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Dynamical symmetry breaking producing light-fermion generations, masses of fermions and bo-
sons, and parity violation is proposed in a composite model. The model is described by three types
of constituents, which are written in terms of two types of fermion constituents, a leptonic one t
and a quarklike one t~, and a bosonic constituent S . Gauge interactions
SU(3)HSU(3), SU(2)1 SU(2)&(3U(1)& I are introduced. Leptons (l), quarks (q), and Higgs
scalars (b, ) for parity violation are, respectively, represented by the hypercolor [SU(3)H] singlet
bound states of the types t'S ~, t~S ~, and t't'S and there also exist series, corresponding to I, q,
and 5, with the same quantum numbers but S boson number. Dynamical symmetry breaking is in-

duced by S -boson condensation in the vacuum, and light-fermion generations and Higgs scalars
with a negative squared mass for parity violation can be produced. Constraints for reproducing the
Weinberg-Salam model at low energies, neutrino masses with a Majorana mass term, relations

among charged light fermions, and mixing between left-handed weak bosons and right-handed ones
are presented in this scheme. The top-quark mass m, =50+15 GeV is predicted, which is derived
from the formula m, (m„—m, )+mb(m, —m„)+m (m, —I, ) =0, given in the limit of
m, =m„=md ——0. The mixing between 8 L and 8'& is shown to be very small, i.e., tan e~ & 10
where e~ is the mixing angle of O'L, and 8'~.

I. INTRODUCTION

Many models have been proposed for the idea of com-
posite 1eptons and quarks. ' They are very interesting but
are not very powerful in predicting new observables. It is
also a bit disappointing for us that their dynamics are not
very clear for interpreting phenomenology, e.g., the mech-
anism for generating small fermion masses and also for
generating somewhat larger values of weak-boson masses,
and so on. In this paper we would like to present a
dynamical scheme to describe phenomenology in the
present experimentally allowed energy region.

The basic model introduced here has been proposed in
Ref. 3, the idea of which is that there may exist some dif-
ferent sublevels between the energy of the order of 1 GeV,
characterizing dynamics of leptons and quarks, and
Planck's mass ( —10' CxeV). We therefore consider that
proton decays, characterized by about (or larger than) 10'
GeV, -should be phenomena induced in a much deeper
sublevel, probably the deepest one before Planck's mass,
that is to say, in the next sublevel lepton number and
quark number will be individually conserved. Important
phenomena which should be interpreted in the next sub-
level under leptons and quarks will be the generation
problem for leptons and quarks and masses of those fer-
mions and weak bosons ( W and Z), and presumably the
Weinberg-Salam theory for electroweak interaction also.
In an earlier work, it has been pointed out that those phe-
nomena will be able to be interpreted as the series of
bound states with the same quantum numbers as those of
leptons and quarks and the existence of scalar mesons for
spontaneous parity violation. The most important point
of the model was the existence of a scalar boson S in the
next level dominated by SU(3)tt hypercolor interaction,

which was interpreted as a bound state of V fermions con-
fined by SU(2")H interaction. In the model the genera-

2

tion for the fermions was interpreted by the difference of
the S number. Interpretations for the small fermion
masses in comparison with the characteristic energy scale
of the SU(3)H interaction, AIt, and also for the realization
of the Weinberg-Salam theory at low energies were left as
open questions. The model, however, has an interesting
structure for the SU(3)H-singlet scalar bosons, that is, the
candidate for generating the fermion masses, tb mesons,
and that for generating the parity violation, 5 mesons,
have quite different substructures. The bound states
representing the P mesons have no S -boson component,
while the 6 mesons are expressed by series of bound states
with different S numbers. (We shall review these points
in the next section. ) If the S bosons become the trigger
of . a spontaneous symmetry violation for generating the
low-energy phenomena, the b, -meson series will be affect-
ed very much by the symmetry violation, whereas the P
mesons will not. Therefore we expect that there is some
hierarchy between the orders of A~ and the fermion
masses. Of course, the fermions represented by the series
of the different-S -number states will have effects similar
to h. In other words, the fermions will have masses of or-
der similar to that of the unobserved right-handed weak-
boson mass, estimated to be larger than —1 TeV ( —A~).
We, however, proposed a possible mechanism for generat-
ing small masses from a large mass scale. In this paper
we would like to propose a dynamical scheme, where the
S -boson condensation originates a dynamical symmetry
breaking, which becomes the trigger of the Higgs mecha-
nism for parity violation, but there still exist massless fer-
mions. The fermion masses will be induced from a
second-order effect. In the following discussions we shall
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ignore the structure of the S boson and start from the
SU(3)~ hypercolor interaction accompanied by the S bo-
son, which will be allowed when the characteristic energy
scale of SU(2")~ is much larger than that of SU(3)H.
The S bosons, therefore, will be treated as elementary
particles in the following discussions.

In Sec. II we shall simply review the outline of the
model presented in Ref. 3. The main idea of the dynami-
cal symmetry breaking by S condensation will be dis-
cussed in Sec. III. In Sec. IV the origin of massless fer-
mions and their generation will be interpreted. Derivation
of Higgs scalar mesons and application to parity violation
are, respectively, done in Secs. V and VI, where we shall
comment on a hierarchy among vacuum expectation
values and also among coupling constants in meson ver-
tices. In Secs. VII and VIII, respectively, masses of neu-
trinos and those of charged fermions wi. ll be discussed.
Mixing between the left-handed weak boson ( 8'I ) and the
right-handed one ( W~ ) will be considered in Sec. IX. We
shall remark on the generation number and also on the
hierarchy among parameters from the standpoint of the
model presented in Ref. 3, that is, the idea of constructing
the S boson from V fermions, in the final section (Sec.
X), where problems left as open questions in this paper
are also remarked. We shall present details of evaluations
in Appendices A—C.

II. COMPOSITE MODEL FOR QUARKS
LEPTONS, AND HIGGS MESONS

As the model discussed here has already been interpret-
ed in detail in the earlier paper, we only introduce the

basic idea of the model needed in our discussion. The
model is constructed from three kinds of fundamental
constituent particles which are categorized into two types
of massless fermion constituents ( t and tq) and a
massless-scalar-boson constituent (S ). The gauge in-
teractions SU(3)~s SU(3), Ist SU(2)1.s SU(2)z sU( I ) are
introduced, where SU(3)~ and SU(3)„respectively,
represent the hypercolor interaction and the ordinary
color interaction and the subscripts 1. and R stand for
left-handed and right-handed, respectively. The symme-
try properties of constituents are listed in Table I. The
model is L,-R symmetric.

The hypercolor interaction was, of course, introduced in
order to construct leptons (l), quarks (q), and Higgs
mesons (b, and P) for parity violation, ' ' and so on,
which are respectively, represented by the hypercolor-
singlet bound states of t'S, tqS t, t't'S, and so forth.
For the details of the hypercolor-singlet bound states, see
Table II. It is important that in this model all the
hypercolor-singlet bound states are labeled by the 5 num-
ber (N o), which is a conserved number. We therefore
have many states with the same quantum numbers except
for the S number, that is, the lepton series lo, lt, . . . ,
and the quark series qo, q~, . . . , respectively, have the
same quantum numbers as those of leptons and quarks ex-
cept for %so (see Table II). Though the S number is
directly assigned as the generation number of leptons and
quarks in Ref. 3, we shall present a different scheme for
originating the generation in the forthcoming sections.
Anyway, the key point of this scheme is that leptons,
quarks, and b bosons have the series labeled by X+0.

TABLE I. Symmetry of constituents.

Constituents SU(3)H SU(3)g SU(2}L SU(2)R Charge

ti(0)

L

+
2

t R

t i(0)

R

t I( —)

—l(0)

t I(-)
—l(0)

'

tq(2/3)

tq( —I/3)
L

t q (2/3)

tq( —1/3I
R

3

1

3

1

3

1+
2

1
E

2

1

2

1+
2

1+
2

2—e3

1——e3

2—e3

1——e3

t q( —1/3)

—
q (2/3)

t q{—1/3)

q(2/3)t R

S0

3

3

1

3

1

3
1

2

0+

—e3

2——e'3

1—e3

2——e3
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TABLE II. Hypercolor-singlet bound states with S number 0—4, where the smallest representation
for SU(3), in each configuration is listed and (S S )3 stands for a configuration of S S with (3,3) rep-
resentation of (SU(3)~,SU(3), ).

&0
Particles and
configurations SU(3), SU(2), SU(2)g

3
4

co =SS
I I —1'

(j1 = tL t L
0'= tP1

atata

70L(R) t 1, (R)s
tjOL(R) t f (R)s.

0
50L(R) tL(R)tL(R)S
l1L, (g) =tL, (g)S S0 0

9(L (R) = t8 (R)S S0 0

51L(g)= t t (S S )3

~, =S'S'S'
7 =t '(s's')-(s's')-
q 1

——t~(SS )3(S S )-,

1

3

1

1

3

1

1

1

3

1

1(2)
1(2)

3(1)
2(1)
2(1)
3(1)

1

2(1)
2(1)

1(3)
1(2)
1(2)

1(3)
1

1

3

—1
1

3

2

1

3

We also point out here that in Table II there is a series
corresponding to scalar mesons represented by cu„which
are the singlet states of SU(3)„SU(2)L, and SU(2)R.
These rnesons will play an essential role for generating
dynamical breaking of the S number.

We would like to comment that in Ref. 3 the S boson
is interpreted as the bound state of 2 number of fermions
( V) confined by SU(2 )H gauge interaction. In the dis-
cussion of the forthcoming sections we forget this situa-
tion because the structure of S is not very important. In
the final section, however, we shall comment on this point
in relation to results derived in our discussions.

III. DYNAMICAL BREAKING OF S NUMBER

We now discuss a problem in an ideal world, where
only the S boson exists and also only the SU(3)H hyper-
color interaction is switched on. It is well known that
the existence of a massless boson may become a trigger of
dynamical symmetry breaking, that is, S bosons can con-
dense in the vacuum. The vacuum, however, cannot ex-
pand infinitely, because the SU(3)H interaction confines
S bosons within the confinement region characterized by
a length parameter AH '. After the vacuum fully ex-
pands in the confinement region, everything must be writ-
ten by hypercolor-singlet states. This indicates that S
bosons in the vacuum change themselves into the hyper-
color singlet states. Furthermore, an interaction potential
V ff in the region should also be described in terms of
only the hypercolor-singlet states, effectively. As was
shown in Table II of the last section, the SU(3)H-singlet
S bound states represented by co„can be discriminated
from each other by the S number, where n is defined by
j())so——3n (n =0,+1,+2, . . .). Since the lowest state com-

posed of an arbitrary number of S and S is a scalar
state, we shall ignore other excited states, e.g., vector, ten-
sor, and so on. Considering that co„are represented with
an infinite number of bound states, we should take ac-

count of not only the three-point vertex but also higher
vertices in V,ff. We, however, know that low-energy
meson dynamics in the quark model which should be
described by SU(3)-color interaction is well represented
with only the three-point vertex in the dual resonance
model. From the analogy of the dual resonance model we
may expect that the three-point vertex dominates in the
low-energy dynamics of SU(3)H. For keeping stability of
vacuum, however, we have to introduce at least the four-
point vertex. Here we write the effective potential V,ff in
terms of co„as follows:

V tr(C0)= & g g g g k; J t LO COJCOtCO

i j I m

1 2——, Qggh;~ ;tcOoj cc+ot—, +mt CO;LO;,
i j I I

(3 1)

where the coupling constants k;jI and h; jk should
have a symmetry under an arbitrary exchange of sub-
scripts such as ki,j,(,m =kj,i, I, m =kj, I,i, m = and
5;jI ——hI;j —— . . In order to conserve the S number
kt j,t, m kt j, l m 5m—(I +j +t) a,

nd jtt j I jttj,l~l, —( '+j) should
be satisfied. Determination of the minimum of V,tf is too
complicated for the arbitrary values of the couplings. As
was discussed in Ref. 6, we are interested in the case
where all co„have the same vacuum expectation value in
order to reproduce massless fermions. (The details will be
discussed in the next section. ) The realization of such a
situation is possible, if we regulate the coupling constants
k j I and h; j I so as to reproduce the same vacuum ex-
pectation value for all co„. We, however, present a simple
case for realizing such a situation. Let us consider the sit-
uation where the S number has no meaning at all. In
such a world we will not mind any difference originating
from the difference of the S number. A reasonable situ-
ation will be represented by the maximal symmetry such
as
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k; j i ~ =k, for all (i,j,l, m),

h; i ——h, for all (i,j,l),
m; =m, foralli .

(32)

than the four-point ones in V,tt. We may, however, ex-
pect that if the maximal symmetry is realized, the impor-
tant point of the above discussion, that is, the same vacu-
um expectation value for all co„, will be kept.

co+ = j h + [h 4km—/(2N + 1)] '~ j,+ (3.3)

where a large cutoff number N for n =Ns, /3 is intro-

duced conventionally. Considering that X is large and
also that the three-point vertex may dominate in V,ff at
low energies from the analogy of the dual resonance
model, we may postulate the relation

h»4km /(2N+ 1) .

In this limit we see that

(3.4)

V,tt( to + ) ((V.tt( ~o ) .

It is interesting that

(2Ã + 1)co+—h /k

(3.5)

(3.6)

is the order of h/k. Replacing co; with G;+co+ in V,ff,
we have the following mass term:

N N

CO; (~~)ijCOj
i= —Nj= —N

where the mass-matrix elements are given by
r

(3.7)

In the following discussions we postulate that k, h, and
m are positive. In this case we can easily see that V,ff
has a minimum at a point where all m„have the same
vacuum expectation value

IV. MASSLESS FERMIONS AND GENERATION

[(N+1)/2] [(N+1)/2]
gijfjtoj i'—~

i = —[N/2] j = —[N/2]
(4.1)

where the coupling constants g,j satisfy the relations

g;j ——gj; for all (i,j), g'; stands for l; (a =l) or q; (a =q)
and [X] denotes the maximum integral number less than
X. When the dynamical breaking of the S number dis-
cussed in the last section occurs, the fermion mass matrix
[(N+1)X(N&&1)] has the matrix elements

(~F)ij =gij & ~j —i & (4 2)

where the masses corresponding to the bound-state ener-
gies are postulated to vanish because of the chiral invari-
ag.ce of the model.

We now discuss the case where solution A, defined in
the last section, is realized. In the maximal symmetry in-
troduced in (3.2) we reasonably set the following relations
among the coupling constants,

We add the fermion constituents ( t and tq) in the ideal
world. Of course, interactions, except for the SU(3)tt-
hypercolor interaction, are still switched off. The chiral-
invariance property of the model will leave the fermion
bound states represented by l; and q; massless. The fer-
mion bound states have interactions with ~ bosons as

1 A

2 k

1 h

2 k

m

(2N+1) '

m

(2N+1} ' for j i

gj =g for (i j) . (4.3)

wF g(, to) 1—— (4.4)

The fermion mass matrix becomes a very simple form,
that is,

1 -. 1

Mi ———,
' m, with 2N-fold degeneracy .

Note that the eigenstate for the massive eigenvalue MD is
described by

1 N

(2N+1)i~~ . ~ (3.10)

Hereafter we shall refer to this type of solution as solution
A.

It should be noted that in order to get the same expecta-
tion value for all co„ in the limit of (3.4) we may omit the
last condition of (3.2),

m; =m, for all i,
from the maximal symmetry.

In the above discussion we have ignored higher vertices

in the limit of h»km /(2N+1). The eigenvalues of
the above mass matrix are

MD ————,m +(2N + 1)—,with no degeneracy,2 1 h

where

t'e(S ')t, (4.6)

1 0 ~ 0 1

As noted in Ref. 6, the eigegstates of this matrix are
represented by one massive state with the eigenvalue
(N+1)g(co) and N number of massless states. Even
after the symmetry of the vacuum has been broken
dynamically, N fermions still remain massless. We there-
fore have an N-fold generation of massless fermions.
Note that the eigenvector corresponding to one massive
state is described by

[(N+ &)/2]
+o=— (4.5)N+1 i= —[N/2)

for a =l and q, in which all possible combinations of the
SU(3)H-antitriplet vectors constructed from the product
of S and S are summed up in equal weight. That is to
say, the state vector %0 can be symbolically written by the
direct product of the state vector representing the single
t' state and that for the S state as
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S ( sum of SU(3)Ii-triplet statesv'%+ 1

constructed from S and S ) . (4.7)

Hereafter we shall use the notation S in the above mean-
ing.

V. HIGGS BOSONS

fi f, for all (——i,j ),

m~; =m~, for alii,
(5.2)

as was done in (3.2) and (4.3). The mass matrix of the b, -

boson series is given by

m~2 —f&co&

f&~&—
—f&~&

mt,
2 f&co&—(5.3)

The eigenvalues of Mz are

m~ —(%+1)f&co&, with no degeneracy

m~, with N-fold degeneracy . (5.4)

Of course, we consider the case with m~ ~0. Then the
states with N-fold degeneracy have a real mass m~. In
order to reproduce the so-called Higgs mechanism, the
condition

pt, = m t, (N—+ I )f—& co & (—0 (5.5)

must be satisfied. If it is the case, we have one, only one,
Higgs scalar meson ho, of which eigenvector is written in
terms of 6; as follows,

[(x+i)r2]
iI). = g b,; . (5.6)++ 1 i =—()v/2]

We now discuss the masses of the smlar-boson series
represented by 6; in Table II of Sec. II. The 6 bosons
have the couplings with the co bosons similar to the
fermion-co couplings described by

[(N + 1)/2]

XX (5. )
i,j= —[x/2]

where the relations fJ
——f~; for all (i,j ) should be taken

into account.
We consider solution A and the maximal symmetries

among fJ and also among the masses of the b, -boson
series, that is,

m~ in terms of a simple dynamics. Hereafter we will
discuss only the former case.

We stress that the P mesons composed of t' and t '
have no series corresponding to 1;, q; and t)),;. The (I)

mesons, therefore, cannot be Higgs mesons in the scheme
discussed here, because the P mesons have no direct cou-
plings with co bosons and their masses are not affected by
the change of the vacuum in terms of the S -boson con-
densation. This situation is different from the model
presented by Mohapatra and Senjanovic.

VI. HIGGS MECHANISM FOR PARITY VIOLATION

b;
(i =l or q),

the Higgs potential Vtt induced from the couplings given
by the diagrams in Fig. 1 is written as

I'a = iso( I'I, '+ I't(')'+et)( I'L, '+ I't1')

+( 1( ~L + ~R )+i +2P2~L ~R~i

+y((2t'+bi +ttq" +bq') Pt, '( ~r. '+ I'—i(')

+my'(hatt '+bi'+ itq'+ bq'), (6.2)

TABLE III. Components of composite Higgs scalars.

In this section we shall discuss a Higgs mechanism in-
duced by the Higgs meson Ao. In the family of Ao we
find AL and b,z mesons introduced for spontaneous parity
violation by Mohapatra and Senjanovic. Components of
the mesons are listed in Table III and AL and A~, respec-
tively, belong to (3,1,2) and (1,3,2) representations of the
(SU(2)L, , SU(2)i(, X~ L, ) group. We also need (]() mesons
represented by (2,2,0) of the group in order to reproduce
the same mechanism presented by Mohapatra and Sen-
janovic. The components of P mesons are also given in
Table III. We see that two different types of P mesons, "
pt=t+tt and pq=tqtq, exist in our model. It should be
remembered that P mesons have real and positive mass,
that is, P mesons are not Higgs mesons in our present con-
sideration.

The couplings among b,L, b.i(, and (() are illustrated in
terms of line-connected planar diagrams in Fig. 1. Since
b,L, b.li, and P mesons can have the vacuum expectation
values for their neutral components;

0 0

VL

(6.1)
a; 0

Note that Ao has the same structure as that of %'o for the
S -boson part (S ), that is, it may be represented by the
direct product similar to (4.6) as

t]),, ~(tt)eS'. (5.7)

We can consider a different case with the above, that is,
the case with f&co& &0 and m~ &0. In this case every
generation has a corresponding Higgs scalar. %'e shall,
however, not discuss this case, bemuse we cannot realize
any mechanism to derive the negative mass squared for

Higgs scalars

(0)~ L(R)
W( —)

~L(R) ~ L(R)

g( ——)
L(R)

'
ya(o) ya(+)

'

yu( —) ya(o)

(a =l or q)

Components

1(0)
tL(R)

1(0)
tL(R)
1( —1)

tL(R)

,.(o)-, .(o)
L L

tL(R) S1(0) o

t 1(-l) ~0L(R)

tL(R) S1(-1) o

,.(o)-, .(-)
L L

( —)t (0) t ( —)t ( —)
L L L L

(a =l)
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tl t( S'

~wwW W~~W' ~

I
I

Ia
I 4$444 S4 kkkki

(4)

(2) gtl, l

~
'

(3b)

ewww w~r

ti tl g'

t
~~~um~~ a S Sk4% L

( Q"J tl (6„)

FIG. 1. Line-connected diagrams for couplings among Higgs bosons, where diagrams (1), (2), (3a), (3b), and (4), respectively,
represent the interactions ao[(Ar~ b I +b s hg )], a

& [(b r hL b I hL ) + ( b g h~ hR 4z )], P& [(KL Ere'P'*)+ ( t) rr 4g P'P'*)],
P [(5*„P'5 P')+(b, P'b, '„P')], and Y[(P'*P''P' P'')+(P *P P*P )].

where pt, &0 is defined in (5.5) and m~ stands for the
P-meson mass which is, of course, positive. In (6.2) ao,
a&, Pr, P2, and y, respectively, represent the coupling con-
stants corresponding to diagrams (1), (2), (3a), (3b), and (4)
in Fig. 1. We should consider that at least y and the
bigger one between eo and o.

&
are positive. A very in-

teresting point of (6.2) is that br, aq, and bq have no cou-
plings with VL, V~ and aI, because the neutral com-
ponents of EL, b, rr, and Pr (= t" +t ' ') contain only the
t ' '-fermion constituent. Therefore, the minimum of VH

is at the point

equations

VL, +V~ =2 2 1
(Pr Polar )—2 2

2(ao+ar)

P2
VL Vg —— ah

2(x )

where

aI
2(ao+ar )(2ar)'+Pe') —aiPr'

(6.6a)

(6.6b)

bi ——aq ——bq
——0

because of m~ &0. This indicates that the mixing be-
tween the left-handed weak boson ( WL ) and the right-
handed one ( Wrr ) vanishes since the mixing angle ' e~ is
given by

&& [2(ao+ ar )my'+Pie ~'1 . (6.6c)

Actually the real minimum is realized at the point with
the unsymmetrical solution, if the following conditions
are satisfied (see Appendix B),

tan@@ tx-a(bI+aqbq =0 . (6.4) ao»
I
ai

I
(6.7)

The details of the mass matrices for 8'L, 8'~, Zl, and
Z~ are presented in Appendix A.

We can find out four extrema of VH, three of which
give symmetric solutions for VL and V~, i.e.,
VL

——V~, and one gives an unsymmetrical solution, i.e.,
VL &Vrr . For the details, see Appendix B. From the
phenomenological requirements, such as m~ &&m~ and

R L
reproducing the Weinberg-Salam theory in low energies,
the relations

(6.5)

must be realized at the real minimum of V~. These rela-
tions teach us that the real minimum must be at the point
giving the unsymmetrical solution which satisfies the

The meaning of this condition is not clear at present. We
can, however, note that diagram (1) for the ao coupling is
different from the other diagrams, that is, in diagram (1)
the exchange of the S component is essential. In other
words, if b, does not have a S component, diagram (1)
does not exist. We shall again discuss this problem from

. the standpoint of the model proposed in earlier work in
Sec. X.

In order to realize the phenomenological constraints
Vz »ai » VL, the following constraint is required,

1& 2+mp P) )0. (6.g)
@~2 2(ao+ a )
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This equation can be read as

mp' IPg I

pa2: 2(ao+ar)
(6.9)

from (6.7). We shall point out that the relation
m~ /p~ &&1 takes a very important place to describe
masses of charged fermions in Sec. VIII. One possible in-
terpretation of this relation will also be discussed in Sec.
X.

m
V

mg

go al2 2

2V 2

go
2 2

4h V
(7.8)

where for deriving the last equation we used (6.6b). Using,
the reasonable relation at /Vz -m~ /m~„, we obtain

2

VII. MASSES OF NEUTRINOS

P2 go'

2a, &ho'
(7.9)

In the present scheme for parity violation, neutrinos
have Majorana mass terms. ' Following the discussion
of Mohapatra and Senjanovic, our present model realizes
the following values of the parameters in their model,

h1 =go~ h2 ——h3 ——h4 ——0,

K= al, K bl

VL ——VL,

hs =—ho,
(7.1)

where the coupling constants h; are defined by the most
general Yukawa couplings, described by

b gg p Itt +~ 2 Itt p Ig +b 3 gg p gtt +~4' '(t'

+ lIt 5 ( IL, Cr2b L, lt + ltd C'r2b It lit ) +H. c. (7.2)

1

ho VI 2 goal

gpal —hp VR
(7.3)

where M„ is defined in

W~„,=(v,N )~ C(~)+H. c. (7.4)

The eigenvectors of the mass matrix are given by

v= vcosg+N sing,

N = —vsing+N cosg

with

(7.5)

In (8.2), p =r2p*r2 and C is the Dirac charge-conjugation
matrix. The mass matrix of the fermions (v, N) defined
by v=vL, and N: C(vL, ) is w—ritten by

VIII. MASSES OF CHARCxED FERMIONS

Charged fermions have no Majorana mass term and
only acquire masses spontaneously through the couplings
with P mesons as shown in diagram a of Fig. 2 (Ref. 9).
The vacuum expectation values of P mesons for generat-
ing the masses of charged fermions, that is, bl, . aq, and

bq, vanish in the present scheme, as noted in Sec. VI. We
now consider the corrections in terms of line-disconnected
diagrams. A correction is induced by the coupling of
charged fermions with PI (= t ' +t" ') meson in terms of
the line-disconnected diagram shown as diagram (b) of
Fig. 2. We have also to consider the correction for bl, aq,
and bq in terms of the line-disconnected diagram 1 shown
in Fig. 3, which gives the dominant contribution because
of the large value of V& (

I
V&

I
»

I I I
&

I VL,
I

)

the correction by diagram 2 is small and that by diagram
3 can be included in the ap term of VH, we may neglect
them in the following discussion. Taking account only of

S ta S ta

Numerically this equation gives a rather large value of
m~ for an experimentally reasonable value of m-, /m-
(Ref. 4), if the coefficient ( —P2/2, +go /4hp )-1. In
the final section we shall argue that we have some reason
to consider that the coefficient will be much smaller
than 1.

If we take account of the generation of neutrinos ig-
nored in the above discussion, the S -number dependence
of gp and h p should be introduced, that is, in general gp
and hp should be written as go' and hp', of which defini-
tion will be given in the next section.

goal
tan2$=

~o(Vi+ V~)
(7.6) &a

In the approximatio~ of
I

hoVz I &&
I

hpVL,
I

and

I
gpa~ I, the eigenvalues are obtained as

2 2
( goal

m-=ho VL+ 4
p R

(7.7)
m-= —hpVR .X

Then we have

&Q

{Q)

gQ

(b) (c)

FICx. 2. Diagrams generating charged-fermion iP&i masses,
where diagram (a) stands for line-connected diagram, diagram
(b) for line-disconnected one, and diagram (c) for SU(3), correc-
tion dominated by one-color-gluon (g, ) exchange. The notation

implies ( L~R) transition vertex in terms of the diagram (a).
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a b
a, b =(l,q)

FIG. 3. Line-disconnected diagrams for couplings among

Higgs bosons, where diagrams 1, 2, and 3, respectively,
represent the interactions P~(P'*P'+P»*P»}(bl.bl. +bzAz),
y'(4 "0'+0'*0»}',»d ao(tt~ttt. +~z~z }'.

diagram 1, we have the following Higgs potential for bI,
aq, and 6q,

(8.4)
where g,"is the coupling constant for the correction term
and of course, the relation

~ g," ~
&& i

go'
~

should be
kept. Observed generation is derived from diagonalizing
the mass matrix for N massless fermions. We can, how-
ever, write the following mass formulas for charged fer-
mions in the ith generation in general:

(i) —(i) -(i) 4
ml(-i) =g o bi+g, a, —Ta,a,

VH- 1(bt'—+a, '+ b, ')+ m&'(bI'+a»'+b»')

+piVIt (bI +a 2+b 2), (8.1)

(i) —(i) —(i)
mq(2/3) g o aq +g 6 al 3 c~

(i) -(i) —(i)
mq( —&/3) g 0 ~q+g e l 3 e

(8.5)

where g& is the coupling constant for the diagram of Fig.
3 and

~ g| ~
&&P~

~

is postulated. If m~ +g&Vz &0, VH

has the minimum at

2
2 2bl ——aq

——bq ——

2y
(8.2)

where p, :——gVg —m~ . That is, p mesons now be-
comes Higgs scalars and the vacuum expectation values
bl, aq, and bq can be nonzero. Note that p, (0 is not
very unrealistic when we take account of the relation (6.9)
and the order of Vz is p~ . Provided that smaller correc-
tions induced by diagram 2 of Fig. 3 and mass differences
among P '=t" '&t'( ') yf=t«' '~~»('~'~,

P)=t»' ' t»' ' ' induced by the difference of electric
charge of fermion constituents are taken into account, we
in general obtain the different values for bI, a», and b»,
respectively. For the details of this argument, see Appen-
dix C. It may, however, be noted that the differences be-
tween bt, a», and b» are essentially originated from the
electromagnetic mass differences between P mesons (see
Appendix C). Hereafter we consider the case with the dif-
ferent vacuum expectation values

where g o' and g,"should be described by linear combina-
tions of go' and g,", respectively, which will be deter-
mined in the process of the diagonalization. The last
terms of the three formulas in (8.5) stand for the small
contribution of SU(3), interaction dominated by the one-
color-gluon-exchange diagram. %'e may expect that the
color-gluon contribution is actually negligible except to
the masses of the lowest generation. It is convenient that
we rewrite (8.5) as

(i) (i)
ml =ml( —&)

(i) (i)m ] =mq(2/3) —6
(i) (i)m2 =—mq( ]/3) 5

where 5=——', a, A. We can easily see that the following re-
lation for two arbitrary generations (i and j) is satisfied:

m] (m2 —mt ) —(m2 —mI )m$(i) (j) (j) (i) (i) (j)

+mz'mt' ' —mt"mz' ——0. (8.7)

Using these relations for the first, second, and third gen-
erations, we can write the top-quark mass m, as

1

(m, —md ) —(m& —m, )

btWa»&b»~b& (8.3) X [ mb(m, —m„+m, —m~)

of which order of corrections may be the same as that in-
duced from diagram (b) of Fig. 2.

It will also be required that the correction by the SU(3),
interaction be taken into account when we discuss charged
fermions of the lowest generation, i.e., e, u, and d, having
very small masses. It may be dominated by one-color-
gluon (g, ) exchange as shown in diagram c of Fig. 2.

In general the couplings of diagrams (a) and (b) of Fig.
2 for fermions with different N, numbers are different.
That is, the couplings should be defined as follows,

+m, (m, md +m„—m, )+—m&(md —m„)

+m, (m, —m, )+m„m, —mdm, ], (8.8)

which is already derived in previous work. It is interest-
ing to note that in the limit of 5=0, which may be reason-
able except for the case for the first generation (e,u, d), we
can directly derive the following equation for m, from
(8.7),
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52 GeV from (8.8),
mq —.

47 GeV from (8.9) .
(8.10)

Since both equations are sensitive to the value of m„our
prediction for m, should be given as the mass region

65) m, )35 GeV, (8.11)

where we used (8.9) and m, was moved between 160 and
200 MeV. The neutral vector meson composed of tt will
appear in the mass range from 130 to 70 GeV.

In the above discussion we ignored mixings among dif-
ferent generations. We experimentally know that such
mixings are small. We may therefore expect that the
mass relations (8.8) and (8.9) will not be much disturbed
by the mixings. Especially, the relation (8.9) described by
rather large mass values of leptons and quarks will not be
affected so much. The mixings among generations will
again be discussed in Sec. X.

IX. MIXINGS BETWEEN LEFT-HANDED
AND RIGHT-HANDED WEAK BOSONS

In the discussion of Sec. VI we derived no mixing be-
tween left-handed weak bosons and right-handed weak bo-
sons as the result of b~ ——a~ =b~ =0. In the last section,
however, we showed that b~, aq, and bq will be nonzero.
Now they must be mixed. As was given in Appendix A,
the mixing angle between charged bosons ( Wr, IV+ ) is de-
rived as

albl +aqbq
tansy

a(b)
2

(9 1)

where for deriving the last equation the relation
a& »b&, aq and bq is taken into account. F'rom the
mass formula for 8' and fermions the order of Vz, a~,
and b~ is estimated as

Vg -mg /g -O(mg ),
a( -2m~ /g -O(mg ),

0

b, —m('/g "-O(m(),

(9.2)

where the order of g and go' is postulated to be 1. We
can get the order of mixing as

mw ml
taneg—

2mp
(9.3)

For the values of m~ ——80 GeV and m~ )3m~ we ob-

tain very small values

1
m, = [mb(m, —m&)+m, (m, —m, )], (8.9)

S pm —m

which is completely the same as the equation derived
from (8.8) by setting m, =m„=md ——0 in (8.8). This indi-
cates that the correction by SU(3), is not important in
higher generations.

From the values (in MeV) of m, =0.5, m„= 106,
m, = 1784, m„=5, md ——9, m, = 180, m, = 1200, and
mb =4800, where typical "current-algebra" masses for
quarks" are used, we obtain

T

0.7&& 10, for mr =me

tan@~ & 1 X 10, for m~ ——m&,

2& 10, for m~ ——m, .

(9.4)

X. CONCLUDING REMARKS

In our scheme, S bosons have an essential role for
deriving the generation and the masses of light fermions
and the Higgs mechanism for spontaneous parity viola-
tion. At the same time, the maximal symmetry among
couplings for co vertices, for f co ver-tices, and for 6-co
vertices, such as h; J k

——h, g;J =g, fj =f for all combina-
tions of i, j, and k, also plays a very important role. This
symmetry may be naturally realized in the vacuum where
S bosons condense infinitely and the S number has no
meaning at all. Can we observe S condensation? Since
all hypercolor-singlet bound states (co) composed of only
S bosons have heavy masses (as was shown in Sec. III)
and all of them are singlets of SU(3)„SU(2)L R, and
U(1)z L gauge interactions, direct observations of co

mesons will be difficult at present experimental energies.
Detection of N-fold degeneracy of 6 mesons with a heavy
mass presented in Sec. V is also not realistic at present.
We had to look for the trace of the S condensation in the
generation structure of light fermions and the Higgs
mechanism of parity violation as discussed in Secs. IV, V,
and VI. In the present scheme, however, all parameters
with dimensions should be written by (co) and N except
the mass of P mesons (m~). From this standpoint, we
should make an effort to determine values that are observ-
able, such as m~, mz, and e~, in the next step.

R R

We derived the mass formulas for charged fermions
given in (8.8) and (8.9), which can be applied for all new
generations higher than the third generation. In particu-
lar, the application of the formula (8.9) to the charged-
fermion masses of the third and fourth generations will be
a very good test for our model if the fourth generation is
observed, because in such heavy generations the ambiguity
arising from the determination of heavy-quark masses
will not be so essential that the ambiguity of the s-quark
mass for the prediction of m, will be essential.

We still have many questions, such as the following.
What is the guarantee for p~ &0? What is the mecha-
nism to make the real minimum of V~ at the point with
unsymmetrical solutions for VL, and Vz? What is the
meaning of generation number X, which is introduced ad
hoc in the above discussion? We would like to remark on
one standpoint to look for a solution of these questions.
In Ref. 3 the S boson is represented by the lowest scalar
bound state of the 2" number of neutral fermions ( V) con-
fined by the SU(2")H gauge interaction. In this model

the S boson has a finite size characterized by the con-
finement length AH

' (AH »AH is postulated) and

should have a property of the bound state of fermions in
the range smaller than A~ '. Therefore, if more than

two S bosons overlap in the range smaller than AH ', a
2

repulsive force among them appears because of Pauli's ex-
clusion principle like a hard core in nuclear forces which
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can be explained by the fermionic property of quarks in
nucleons. ' We may consider that the order of the max-
imum number of S bosons which can freely behave in
the volume AH characterized by SU(3)H confinement
without overlapping each other is O((AH, /AH) ). The
mean S number in the vacuum

~

0') is evaluated as

( Xsp)—:g (0'
~

a; (0)a;(0)
~

0') X 3i, (10.1)

has mixings among different generations. To do this, we
have to know all of gp' and to leave it as an open question
here.

In our mechanism we have two massless Goldstone bo-
sons. One is the Majoron, which is due to lepton-number
violation and was shown to be harmless, as was discussed
by Chikashige, Mohapatra, and Peccei. ' The other is the
Goldstone boson associated with S -number violation.
This boson induces the transition of a heavy fermion
denoted by %p in Sec. IV into light fermions and also
those of b, ; (i&0) in Sec. V into b.o (Higgs meson). These
heavy particles, therefore, have very short lifetimes and
become unstable, of which mechanism is quite similar to
the unstable heavy neutrino discussed by Chikashige,
Mohapatra, and Peccei. '

We still have to do a lot, for instance, the following.
(i) More detailed analysis for the vacuum expectation

values Vz, VL, and QI and the coupling constants in V~
from present experimental and also theoretical con-
straints.

(ii) Leading a new idea from the hierarchy, clarified in
the discussion of (i), such as the introduction of SU(2 )tt 2

interaction noted in this section.
(iii) Fixing the couplings gp in the charged-fermion

mass formula so as to reproduce realistic mass values.
(iv) Estimation of loop corrections by residual interac-

tions.
(v) Prediction for masses of fermions in higher genera-

tions, m~, mz and mixing between 8z, and 8'z and
R R

also that between Zz and Zz by using the parameters
fixed in processes (i)—(iv).

(vi) How we can see exotics like t't t, t't't', etc. (see
Table II).

If this model describes nature correctly, I believe that
we can do the above analyses.

Finally I would like to mention that we can consider
many simple variations for the model of the subconsti-
tuents particles, for instance, the introduction of two (or
more) kinds of scalar subconstituents (S~ and S2 ) be-
longing to the singlet representation of SU(3), . We may,
however, say that the introduction of a scalar meson such
as S is indispensable for realizing the dynamics presented
in this paper.

where a;(0) and a;(0) stand for the annihilation and
creation operators of the co; boson with zero momentum,
respectively, and 3i is just the S number of co;. The re-
striction

(10.2)

APPENDIX A: MASSES OF WEAK BOSONS

The mass terms of the weak vector bosons in the effec-
tive potential ' are described in terms of the vacuum ex-
pectation values in (6.1) as

gives a constraint to the generation number X. This
standpoint is also interesting to discuss on the problems
for p~ &0, Vz &&VL and so forth. That is to say, only
the S boson can carry the property of the strongest in-
teraction SU(2 )tt in our ideal world discussed in Secs.

2

II—IX. It may therefore be reasonable to postulate that
physical values and coupling constants which are deter-
mined by dynamics directly related to S bosons should
be large, for instance, (co) —

~ p~ ~
&&m~, ap&

~
a~ ~,

f&2I &y in (6» and bo&go in (79).
Under these conditions we can easily understand desirable
relations, such as p~ &0, asymmetry between V~ and VL,
( —P2/2a&+gp /4hp ) « 1 in (7.9) and P, & 0 in (8.2), of
which interpretation has been left as unknown in Secs.
V—IX. In this scheme two new levels are provided for in-
terpreting the hierarchy among physical values and cou-
pling constants desired by phenomenology. Provided that
there are some sublevels between the present energy scale
(-GeV) and the Planck's mass ( —10' CseV), the above
discussion will be realistic.

We should mention the mixing among fermion genera-
tions. Two origins for the mixing are considered. One is
perturbative corrections by residual interactions of fer-
mions with co; —(co);. We have to estimate the correc-
tions by evaluating loop diagrams. Another origin is due
to the diagonalization of (8.4) in Sec. VIII. That is, uni-
tary matrices for diagonalizing mass matrices for three
generations of 1( —1), q(2/3), and q( —1/3) can be dif-
ferent from each other, because of bt&az&b&&bt Ifthis.
is the case, the SU(2) current for quarks defined by

[(N —1)/2]
q; ( —1/3)(1+y5) y„q; (2/3)

' = —[N/2]

2VL 2+Co~ -.= 4g'X (~L, ~z)
2V~ +Co

+ —,( W3L, , W'3g, B)

g2(4vL 2+ co
—g Co

—4gg'Vi'

—g'Co

g'(4I'~'+Co
—4gg'V~'

—4gg'V~'

4gI 2( V 2+ p' 2)

(A1)
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where 8';I, 8;.~, and B, respectively, stand for the gauge
fields of SU(2)L, SU(2)R, and U(1)R L, g and g' are the
coupling constants for SU(2) and U(1) gauge interactions,
respectively, and

Cp=—aI + I +aq +bq

C1 =2(albl+l2qbq) .
(A2)

One neutral gauge field, corresponding to the photon,
remains exactly massless, and is described by the follow-
ing linear combination,

A =sin8~( W3L + W3R ) + (cos2811 )
' 8,

where

g& 2

sin Ow=
g +2g'

(A3)

(A4)

masses for other mesons are derived as follows in the ap-
proximation of VL «

I
Co I, I

C1
I
« VR,

M (W +—)=—,g Co(1+2VL /Co ——,C1 /CQVR + . . ),

I 2

2( 2ao+ a1)
1

2Ypa'+(P, +P2)my'

2[2(2ao+a, )Y —(p1+ p2) ]

(pl+p2)pa +(2ao+a1)mp2
2(2ao+ a1)Y —(p1+p2)

2

)
Pa p1l21—

(a) al ——0, VI. VR————

(b) VL ——VR ——0, al ———

(c) VL =VR =

a~ ———2=

(d) VL+VR =

(82a)

(82b)

(82c)

2 2Vl Vg —— a)
2(x (

a, [2(—ao+a, )m~ +p,pl, ]
2(ao+a1)(2a1Y+p2 ) —a1p1

al-2=

(82d)

where bl ——aq ——bq ——0 are taken into account. The extre-
ma satisfying the conditions 8 VH /0 VL

——8 VH /8 Vz
=8VH /Bal =0 are found at the following four points:

M (W'-+)=g VR (1+—,Co/VR + ' ),

Cp VL ] COS20 W Cp

COS Ow Cp 4 cos Ow Vg

(A5) We ignored the solutio~ for ai ——VL ——Vz ——0. As we are
interested in the case where y )0, m~ & 0 and the vacu-
um expectation values Vl, Vz, and a~ are real, the case
(b) is not adequate because of al &0. The values of VH at
the other three extrema are evaluated as

2 cos Ow l cos 28w Cp
M (Z')=g VR

COS 8W VR

En (A5) W and W' are, respectively, given by

8 +—= 8'L cosew+ 8'g sinew

W'-+ = —WI-+ sinew+ W~ cosew,

where

C& aIbi+ aqbq
tanew

(A6)

(A7)

APPENDIX B: THE HIGGS POTENTIAL
AND SYMMETRY BREAKING

We look for the minimum of the Higgs potential given
by (6.2),

VH = ao( VL'+ VR')'+a1( VI. '+ VR')

As for Z and Z' in (A5), we have the following combina-
tions in the limit VR )~

I CQ
I
))VL

Z= cosOw 8 3L sinOw tanOw W3g

—tan8~(cos281l )'i 8,
(AS)

(cos28g )'i
Z 8'3g —tan8 w8,

COSH w

where the definition of 8~ is given in (A4).

V(a)
2(2ao+ a1)

[YPa (p1+p2)m—~ P& +1/2(2ao+a1)mal, ]

2(2ao+a 1 ) Y (pl +p2)

(83a)

(83c)

ao»
I a1I

I p1 I I p2I and Y

a„ /3„and P2 are negative .
(84)

For the above choice of the parameters, we need one more
constraint described by

my p1
, + &0

pa2 2(ao+ a1)
(85)

in order to, reproduce the phenomenological constraints

Vg ))aI ))VL,2 2 2

(d) 4
VH =—

4(ao+a1) pg

2(ao+a1)(2a1Y+ p2 ) —a1p2
a(4a 1(ao+a1)

where al in (83d) takes the value given in (82d). The pa-
rameters are so many that we will find many different
choices for the parameters for realizing the real minimum
of VH at the point corresponding to the case (d) where an
unsymmetrical solution for VI and VR is derived. An ex-
ample is found in the following choice of the parameters:

+Pl ( VL + VR )l21 +2P2 VL VR F21 +yl2l

—pa (VL + VR )+my al (81)
Note that the constraint (85) can be read as the following
relation:
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mp' /Pi /

p~~ 2(ap+a i)
(B6)

In order to realize the condition p, )0, which is required
in (8.1), the above relation (B6) is very important.

APPENDIX C: VACUUM EXPECTATION VALUES
bI, aq, AND bq

Let us consider corrections for the Higgs potential VH.
As noted in Sec. VIII, the main correction arises from the
line-disconnected diagrams shown in Fig. 3. It is given by

oto( Vr. '+ Vtt ')'+13'i( Vt. '+ ~z') «t'+ bi'+aq'+bq')

+y'(ai2+bl2+aq2+bq2)2, (Cl)

where the first, the second, and the third terms, res-
pectively, represent the contributions of diagrams 3, 1,
and 2 in Fig. 3. The first term, g(VL + Vii )ai and

y (ai +bi +aq +bq ) can be included in the ap term, the
Pi term and the y term of VH, respectively. Taking ac-
count of the phenom enological constraints
Vg ))aI » VL, and the reasonable estimation
ap/ap-g/Pi-y'/y, we may write the correction for
VIt by the diagrams of Fig. 3:

VH=PiVtt (bi +aq +bq )+y'at (bi +aq +bq ) . (C2)

We should here discuss mass differences between P
mesons (PI, Pz, Pf, and P)). Since corrections in terms of
hypercolor gluons (gH) and also color gluons (g, ) are the
same for all of the P mesons because bound states

This correction should be actually very small, but may
plpy a very important role, because this correction is only
one correction to determine the pattern of the asymmetry
among bI, aq, and bq. Now we can write the Higgs po-
tential to determine b~, aq, and bq as

VH y(bi +aq +bq )+y ai (bi +aq +bq )

2(b 2+a 2+b 2)

(CS)

where p, :——g Vii —m~ . We can easily see that at the
minimum of VH the asymmetrical relations described by

2)a 2)b 2 (C6)

should be satisfied. this asymmetry is, of course, induced
by that of the electromagnetic mass difference of iI)

mesons. Note that AL and h~ have no electromagnetic
mass differences because they are constructed only from
neutral components ( t" ' and S ) of the constituents.

representing P mesons have the same SU(3)H and SU(3),
structures, such corrections can be included in m~ . The
correction which cannot be represented by m~ arises
from the electromagnetic interaction. The difference be-
tween charges of constituent fermions generates the fol-
lowing mass corrections for P mesons:

—m. '(
l 0 ~ I

'+ —' I kf I

'+ —'1451') . (C3)

The contribution to the Higgs potential is described by

(C4)
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