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Strong-coupling quantum gravity. III. Quasiclassical approximation
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The ultralocal representation of gravity is used to obtain a quasiclassical approximation for the
evolution of wave functionals towards the initial singularity. The whole dynamical content of this

process is encoded in the successive asymptotic scatterings of Kasner wave functions by the gravita-
tional potential term V=gR. It is indicated how this can be used to prepare the state {density
operator) of the gravitational field in the immediate neighborhood of the singularity.

I. INTRODUCTION

In previous papers' the strong-coupling limit of gen-
eral relativity was studied. In particular, in Ref. 1 a
choice of gauge was made while in Ref. 2 the general
gauge invariance was maintained.

The strong-coupling limit is obtained by taking the usu-
al constraint Hamiltonian generator

itG,jkl r/ jar ——gR
Vg K

l
Gijkl =

2 (gikgjl+gilgjk gijgkl ) (1.2)

(g= detg, j, R is the scalar curvature of g;., m'J is the
momentum conjugate to g,j, and l(.=16mG/c3) and re-
placing it by'

A 0—GjjkI7T 7Tij kl (1.3)

Roughly we have taken G —& Do in (1.1), whence the name
strong-coupling limit.

Since the spatial derivatives of the metric tensor are all
contained in the term gR of (1.1) we find that the dynam-
ics generated by (1.3) is characterized by the absence of
field correlations between neighboring spatial points, in
other words the light cone has collapsed to a line. The
concept of ultralocal representations offer an ideal
framework to study the strong-coupling limit and the
quantization of A o was already obtained' (ultralocal
means no correlation between spatial points). However, a
perturbative technique has to be found so that the term
gR can be added to A 0, but as yet it is not known how to
represent products of spatial derivatives of the metric ten-
sor.

The absence of physical interpretation of the abstract
formalism developed thus far is a compelling reason to
study its quasiclassical behavior. The approximation
scheme involved here is 'suggested by the kind of represen-
tation in which the strong-coupling limit was expressed in
Refs. 1 and 2 (see also Ref. 7 on exponential representa-
tions). The way in which this is done in Sec. III allows us
to exploit the large amount of information about cosmo-

logical models available in the literature. ,
' It is hoped

that such a study will provide us with a better insight into
the physics occurring in the full quantum theory.

The physical arguments that led to the discussion of
configuration-space S-matrix theory in Ref. 2 are again
invoked in Sec. IV in connection with classical cosmologi-
cal solutions. Ordinary S-matrix - theory deals with
asymptotic particle states containing information about
some interacting potential. %'hen classical cosmology is
understood as a scattering problem in superspace ' then
fruitful analogies emerge. The asymptotic behavior of the
metric is described by a Kasner universe. The cosmologi-
cal problem is encoded in the way which Kasner universes
are scattered by the gravitational potential V=gR.

As a motivation for the quasiclassical approximation
described in Sec. III we outline here its quantum-
mechanical' ' counterpart. Boson and ultralocal scalar
fields have already been discussed elsewhere. ' '

Suppose that P and Q are operators acting on a Hilbert
space H and satisfying the usual canonical commutation
relation [Q,P]=iA Assume t.here is a vector

L

0) EH
such that (0

L Q L

0) =0= (0
~

P
L

0) and

) e (i/A)qpe(ill)—)PQ
L

())P~cf (1.4)

span H and denote by S the set of all vectors of the form
(1.4) where p and q are c numbers. It can be shown that
S is an overcomplete family of states.

The action principle for quantum mechanics is based on
arbitrary variations of 4 in

r
1

I= Jd te, t'ai (1.5)
dt

and gives the Schrodinger equation of motion

iA
dt

(1.6)

where A (P,Q) is the Hamiltonian of the system. If, in-
stead of general states %'(t) EH we use states from S the
resulting variational principle, called restricted action prin
cip/e, ' based on arbitrary variations of p and q in

241 Oc1985 The American Physical Society



242 G. FRANCISCQ AND M. PILATI 31

I= Jdt p, q iA ——A p, qdt

gives the equations of motion

BA (p, q) . BA (p, q)9'cl= ~ Pc)=-
By Bg

Notice that

A (p, q) = (p, q ~

A
~ p, q &

(1.8)

is playing the role of a "classical" Hamiltonian respon-
sible for the evolution of the parameters p, q (for ultralo-
cal scalar fields and quantum gravity these parameters
turn out to be smearing functions). This is essentially the
content of Klauder's weak correspondence princt'p/e: '

given a quantum generator 9'(P, Q) then its classical
counterpart is given weakly by

&(p,q)= &p»q I
&

I p»q & (1.10)

density matrix but the context will make clear which con-
cept is intended.

II. QUANTIZATION IN A FIXED GAUCrE

'k ik~, —.(g,k+ +~ gjk) . (2.1)

with this choice the spectrum of g;j can be taken to have
signature (+++).

A convenient rearrangement of the variables giJ, ~~ is
obtained when we identify an intrinsic time ' among the
components of glj,

In the canonical approach to gravity when one tries to
quantize the theory in terms of the metric g;j(x) and its
conjugate momenta m'~(x), it is soon found that these
operators cannot be Hermitian and at the same time have
positive-definite spectrum.

One way of solving this problem is to express the
theory in terms of

Now we relate the "classical" evolution (1.8) to the quan-
tum evolution of the states.

It is important to notice that if exp[ —(i/A')A t]
~
p, q &

is an element of S,Vt, then the restricted action principle
is equivalent to the full action principle. In this case

(1.11)

where p,i(t), q, l(t) are solutions to (1.8) satisfying the ini-
tial conditions p,l(0) =p, q, l(0) =q. Systems satisfying the
evolution (1.11) are called exact. In general, however,
(1.11) is not true but a quasiclassical approximation to the
full quantum evolution of any system can be found' to be

]/3
ggJ ~

i i 1 i
PJ —7TJ 3 7T6J

where g= detgiJ. Note that

detgiJ ——1,
P =0.

The only nonvanishing Poisson brackets are

[v,m]=1,

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)
e ""' '

I p q & =
~ p.i(t ),q.i(t ) & . (1.12)

[gij ~pl ] 2 (gil~j +gjl~l ) & (2.9)

This is essentially the formula we intend to study for
quantum gravity and to apply in some concrete cir-
cumstances.

Briefly the paper is organized as follows. Section II
contains a summary of ultralocal quantization of gravity
in a fixed gauge. In Sec. III the quasiclassical approxima-
tion is presented. This will involve an approximation to
the quantum evolution of wave functionals under

J —A o + V. Although no representation V for the sca-
lar curvature term V=gR has yet been found we conjec-
ture that a similar expression as (1.12) must hold in quan-
tum gravity. Section IV contains more details of how the
test functions that smear quantum operators are related to
classical cosmologies. Also the concept of density matrix,
or state of the system, for the mixmaster universe is intro-
duced. In this model there is no x dependence in the
smearing functions and the problem is reduced to finite-
dimensional quantum mechanics. Finally we make some
pertinent remarks about the inhomogeneous case when the
smearing functions are x dependent.

Throughout the paper we denote by x a point in a com-
pact hypersurface X; g;J(x) is the spatial metric tensor on
X with signature (+++),i,j,=1,2, 3, in other words g,l
is positive definite on X. Sometimes the word "state",
means wave function(al) instead of its correct usage as

[pl p ] (plgk pkgl ) (2.10)

where we omitted factors of 5(x, x'); also on the right-
hand side one should include i' for quantum-mechanical
operators. Notice that PJ has the same commutation rela-
tions as the generators of the group SL(3,R ).

These variables can now be used to reexpress the ul-
tralocal Hamiltonian of the Introduction:

i j l 2 (2.1 1)

Studies of ultralocal cosmological models (or velocity-
dominated cosmologies"' ) have revealed that only three
components of the metric tensor are necessary to specify
the dynamical evolution. The fact that three, out of six,
components of the metric are relevant in velocity-
dominated cosmological models appear to suggest that ul-
tralocality has in some sense reduced the number of de-
grees of freedom. Strictly speaking, however, no con-
straint of the theory has really been solved. Rather this
reduction is due to the fact that Einstein's equations
RJ' ——0 plus ultralocality assumption imply that the metric
tensor diagonalized on the initial hypersurface X stays di-
agonalized when evolved out of X. In other words, gj can
be diagonalized by time-independent triads on X and, as
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any 3&(3 matrix, only three components need to be con-
sidered.

The gauge fixation presented in the first paper of this
series seems most adequate to fully explore this peculiari-
ty of velocity-dominated models: for instance, our Hamil-
tonian (2.16) is precisely the Hamiltonian in Ref. 12, Eq.
(5). With this motivation in mind we introduce the
gauge-fixed variables.

Among the six components of the metric tensor, three
are related to the arbitrariness of the choice of coordinate
system on X, two are the true degrees of freedom and one
has been identified as an intrinsic time [like ~ in (2.2)] re-
lated to the constraint A 0. I.et S be the five-dimensional
space of all g;J at a given x ~X, that is, the space of sym-
metric positive-definite matrices of unit determinant [see
(2.6)]. Then a gauge fixing is obtained by finding a two-
dimensional submanifold E of S parametrized by some
functions of g,j, which we call ti and tq, and by choosing
among the Pz two conjugate variables to these functions.
Three out of the eight PJ generators of SL(3,R) [those
corresponding to the SO(3) subgroup] can be eliminated
by a proper choice of the submanifold E. Three more are
eliminated by gauge conditions and we are left with two
independent combinations m~, m2 of the P~. It can be
shown' that

[ ti, ni] = 1 = [tz, m z],
[t;,t;]=0= [m;, m.;], i =1 or 2 .

It is convenient to redefine

m+ ——V2(mi+mq), m =v 6(ni —mq),

1 1
t+ — (t, +t, ), t = (t, —t, ),

%8 24

(2.12)

(2.13)

(2.14)

(2.15)

and to take the pairs (t+,m+), (t,m ) as our gauge-fixed
independent variables.

The Hamiltonian in terms of these variables has a sim-
ple form

0=~+2 2 2 (2.16)

where, for convenience, we have dropped numerical fac-
tors from the right-hand side of (2.16). Next we quantize
this velocity-dominated Hamiltonian using ultralocal tech-
niques ' and in the next section (2.6) will be recovered
[see (3.9)].

The field operators suitable for the ultralocal limit of
gravity are expressed in terms of creation and annihilation
operators A, A that act on a Fock Hilbert space H pos-
sessing a state

~

0) such that

[A(x;P+,P,Q), A (x ';/3'+8', Q')]=5(x —x ')5(/3+ —P'+)5(/3 —/l' )5(Q Q'),—

[A(x;P+,/3, Q), A(x ', /3'+, P', Q')]=0,
[At(x;P+,P,Q), At(x ';P' +P', Q')] =0,
A ~0)=0,

where P+,P,Q can vary from —00 to + oo. In the gauge already described the quantized fields of the theory are

t+(x)= f d/3+d/3 dQBt(x;P+, /3, Q)/3+8(x;/3+, /3, Q),

8+(x)= f dP+dP dQBt(x;P+, /3, Q) 8(x;P+—,P,Q),
l 8

r(x)= f d/3+dp dQBt(x;/3+, P,Q)QB(x;/3+, /3, Q),

&(x)= f dP+d/3 dQBt(x;/3+, /3, Q) . 8(x;P+,P—,Q),
BQ

where

(2.18)

(2.19)

(2.20.)

(2.21)

(2.22)

(2.23)

(2.24)

8(x;P~,/3, Q) =A(x;P+,P,Q)+C(P+, /3 ) . (2.25)

The function C(P+,P ), called model function, ' ' ' labels the representations and determines many of their properties;
we assume it is not square integrable. This guarantees that B and A are not unitarily equivalent, and that the field
operators have continuous spectrum.

An overcomplete family of states analogous to (1.4) is

~ p+,p, co;q+,q, g) = exp ——f d x(p+t++p t —toQ) exp —f d x(q+&++q & —g&)
~
0), (2.26)

where p+,p, co; q+,q, g are infinitely di ferentiable real smearing functions on X. We call (2.26) coherent states
(coherent in the sense that they are eigenstates of the annihilation operator).

The Hamiltonian is now expressed as'

82 a2 B2
A 0(x)= fi f 1/1+d/3 dQBt —+ — —V(p+, p )

8/3 B/1 BQ
(2.27)
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where V(P+, P ) is included to guarantee that

4'p( x )
i
0) =0 (2.28)

proper time (more on this in Sec. IV), and use the heatlike
equation

and thus depends on C(P+,P ). Our choice is the sim-
plest, C=l, in which case V=O (other choices are dis-
cussed in Ref. 2).

A o0 =0. (3.1)

The span of the subset of H satisfying (3.1) is called the
physical subspace. We would like to restrict the theory so
that we only talk about physical states. However, it was
recognized that this is not convenient bemuse the physi-
cal subspace is not closed under the action of the field
operators. A way to circumvent this problem is to intro-
duce an auxiliary time parameter 8, to be identified as a

III. QUASICLASS ICAL APPROXIMATION

In this section we intend to elaborate an approximation
to the evolution of the quantum states under the full
Hamiltonian A o+ V. Here V corresponds to a represen-
tation of the classical term gR in (1.1). Since this repre-
sentation is not known yet we study first the evolution
under A o alone. It is then conjectured how to incorporate
V in a quasiclassical way.

In superspace quantization of gravity the classical
constraints of the theory should become operators annihi-
lating the physical states. Thus the classiml ultralocal
Hamiltonian constraint (1.3) is implemented as

~o
0 (3.2)

with ~0—— d XA 0(x). Notice that this equation can
also be obtained from the quantum action functional

I= f qp, if& —M, )Id (3.3)

—(i/R}A Oe @(8) (3.4)

Thus A 0 plays the role of a Hamiltonian generator giv-
ing the evolution of the states (Ii in terms of time 8, (3.3)
being the associated Schrodinger equation. Next we ex-
hibit the relationship between (3.4) and the evolution of
coherent states.

We will use the restricted action principle and the weak
correspondence principle to study the evolution of the
states (2.26). Writing the set of smearing functions as

p(8) =(p+(8),p (8),~(8)),

q(8) =(q+(8),q (8),g(8)),
the restricted action is

(3.5)

where (,) is the inner product of H. If an initial condition
pa=% (0) is given, then the unique solution to (3.2) can be
expressed as

p= f 8eIp(e)q(e) (B, —B, p(e),q(e)l

D f ded x de+de di)B (p+q++p q +ro7))B 0l —f (p(8) q(8) (B o(p(8) q(8))de

=N f dgd x(p+q++p q +cori) N f dg~o'(p(8), —q(8)) . (3.6)

The overdot means 0-time derivative and

1V= 0 d +d dQB~B 0 = d +d dQC

(p(8),q(8)
~

A p ~p(8),q(8)) =A (')'(p(8), q(8))= f d x A ()'(p(g, x)),
A o'(p(g, x))= —,'[p+ (g, x)+p (g, x)—co (g, x)] .

(3.7)

(3.8)

(3.9)

(3.10)

5A 0'(p(8), q(8))
g(g, x) =

5'(8, x )
(3.12)m(g, x)=—

5g(g, x)

From the weak correspondence principle A 0(p(8),q(8)) in (3.8) is taken 'as a classical Hamiltonian associated to the
quantum generator A o. Observe that the model function C(P+,P ) is not square integrable and thus N is divergent (in
fact our choice is C = 1). Since this is only a multiplicative constant it cannot affect the extremal solutions to 5I =0 and
we drop it from (3.6). After minimizing the resulting "regularized" action we get

5~0'(p(8), q(8) ) . 5~0'(p(8), q(8) )q+(g,x)=, p+(g, x)=-
5p+(g, x) 5q+(g, x)

5A o'(p(8), q(8)) . 5~o'(p(8), q(8))
q (8x)=, p (8 x)=— (3.11)

5p (8 x) 5q (8 x)

5~o'(p(8), q(8) )
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The classical system (3.10)—(3.12) describes the evolution of the smearing functions in terms of the classical Hamil-
tonian A o'(p(8},q(8) }which we also write as

~o'(p(8), q(8)) =~o'(p+,p, co) (3.13)

because it does not depend on the q variables. When (3.13) is constrained to zero this system has exactly the same struc-
ture as the velocity-dominated models of general relativity. ' Such models describe situations in which spatial derivatives
of the metric are negligible as compared with its time derivatives. This means the three-dimensional Ricci tensor can be
dropped from the evolution Einstein equations [Ref. 13, Eq. (3.15)]. Equivalently one drops the three-dimensional scalar
Ricci curvature term gR from the Hamiltonian [Ref. 12, Eq. (20)] as in the Introduction.

Suppose now that we take the initial condition in (3.4) to be a coherent state %=%(0)= lpo, qo&. Then the evolved
state %(8) is not in general a coherent state. However, a property of the ultralocal system under discussion is that %(8)
is a coherent state (i.e., the system is exact) and consequently (3.10)—(3.12) fully specify the quantum evolution and no
approximations are necessary. To see this set %(8)=

l p(8),q(8) & and compute both sides of (3.2):

iA exp ——' f d x(p+t++p t tor) —exp —' f d x(q+&++q & —g&)

= exp ——f d x(p+t++p t —cow) d x(p+t++p t o}r q—+&+—q& —+g&)

X exp —f d x(q+&++q & —ri&) (3.14a)

g

A oexp —— d x(p+t++p t d'or) e—xp — d x(q+f. +q & —g&)
l
0&

= exp —— d'x(p+t++p t —~r) A o— d'x (p+&++p & co& )+—f dP+dPdQB (p+'+p' co')&—

X exp — d' x(q +& ++q 8- g&) l0& .— (3.14b}

=p, p =0,
'77= —co), 6)=0

~

(3.15)

which is precisely the system (3.10)—(3.12). Thus the
evolution of the smearing functions retains the full con-
tent of the quantum evolution and we write

'
I po qo & =

I
p(8} q(8) & (3.16)

Now using (3.2), (3.14), (2.28), and the constraint

p+ +p —co =0, we obtain
It has already been shown that boson' and ultralocal

scalar fields' have approximate evolution analogous to
the quantum-mechanics case (1.12). From these con-
siderations it is natural to suppose that a similar approxi-
mation technique holds for quantum gravity in that the
right-hand side of (3.17) is approximately

e '
l p, q & =

l p(8), q(8) & . (3.18)

Here the classical Hamiltonian responsible for the evolu-
tion of p(8),q(8) must contain, according to the weak
correspondence principle and the restricted .action, two
terms:

where
l p(0), q(0) &

=
l po, qo &.

The evolution we want to study however does not take
place under A o as in (3.16) but is given by

e ' 0 =e(8), (3.17)

A, ~
=—A,~(p(8),q(8) )

=(p(8),q(8)
l
(A o+V& lp(8), q(8) & (3.19)

where 0'(8) is not a coherent state and a representation V
for the classical term V=gR is not known. Next we con-
jecture how to approximate the right-hand side of (3.17)
using coherent states.

The first term (p(8),q(8)
l
~o

l
p(8), q(8) & was shown

[(3.9) and (3.13)] to have the same structure [see (2.16)] as
the velocity-dominated cosmological Hamiltonian' and
corresponds to the term Gjktm'Jm ' of (1.1). As to the
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A' —+0

(p(8),q(8)
~

V
~
p(8),q(8)) = gR . (3.20)

The conclusion then is that P,~ has the same functional
form as A ~ in (1.1) when R~O, so that p(8), q(8) are re-
lated to the classical solutions to Einstein equations. A
more complete discussion of the behavior of these smear-
ing functions is presented next.

second term, whatever representation is found for V, it
must satisfy, if the weak correspondence principle is to
hold,

g0$ =0, g00= —1 (4.1)

Thus the line element of spacetime X&&R in a covector
basis I~'I that diagonalizes the metric on X is

Belinskii, Khalatnikov, and Lifschitz, ' ' henceforth re-
ferred to as BKL (see also the Hamiltonian treatment of
Liang, ' referred to as L). Notice that in BKL solutions a
gauge fixation is involved. They work throughout with a
synchronous reference frame where the classical go& com-
ponents of the metric (p =0, . . . , 3) satisfy the conditions

ds = —dt +g p'sd . (42)
IV. APPLICATIONS

In the previous section an approximation scheme to the-
evolution of quantum states has been described and the
solutions to Einstein dynamical equations played a prom-
inent role. Here we give more details of how these classi-
cal solutions are incorporated in the approximation and
then close the discussion by giving some applications.

It is a known result that a large class of solutions to
Einstein equations are velocity dominated near the initial
(cosmological) singularity, " i.e., the spatial derivatives of
the metric can be dropped since they are much smaller
than the time derivatives. It is thus useful to think of the
ultralocal quantization of gravity as the quantization one
would have got if the gravitational field was quantized
sufficiently near the singularity. This fixes the physical
asymptotic region in which the ultralocal perturbation
theory applies.

A very detailed qualitative description of the classical
solutions near a spacelike singularity has been obtained by

From (4.1) it is clear that the proper time parameter 8 is
identified (apart from additive constant) with the parame-
ter t in (4.2)

58=+—goo 5t =5t . (4.3)

Since we are going to use both BKL and L velocity-
dominated metrics .(see also Barrow' ) Table I might be
useful. The correspondence between L and the smearing
functions q(t, x)=(q+(t, x),q (t, x),g(t, x)) relies on the
fact that P„,Q can be written as

p~ ——q++~3q, p2 q+ —v 3q——
(4.4)

p3 ———2q+, Q =g,
where p~, 2 = 1, 2, 3, and Q are functions in Table I that
describe the spatial tensor g;J. In other words (3.15) cor-
responds to the matter-free version of the dynamical equa-
tions in Liang' when we rescale our time parameter
dt~(1/3')d lnt, see (4.6a) and Table I [an analogous re-

TABLE I. Solutions around the initial spacelike singularity. Velocity-dominated (Kasner) cosmological models as given by Belin-
skii, Khalatnikov, and Lifshitz (Refs. 13—15) (BKL) and by Liang (Ref. 12) (L).

BKL
2( —0+P) )

e

Metric gtJ

2p.t

2p

2p3

glJ

g =—detg;J =e

2( —Q+ P2)
3

e ~=o
2I —Q+P3 I

e
pz ——diag(p+ +V 3 p, p+ —V 3 p, —2p+ )

177]+ 3 7T

j.
772+ 3 77

3

, g ~~=0
Momentum 3=1

1m'3+ 3
m'

12m& ——diag(~++~3' p1T+ ~3~ y 2'+)
h =2';'=2m

Dynamical equations

(Kasner) =0
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dq+ 1p+ 1 dq 1 1

dt 3 co t ' dt 3 t '

gives

1 p+
q+ ——— lnt+q+, q = ——, lnt+g,

3 co

(4.6a)

(4.6b)

where q+ and g are independent of t and will be set equal
to zero. Then

2( —Q+P))e
2{—Q+ p2)e

2( —Q+ p3)
e

2pi

2p

2p3

(4.7)

where we defined

1 p+P1=
3

1 p+P2=
3

2P+ 1P3= — +
3 co 3

Clearly
3

(4.8a)

lationship exists between mz, ~ and p(t, x)
=(p+(t, x),p (t, x),co(t, x))]. We show now that the
BKL and L metrics are the same.

Half of the equations (3.15) says the p+, co do not de-
pend on t and we write simply

/

p+ =p+ (x ), co
—=co( x ), (4.5)

where x&2. The other half

Whenever convenient, as in (4.7), we rescale the BKL
metric so that' A=1; below when studying transitions
between Kasner universes we present the law that gives
the corresponding change of A in terms of z.

Suppose now that the smearing functions and the Kas-
ner indices become x independent. Then the metric ten-
sor (4.7) is simply called Kasner metric. In homogeneous
cosmology language this corresponds to a Bianchi I
model. The most interesting of all homogeneous models
appears to be the Bianchi IX, or mixmaster universe if it
is diagonal. This is an example of chaotic cosmology'
and it is a paradigm for the general, inhomogeneous solu-
tions to Einstein equations near the cosmological singular-
ity, a remarkable discovery of BKL. The paradigm has
recently been criticized, but its fundamental mechanism
and assumptions have not convincingly been proved to be
incorrect.

To review briefly the homogeneous Bianchi IX
behavior near the singularity (the inhomogeneous case re-
tains essentially the same features and is discussed later)
we recall that, in the BKL point of view, the spacelike
singularity is located at t=0. So the system evolves
"backward" as t~0 to reach the singularity simultane-
ously. 2 This fits in with what was said above (in the syn-
chronous frame the line element is time-reversal invariant)
and any initial condition has to be given at a later to &0,
rather than earlier time. With this proviso in mind we
discuss the evolution of the system toward r =0.

To study the approach to the singularity it is useful to
divide the interval [O, to] into specially chosen consecutive
periods Ik=[tk+&, tk], k=0, 1,2, . . . , where tk converges
to t =0. They are known as "Kasner epochs" because in
each one of these periods the mixmaster metric has the
same time dependence as

2p, (zk)

p;=1

and, from p+ +p —co =0,

(4.8b) (k)
glJ

2p2(~k )

Zp3(zk )

A' =1 (4.8c)

p+ =p+(co&z) (4.9)

TABLE II. The Kasner indices (4.8). Parametrization of the
Kasner indices p &,p2,p3 by z E (0, 1).

pi(z) =
I+z+z' ( )

z(1+z)
1+z+z2 p3(z) = 1+z

1+z+z'

as required for the BKL generalized Kasner metric in
Table I.

The numbers p;(x) satisfying (4.8b) and (4.8c) are
ca11ed Kasner indices. If we assume they are arranged in
the order p1 &p2 ~p3, they can be uniquely described by a
parameter z(x) E(0, 1) as in Table II.

From Einstein equations of motion one can readily see
that ' Vg =At where A is some constant. Then co can
be expressed as' co=2g '~ Bg/Bt=4A and (4.8a) gives

p+,p as functions of z and co (or A) and we write

1
k

zk

where [ ] mearis the integer part, e.g., [~]=3. An analytic
expression for T is readily obtained:

1 1Tz= ——k, z(—
z ' @+1 k

(4.11)

Observe that this map contains the evolution of the sys-
tem, i.e., the. succession of Kasner universes, without any
use of the parameter time t Of course a .relationship be-
tween a transition time tk and the number of iterations k

that is, a Kasner metric characterized by some zk E(0,1).
The transition from one period to another is rather brief
and when t =tk+1 the Kasner universe zk is replaced by
z~+&. A quantitative description of this mechanism can
be obtained after a careful study of Einstein equa-
tions. ' ' It is found that all the dynamical content of
the mixmaster universe is summarized in the transitions
given by the one-dimensional map T:(0,1)~(0, 1) called
Poi ncare map:
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can always be found but we do not need to do this. In
fact physical results in quantum gravity must not contain
any exphcit reference to the auxiliary time parameter
(proper time) introduced in Sec. III and here identified
with t. The Poincare map suits well this purpose and will
be used when we deal with the notion of density matrix
[see (4.19)].

This complicated pattern of the mixmaster evolution is
induced by the action of the potential V=gR because
when this term is "switched off" the model is velocity
dominated and evolves forever as a Kasner universe. The
sudden transitions occur when the potential scatters a
given initial Kasner configuration z; into another zf.
Consequently one can study cosmology as a scattering
problem'in superspace ' and type IX (or VIII) homo-
geneous cosmologies are examples that require multiple,
in fact infinite, scatterings on approach to the singularity.

The mixmaster evolution is then encoded in a sequence
of Kasner universes

f z„j= Iz, Tz, . . . , r"z, . . . j . (4.12)

Asymptotically this sequence acquires a stochastic charac-
ter. ' The random nature of this process might seem
strange since we are dealing with a completely determinis-
tic system. However, this is the peculiarity of the mix-
master system: the slightest fiuctuation of the initial data
will tremendously affect the asymptotic behavior render-
ing the system unpredictable (since an infinite number of
scatterings is involved). In the language of dynamical sys-
tems this unpredictability is due to the fact that nearby
trajectories in phase space diverge asymptotically and the
rate at which this occurs has been determined. ' ' Thus,
after a sufficiently large number of iterations the initial
conditions will be completely "forgotten. " The system
then is characterized by a probabilistic distribution'

p(z) = 1
(4.13)(1+z) ln2

1
where p(z)dz= l. This gives the probability of a par-
ticular kasner configuration z being visited during the
mixmaster evolution. Finally we remark that the measure
p is preserved by T in the following sense:
p(a, b)=p(1 '(a, b)) where p(a, b)= f p(z)dz This is.

a most important property because, using (4.11) it implies
(4 13) '

After this digression on classical solutions it is clear
that the evolution of the quantum state

~ p, q) that ap-
proximates the behavior of a quantum Bianchi IX model
has been completed when t~0. We use the fact that
&+

i
0) =0=&

~
0) to write

The quantity co before and after the transition can be
shown to be related by ' cd ——(1—2~pi

~
)mo, so co is

specified by z and some arbitrary constant coo.
At this point it is useful to comment on the interesting

situation we arrived at. Around the initial singularity as
A'~0 the occurrence of a Kasner state

~
z, co) is given by

p(z) in (4.13). This is essentially the whole dynamical
content of a quantum mixmaster universe in that regime.
The parameter time t plays no role in this description
since the states

~
z,co) are time independent and the tran-

sitions in the immediate neighborhood of the singularity
are contained in T or IM. However we emphasize that
these states do not coexist simultaneously but only one at
a time appear during the evolution with probability p(z).
This situation is quite general and applies not only to
homogeneous cosmological models but to inhomogeneous
models as well. A property of the mixmaster system is
that, in a sense described below, the Kasner states around
the singularity are in equilibrium.

The general state of a quantum-mechanical system cor-
responds to a density operator of the form

(4.16)

where P„)0, Q„QP„=1, and I g„j is a complete ortho-
normal basis. Average values of an Hermitian observable
0 are given by

(0)= Tr(pO) .

We define the system to be in equilibrium when (0) is a
constant of motion, for any 0. This means the p is a sta-
tionary state.

In a completely analogous way a density operator for
the mixmaster system can be introduced:

1

p= f dz iz)p(z)(z i, (4.18)
1

where p(z) )0, f p(z)dz = 1, and I ~

z ) j can be shown
to be orthonormal in the A —+0 limit. The co dependence
in the Kasner states is not included because we are now
only interested in the stationarity of p and we know that
the change in co is contained in z.

From (4.18) and (4.11) the state
~

z) has to evolve to
i

Tz ) and thus the evolution of (4.18) is given by

P = Z TZ P Z TZ

&lk= y f dz
i
Tz)p(z) & Tz

i

i ce 1
dz iz)

, (k+z)(k+z+1) ln2
(z

~ p, q) =e + + —
~
0) =

~ p+,p, ~) (4.14) 1= f dz iz)p(z)(z
i

(4.19)

p+,p, m) =
I z,m) . (4.15)

because there is no q dependence. Under the action of the
potential V the evolution of (4.14) is entirely described by
the sequence (4.12). In the asymptotic region the whole
dynamics of the system is contained in (4.13). Call (4.14)
Kasner states and use (4.9) to rewrite

which is p, as claimed. This is not, however, a "thermal"
equilibrium since no maximization of entropy (see below)
is involved.

A very interesting concept will now be introduced into
the formalism. The entropy S(p) of a general state p of a
system is defined by



STRONG-COUPLING QUANTUM GRAVITY. III. 249

S(p) = —Tr(plnp) . (4.20)

S(p) = —g P„ inP„.
@=0

(4.21)

In the canonical diagonal form (4.16) the above equation
reads

attached at every point xeX. This is the essence of the
BKL paradigm.

'

Suppose that the metric scatters simuItaneously over X.
Then it is reasonable to infer from the BKL paradigm
that the A'~0 behavior of quantum gravity-wave func-
tionals around the initial singularity is contained in the
probability

Analogously from (4.18) the entropy (4.20) for the mix-
master universe in the asymptotic region can be shown to
be

1
p(z) =

(1+z) ln2
(4.24)

S(p)= —f dzp(z) in@(z) (4.22)
to find the system in a generalized Kasner state

in the limit iii~0. Substituting (4.13) in (4.22) we get ~
z,co) = exp —— d x(p+r++p t —cow) ~0) .

S(p) = [ ln (2 ln2) —ln ( ln2)] .
2 ln2

The numerical result (4.23) gives a measure of how mixed,
or chaotic, the state p is. ' ' Significant results could
now be obtained if we propagated the state (4.18) away
from the singularity and then compared the resulting en-
tropy with (4.23). This is not an easy task since the only
way available to evolve p is through the Poincare map as
given by the BKL approximation. However, we have just
shown that p is an equilibrium state with respect to. T.
[An attempt to prepare a state "far" from the singularity
in order to compare its entropy with (4.23) was made in
Ref. 29.] Thus a satisfactory solution to this problem ap-
pears to require that the state p be propagated out of the
region ~here the BKL approximation holds. Then the
variation of entropy bS would become a physically useful
quantity. For instance, if b,S&0 then the final state is
more chaotic than the initial one and so it contains more
information that is inaccessible to the observer. ' Results
of this kind could help to throw some light into the nature
of the singularity and the present state of the universe.

The main obstacle to pursue further the considerations
above belongs to classical cosmology. It is not known at
present how the rnixrnaster universe behaves when the
BKL approximation breaks down. All we know is that
sufficiently far from the singularity such approximation
necessarily fails since the potential term gR cannot be ig-
nored even for small periods of time. As a starting point
to the solution of this difficult problem one must try to
obtain an estimate of the size of the region where the
BKL mechanism is valid. This and related issues are
under investigation.

To conclude we discuss briefly the case where the
smearing functions and the Kasner indices are x depen-
dent. The BKL construction of a general solution around
the singularity contains a mechanism in many ways analo-
gous to the homogeneous case already studied. The x-
dependent potential V=gR is now responsible for the
scattering of generalized Kasner metrics. Recall that in
this case the Kasner indices are labeled by an arbitrary
function z(x). At each x KX the law that describes the
scattering of the metric from a given initial generalized
Kasner configuration to another can be shown to be simi-
lar as that for the Bianchi IX model. Because of this fact
it is often useful to think of the inhomogeneous metric
around the singularity as if a Bianchi IX metric had been

(4.25)

The function z =z( x) in this case is arbitrary because we
are not dealing with any specific model. The next step
would be to find the Poincare map T. However this is not
as straightforward as it seems and our discussion must
come to a halt. In any case T will not be one dimensional
and in fact it may correspond to higher-dimensional ex-
tensions called F expansions (see Barrow' and references
therein). Also the final decision as to whether (4.24) is the
appropriate measure for this system will depend on it be-
ing preserved by the Poincare map.

V. DISCUSSION

A quantum theory of gravity does not exist at the mo-
rnent. However, we believe that in first-order approxima-
tion any prospective canonical quantization of the gravita-
tional field around the initial singularity should exhibit
the behavior just described.

The quasiclassieal approximation we eonjeetured to
hold in quantum gravity constitutes a generalization of a
similar situation in homogeneous cosmology. For a
homogeneous model one is able to prove formula (3.18)
since the potential term V=gR does not involve any spa-
tial derivatives but is constructed solely from the metric
and the structure constants of the homogeneity group
[SQ(3) for the mixmaster universe].

The concept of entropy promises to be potentially very
useful in discussing cosmological problems. Several kinds
of entropies can be defined in this context (but the rela-
tionship between them is not clear): Penrose's gravitation-
al entropy, Kolmogorov entropy, ' topological entropy
(these two coincide for the mixmaster universe' ), and re-
cently Hu has proposed still another one. Qur formula
(4.22) appears to be able, among other things, to say some-
thing about the quantum properties of the initial singular-
ity but a full appreciation of these possibilities has to
await further developments.
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