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We point out that the four-quark (s555) 0% * interpretation of the £(2220) state anticipates other narrow
0+ * states near thresholds for (s5c¢), (ccct), (s5bb ), (cchb ), and (bbbb). The most accessible state may
be the (cccc) state near 8 GeV, which can be produced in Y — 0% *(cecc) +y with a branching ratio
B(Y— 0%+ +y) at the level of 1x 10~ or a little lower.

In a recent note,! we pointed out that the s5s5 multiquark
model with JP=0%* can explain the narrow width of the
recently observed? £(2220) by the Okubo-Zweig-lizuka
(OZI) rule, color and spin rearrangement, and phase-space
suppression. It does not encounter any obvious contradic-
tion with currently known data either in decay or production
mechanism. Such a model predicts that decay modes
£— mm, ', and ¢¢ could be comparable or larger than
the observed ¢ — K * K ~ mode; hence a search for ¢ — 77,
nm', and ¢¢ will be interesting tests of the multiquark
model.

We wish to point out in this Brief Report that the same
model actually predicts a whole class of four-quark states as-
sociated with their respective (heavy) quark mass thresh-
olds. In addition to the £, (s5s5) at 2220 MeV, we expect
£xc(ccct) at 7.5-8.5 GeV, £, (bbbb) at 21-22 GeV, and
other states such as &, (sscc) at 5-6 GeV, £ (ssbb) at
12-13 GeV, &, (ccbb) at 13-14 GeV, all with expected
spin-parity JP°=0%* for the ground states. We might add
that systematics of four-quark (including the light ¥ and d
quarks) states have been discussed by many authors,’ no-
tably Jaffe, but not from the particular view we espouse
here and in Ref. 1. L

To be definite, let us first consider & (cecc)— DDDD
(4mp =1.5 GeV). We expect the & state to be close to the
4mp mass threshold; hence its mass is predicted to be in the
range of 7.5-8.5 GeV. The same argument as Ref. 1 with
s — ¢ then tells us that the four-body phase-space suppres-
sion here is for m o = 8.3 GeV as an illustrative example
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Hence &, — DDDD is highly suppressed. For instance, if a
normal partial width for an 8-GeV hadron is about 100
MeV, then we expect

I' (¢ — DDDD) = (100 MeV) x10~6=10"* MeV .

Again with s — ¢ in Ref. 1, we find that &€— ¢y, nn.,
Y'Yy’ ... are suppressed by a factor of %— through color
rearrangement as compared with normal decays. The Yy
and 'y’ modes have spin-rearrangement suppression of %.
In addition, if the generalized OZI rule* is valid, all these
two-body decays will be further suppressed. (See Fig. 1.)
The decay through-the diagrams of Fig. 2 are suppressed
by the ordinary OZI rule. The OZI suppression factor is
typically of the order of [as(mgw/2)/1r]2, though it may be

a little less severe for the diagram (b) because two gluons
share the» energy of m;cc/2 there. For Aqcp=0.2 GeV,

[oz,(mgm/2)/1'r]2 is about 6.3x1073. We expect that each

diagram of Fig. 2 contributes to the total width at the level
of, say, 6.3x1073x100 MeV=0.6 MeV, and the sum of
the widths due to this class of decays could be a few MeV.
The diagrams (a) and (b) lead to DD, D*D *, . . . identified
through final states of four or more particles. The diagram
(c) produces the same final states as those of scalar glue-
balls (for instance, equal branching into cc, 5s, #u, and dd
up to phase space corrections). By similar arguments we ex-
pect all other ¢ states to be quite narrow. Their main decay
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FIG. 1. Color rearrangement of four quarks into two colorless
hadrons.
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FIG. 2. OZI-rule-suppressed decays in the (cccc) model. In (a)
and (c) each pair of ¢ is a color octet 8, while in (b) the cC pair
states are in color singlets.

modes are expected to be
¢&.— DD, FF, y¢, yKK, KK, ... ,

¢s— BB, B,B,, Y¢, YKK, KK, ... ,

2)
€ — BB, Bch» er NbNes DD, ...,

&w— BB, B;B,, YY, msmp, . .. .

It must be noted that states such as &, £, €, and &g
are likely to be very difficult to detect. The &, state is rath-
er far from the Y particle, while &g, €5, and £, are prob-
ably even farther away from the expected r-quarkonium
state. Let us remember that to date Y — £y has not been
observed® despite the much larger photon momentum (or
phase space) available than in ¢— ¢y where ¢ was
discovered. The physical explanation for this suppression is
that if (s555) are produced nearly at rest, formation of state
& is likely, while if (s555) are produced with large relative
momenta, the probability to form &g is very low. In other
words, four-quark bound states or resonances can be formed
easily only when constituent quarks are nonrelativistic. Hence
&5 cannot be produced significantly in the Y decay because
of the relativistic motion of sscc. The same argument ap-
plies to £, and £y from (2t) — €5 (Epp)y.

The most favorable situation is realized for &, with a
mass rather close to the Y mass, since Y — &, +vy could be
a viable production mechanism. We will attempt to make
estimates of the production rate for Y — &, +vy and its rela-
tionship to ¢ — &5 +v. In the QCD picture, Fig. 3 suggests
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FIG. 3. Annihilation of ¢ into 5555 +vy without taking account of
the charmonium spectrum in detail.

the formula

T(y— Euy)= aa,4(M¢,)Qc2|‘lf¢(0) ‘Zkgm:‘(r‘,,)zf(g“ )/M“,3

Q=% ., ®

where f (&) is the probability for sss5 to form £, and (ry)
is the transition radius between the s- and p-wave char-
monia. By eliminating the ¢ wave function at the origin
through the leptonic decay rate of ¢,

T (y— 1) =420 ¥y (0) |7/ M? ,
we obtain the decay branching ratio
B(y— Ewy)= as*(My)
X Lke (ro)’f (€a)/MIBGy— 1D . (@)

Since we can derive the same formula for Y — &y, the ra-
tio of the two branching ratios becomes

3
! kfcc (rY> ?
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B(Y— fcc'}') — Ols(MY)
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My B(Y—= D) fle)
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- We have assumed in this estimate that the mass of &, == 8.3

GeV, Aqcp=0.2 GeV, and (r,) = (ry) (Ref. 6).

The same estimate may be made from a slightly different
viewpoint. By treating the radiative decay process in two
steps as in Fig. 4, we find the decay rate
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FIG. 4. Annihilation of Y through 3P states. The X, (0%) states
produce cccc through two gluons leading to formation of &.
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(Y = £ey)o aay (My) Q52 1W5, (0) 12ke (ry)?f (£cc)/ [My (Mg =My, )], )

where \I';b(O) is the first derivative of the 3P, state X, wave function at the origin which arises, together with the energy

denominator (M

-M xbz)—z, from the virtual X, intermediate state. In the branching ratio,

B(Y = £ey)eala (My) |W5, (0)/ ¥y (0) kg *(ry)?f (€e)B (Y — I/ My (M, —My)?] . ™M

Assuming that |¥'(0)| of 3P, goes approximately like | ¥ (0)|/(r) of 3S,, we obtain
B(Y— §ccy)xa_las“(MY)kfccsf(écv)B(Y—' IT)/[MY(Mg“_be)Z] . ' (8)

Taking the ratio with the corresponding formula for B (y — &), we finally find

BOY— £y)  [a,(My)

2 3
4 —_ .
My —M¢ | M, ke, | f(£) B(Y— i)

B('«”—’ f.vs')’) B as(Mw)

be - Mfcc MY kfss

The right-hand side reduces to (5) with {ry) = (r,) and
be - Mfcc = ch - Mfss

It has been shown that the contribution of the lowest *Pg
state gives a good order-of-magnitude estimate in this type
of calculation.” In our estimate, the least-known quantities
are the ‘‘formation probabilities”> of &, and &g states,
f(&.) and f(¢i). However, typically the momenta of ¢
and ¢ inside &, are (pc)/mc':% and the corresponding
quantities for & are also (ps)/m; = % It is therefore diffi-
cult to argue for vastly different formation probabilities for

£ and £
Finally we attempt a crude estimate of the magnitude of
B (Y — £.y) itself. If we invoke the experimental value?

B(y— £5y)B((s— KTK7)=(6£2£2)x107° , (10)
we obtain from (5) with £ (&) = f (&)
B(Y — £ey)

=(54+18+18)x107%/B(¢x— K*K™) . (1

On the other hand, if we want to estimate B (Y — &.y)
directly from (6), we have to know the numerical coeffi-
cient and f(£.), which depend on details of strong-

S(&s) B(y— 1)

9

r
interaction dynamics. Counting the number of #’s and oth-

er known numerical factors, we deduce as the best estimate
possible

B(Y/—’ Eecy) = C[as(MY)/W]4(a/7r)_1
x(ry) ke, *B(Y— I)/My a12)

where the constant ¢ is roughly of the order of unity or
smaller. With M§“=8.3 GeV, Aqcp=0.2 GeV, (ry) =04

fm, and the experimental value B(Y — /1) =2.7%, we ob-
tain

B(Y— £,y)=09%x10"% . 13)

This result is compatible with the direct experimental result
(11) within large theoretical ambiguities, if B (&g
— K *K ~) is around 6% or higher.

The current upper limit on B (Y — £,v) from the CUSB
Collaboration® is < 1.2x1073; hence it would be of sub-
stantial interest to refine this limit by at least one order of
magnitude.
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