be more complicated and are listed elsewhere
in the literature. '

) We shall consider each spin in turn.

Ap ——Ap, t, , (A10)

Fap a = da ~p a d p~ a, a +egfabc ~ab~ pc, , (A12)

The form of X depends on the type of scalar fields we are
considering. For instance, when they are anticommuting
Faddeev-Popov ghost fields, then X=O and t~ are the
generators of the adjoint representation

ta =ta ~ (ta )bc = —tfabc (A13)

On the other hand, for a multiplet of Higgs fields, then

X= —M'+gR1, (A14)

where M is the mass-squared matrix. The properties of
the expansion (5.7) then imply that all the M dependence
is contained in the exponential, which could be seen
directly as for the scalar field propagator without back-
ground gauge field in (2.2).

B. Spin 2.

For a multiplet of spinor fields transforming under a
representation of S with Hermitian generators ta~ with
commutation relations as for t~ in (A9), the covariant
derivative has the form (A8) with

Ap ——Ap ~t~ (A15)

and we find

~curv + ~gauge
ap ap ap

4+

Xcurv+Xgauge

X'""=
4 8 1g 1g, Xg'ug'= —iso." E&~

where A„, are the components of the gauge field. Conse-
quently, W p, as defined in (5.2), is given by

8 p
———i' E~p, E~~p ——Eap, t~, (Al 1)

where

[ta~tb]=tfabctc . where
A9)

The propagator then satisfies an equation of the form
(5.3) with the covariant derivative given by (A8) with now

+p =I'„, t

where y is defined in (5.12) and I'&„, in (A12).

(A17)
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Clearly the terms involving X will still contribute no R
dependence to g~ in (5.7) and its derivatives. However
X '" ' does not commute with W~'p ' or its derivatives, or
with derivatives of X '" ', and hence there will in general
be sets of terms in gj. and its derivatives containing prod-
ucts of X '" ' together with 8'g'" ' or its derivatives, or
derivatives of Xs'"s'.

C. Spin 1

For a spin-1 field, in order to obtain an equation of the
form (5.3), when we include the background gauge field,
we need to use the so-called background field gauge. '

This leads in general to a propagator A~ satisfying

adj
A@ ——Ap, t, ', (A19)

r,' ' being defined in (A13). We have in this case

( g ap)p, —— Rai—3p~l ~ ie—sFa)5„„,

X~ =+~ 1+ —2eg 5~
d

(A20)

where

where g is a variable gauge-fixing parameter, and the co-
variant derivative Dz is given by (A8) with

BdJ adjF„=F„,t, (A21)
P'&&+ ——1 DI'D&+X&& b,&,= —5,5(x,x'), (A18)

Evidently to obtain the form (5.3) we must take g= 1.
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