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The nonstationary collapse of a radiating fluid shell of matter has been followed through its event
horizon in the Vaidya metric in terms of Israel coordinates. The surface density and pressure of the
shell were obtained from the integration of the collapse history and are displayed as functions of the
shell radius. The shell behavior is determined by two free parameters: its mass function and
luminosity-radius relationship. The effects of varying the forms of these two functions have also

been examined.

I. INTRODUCTION

The Vaidya metric! has seen considerable recent use at
the semiclassical level as a framework for the study of the
space-time surrounding an evaporating black hole.? In
addition, at the classical level, it has seen application as a
model for the exterior of quasistationary spherical radiat-
ing objects.® None of these considerations involve the fu-
ture event horizon of the Vaidya metric.” In fact, while
the complete gravitational collapse of a radiating boun-
dary surface has been followed analytically for the case
when no event horizon forms,* there does not appear to be
any attempt in the literature to follow a collapse through
the event horizon in the Vaidya metric.

The problem examined in this paper is the complete
gravitational collapse of a radiating shell of matter. A
Vaidya exterior is matched onto the shell and, in contrast
to previous work,” the shell is given a surface energy-
momentum tensor characteristic of a perfect fluid. As
such, it has both a surface density o and pressure P. The
collapse of the shell is examined within the framework of
Israel’s complete set of coordinates for the exterior.® In
this way, the collapse may be followed down to zero ra-
dius. The equations required to complete the description
of the shell are the luminosity-radius relationship and the
Vaidya mass function. Both must be specified, but are
not limited to any particular form, so that the choice may
be made from the physics of the model rather than
mathematical convenience, again in contrast to previous
work.’

The general approach to the problem used here is fairly
straightforward in principle. With the mass function and
the luminosity-radius relationship specified, we integrate
the equation of motion of a collapsing shell. From the de-
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tails of the collapse history, we obtain the surface proper-
ties of the shell. In practice, the collapse equations we are
interested in are very difficult to solve even for very sim-
ple (nonphysical) choices of the undetermined functions.
As a result, no analytic solution is, in general, possible.
The work reported here is, therefore, primarily numerical
in nature.

II. COORDINATES

The line element
ds?’=2cdvdr —[1—2m (v)/rldv?+r3dQ?, (2.1

where ¢ ==+1, and dQ*=d6*+ sin26d¢2 is the Vaidya
metric.! For ¢ =—1 (“outgoing” coordinates) v is a re-
tarded time, while for ¢c= + 1 (“ingoing” coordinates) it
is an advanced time. This provides the solution to the
Einstein equations for an energy-momentum tensor of the
form

Tog=gkokg , (2.2)

where k, is a radial null vector. The function ¢ may be
identified with the local radiation energy density. The
Vaidya solution, then, describes a ‘“radiating
Schwarzschild metric”; a spherically symmetric geometry,
but with radial unpolarized radiation around the central
mass. )

As in the Schwarzschild case,’ the coordinates (7,6,¢,v)
do not adequately describe the entire space-time. For ex-
ample, if we set ¢ = —1 (outgoing coordinates) and con-
sider the behavior of an incoming null geodesic, we find
that as r decreases, v diverges. The limiting case is
r=2m(w) at v=ow. This is analogous to the
Schwarzschild surface » =2m at v = « the “future” event
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horizon in Eddington-Finkelstein coordinates.” Clearly, a
complete set of coordinates is required to describe ade-
quately gravitational collapse.

For the Schwarzschild case a complete set is, for exam-
ple, Kruskal coordinates.” An analogous set, which we
refer to as Israel coordinates,® exists for the Vaidya

metric, but not one that is frequently used. This is quite ° -

possibly because, in many respects, Israel coordinates are
considerably more complicated than (7,0,¢,v).

Introduce a null coordinate u and consider m to be a
C? nonvanishing function of u. The transformations

dv=cdu/U(u), dU(u)=du/4m (u)

with (2.3)
r=2m(u)+U(u)w
yield the line element
ds?=2du dw +[4m'(u) /U (u)+w?*/2mrldu?
+r2dQ?, (2.4)

where a prime denotes d /du. This metric provides an an-
alytic completion to (2.1) that is regular for »> 0, except
on the axis #=0 where the metric is C° (Ref. 8).

The associated Lagrangian for radial trajectories is.

given by
2L =2uw+(4m' /U +w?/2mr)i ? , 2.5
where 2L = —1,0, + 1 represents timelike, null, or space-

like trajectories, respectively. Tangent and normal four-
vectors to radial trajectories are

u*=(u,w,0,0) (2.6)
and

+(u,—(4m' /U +w?/2mr)u —w,0,0) . 2.7

na

The condition u=constant defines a family of radial null
geodesics parametrized by w so that

k%=(0,1,0,0), k,=(1,0,0,0) (2.8)

defines a radial null vector. The only nonzero component
of the Einstein tensor is

G =G, ’=2m'/Ur?. (2.9)

The coordinates, then, represent a solution to the Einstein
equations. with the “geometrical optics” energy-
momentum tensor (2.2), with g =( 1/47r%)(m’/U).

Some of the basic properties of the coordinates can be
seen in the limit corresponding to m constant (the
Schwarzschild metric).® Figure 1 shows the space-time
diagram. It shows the properties we expect from the
Schwarzschild metric, and possesses some qualities in
common with Kruskal coordinates. For example, as.in
Kruskal coordinates we have the r=const curves appear-
ing as a family of hyperbolas: r=2m +uw/4m, or
uw=constant. In addition, the axes uw=0 (and hence
r=2m) are null surfaces, analogous to the axes in
Kruskal coordinates. The geodesic behavior illustrates the
differences with Kruskal coordinates. There are two radi-
al null directions at every point, and in Kruskal coordi-

nates radial null geodesics are straight lines. In Israel
coordinates, the two families are defined by

© u =const (2.10)

and

dw/du = —w?*/4mr . (2.11)

The second class is anything but straight and must be
determined by integration.

Israel coordinates illustrate the expected properties of
the Schwarzschild geometry, but they are sufficiently
complicated as to make the use of them inconvenient. If,
however, we examine the case for m (u)sconstant, then
we find qualitatively different effects.

r=0 r=10

(‘G ) r=10 r=0

=0

.

J

(b) reo

FIG. 1. The Schwarzschild metric in Israel coordinates
[m(u)=1]. Domain u =[—4,4], range w =[ —50,50]. (a) This
diagram displays the surfaces of constant . Shown are the in-
tegral values from r=0 to r=10, inclusive. Note that
r=2m=2 lies along the axes w=0 and =0, and that
v=—4In(u) (¢ =—1). (b) This diagram displays the radial null
geodesics obtained from the integration of Eq. (2.11). (The class
u=constant has not been drawn.) Note that the geodesics do
not cross the axis w=0. The curve =0 is shown for reference.




For most of this work we will be interested in m (u) de-
creasing to the future (chosen as #<0) for u>0. To
avoid a singularity in the coordinates along u=0 we take
m'(0)=0, [with m"(0)> 0] defining a local minimum in
m at ¥=0 (v infinite). We also take m(u)=m(—u).
This is by no means a requirement, but is done here sim-
ply for convenience. A mass function chosen according to
these criteria is, say,

m(u)=Qu>+1)/(u*+1) . (2.12)

This is equal to 2 for large u and decreases smoothly to 1
for ¥=0. This choice also has the property that we have
Schwarzschild-type (constant mass) behavior for u = «,
and the deviation from this becomes more pronounced as
the system evolves in time (decreasing values of u). The
corresponding Vaidya geometry is pictured in Fig. 2.

The curves of constant radius illustrate that the coordi-
nate 7 has a complicated behavior. One of the solutions
to r =2m(0) is the null surface u=0, representing the fu-
ture event horizon. Distinct from this is the surface
r =2m(0) which is spacelike for m =m (u). In addition,
if we consider an r=constant curve for u >0, we find that
it is spacelike for w <0, timelike for w> O (the reverse is
true for u <0), and null as it crosses the w=0 axis.

The behavior of null geodesics is also complicated.
From Eq. (2.5) we see that there are two radial null direc-
tions at every point. The two families of null geodesics
are defined by ’

u =constant (2.13)

and

dw/du=—Q2m'/U +w?/4mr) . (2.14)
The behavior of this second class must be obtained by the
integration of Eq. (2.14). Some of the curves hit r=0 at
one end, while the other end asymptotically approaches
w=0. There is also, however, a set of curves that impacts
r=0 at both ends. This is a major qualitative difference
from the Schwarzschild case. The only reason for this
behavior is the presence of the 2m’/U term in Eq. (2.14).
For 2m’/U “sufficiently large,” the slope of the curve is
sufficient to force it across w=0. After this, the curve
will inevitably hit »r=0.

In this latter type of trajectory, there is obviously a
maximum value of r. The location of this maximum may
be determined by examining r along the geodesic as a
function of, say, u. We obtain

r'(u)=2m'+w/4m + Uw’ (2.15)
which, with Eq. (2.14), implies that the maximum occurs
at w=0. The axis w=0 [corresponding to r=2m (u)]
then represents an apparent horizon. Obviously, for the
type of function m (u) that we have specified, this class of
geodesic is limited to a maximum value of » of 2m (o0 ).
Hence, any geodesic that crosses the hypersurface
r=2m () is of the first type, all others hit r=0 at both
ends. This second type of geodesic does not exist at all in
the Schwarzschild metric, it is purely a result of the non-
constant nature of the function m (u).
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III. SHELL STRUCTURE

From the basic geometry we can obtain the equations
describing the behavior of the shell. Define u’ to be the
(timelike) tangent vector to the shell (£). For a surface
energy three-tensor of the form

S,J=(U+P)u,uj+Pg,J y (3.1)

and enveloping space-times of the form (2.4), we may
derive expressions for the surface properties. It follows
that’

r=0 r=10
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FIG. 2. The Vaidya metric in Israel coordinates with m (u)
given in (2.12). Domain u =[—4,4], range w =[—50,50]. (a)
This diagram displays the surfaces of constant r; the figure is
analogous to 1(a). Shown are the integral values from »=0 to
r=10, inclusive. As in Fig. 1(a), there are two branches for
r =2m(0)=2. One is the axis #=0, the other is the curve pass-
ing through the origin. No simple form exists for the u—v
coordinate transformation. (b) This diagram displays the radial
null geodesics obtained from the integration of (2.14). (The class
u=constant has again been omitted.) Note that there are two
classes of geodesic as described in the text. The space-time is
clearly qualitatively different from the Schwarzschild metric
[Fig. 1(b)].

-
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47R*0=R[—(R*+1—2m/R)'?] (3.2)

and
_ | RR+R2+1—m/R —i’m'/U
R(R24+1—2m/R)'/?

where R =r(u) is the history of =, the dot represents dif-
ferentiation with respect to the proper time on X, and, for
any A, [A]=(A4 4+)—(A4 —) (evaluated at X).

With the mass function m specified, and Egs. (3.2) and
(3.3), only one more relationship is required. One possible
procedure would be to provide an equation of state
[P=P(0)] and invert Egs. (3.2) and (3.3). Alternatively,
we might give the history of the luminosity of the shell,
and then trace the history of o and P. In this paper we
use this latter procedure.!”

From the timelike condition on the Lagrangian for ra-
dial trajectories (2.5) we obtain

dw/du=—1/24%-2m'/U —w?/4mr ,

87P

’ (3.3)

(3.4

where r is given by Eq. (2.3). The jump in the luminosity
across 2 follows from Egs. (2.2), (2.6), and (2.7), and is
given by

4R Y T opunPl=[m'u 2/Ul=f(R) . (3.5)

With m — =constant, Eq. (3.5) reduces to the luminosity
from 3, measured on 2. This is the case that is examined
here.!! From Egq. (3.5) we have

u*=Uf(R)/m’, (3.6)
so that the shell collapse is described by
dw/du =—m'/2Uf(R)—2m'/U —w?/4mR . 3.7)

This history is a special case of (3.4), with the details of
the shell collapse forced by the choice of the functions m
and f. For given f(R), m(u), and suitable initial condi-
tions, we integrate (3.7) to follow the collapse of the shell.

Equations (3.2), (3.3), and (3.7) provide all that is re-
quired to determine the shell history, but we require
values for R and R. By treating R as a function of u we
have

R=R'(w)i=02m'+w/4m +Uw' )i . (3.8)

Since # % is given by (3.6), we have R2=R’'%f(R)U/m’,
which contains no unknown terms. .

The remaining requirement is an expression for R.
Clearly,

R=R"W+R'ii=R"4*>+R"i . (3.9)

The i term is available from Eq. (3.6). Differentiation
leads to

V= Uf'(RIR” +f(R) f(R)Um"

.1
2m' 8Smm' 2m’)? (3.10)
R'" is available from (3.8), as
R"=2m"+w'/2m —m'w/4m?*+ Uw" . (3.11)

An expression for w” is obtained from differentiating
(3.7):

W' — —2(Um"—m'/4m) Ufm"—m'(f/4m +Uf'R")
U’ 207
2mRuww’ —wX(mR'+m'R)

— 3.12)
4m?R? (

which requires no extra information.

In general, there is little chance of finding any analytic
solution to (3.7), even for unphysical choices for m (u)
and f(R). As a result, Eq. (3.7) is solved here numerical-
ly. The method used here is a standard fourth-order
Runge-Kutta technique.!?

IV. NUMERICAL INTEGRATIONS

We begin with m + given by Eq. (2.12), m — =0, and
f(R)=R?, corresponding to a luminosity proportional to
the surface area of . Figure 3 gives the results of in-
tegrating the collapse trajectories under these conditions
from a set of initial points. These histories are timelike,
but exhibit similar qualitative properties to the null geo-
desics of Fig. 2(b). If we trace the trajectories ‘“‘back-
wards” (u increasing) we note that there are again two
families of curves, one that impacts R=0 at both ends,
and one that collapses from R = . This means that we
can have “purely” collapsing shells, as well as some ini-
tially expanding. Although the early history of the initial-
ly expanding shells is of doubtful physical significance,
their evolution is instructive and is included here for clari-
ty. :

From the trajectory information the evolution of the
shell parameters o and P follows from Egs. (3.2) and (3.3),
and is given in Figs. 4 and 5. Figure 4 describes the P vs
R curves along the trajectories of Fig. 3. Note that P is
almost always less than zero. In addition, the value of P

r=0

FIG. 3. Shell trajectories in Israel coordinates. A family of
trajectories in the u-w plane has been plotted for different initial
points. The defining form for m (u) is given in Eq. (2.12), while
f(R)=R?2 Note that the trajectories are labeled for later refer-
ence. Two types of behavior are possible. The trajectories la-
beled 1,2,3 have monotonically decreasing radius, while 4,5,6 are
initially expanding.
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FIG. 4. Variation of P along the shell trajectories. This displays the P vs R variation from Fig. 3. The numbers along the curves
correspond to the labels in Fig. 3. (a) P[ —0.1,0] vs R[0,10)]. This shows the behavior of P along the trajectories marked 1,2,3 in Fig.
3. (b) P[—0.2,0.05] vs R[0,4]. This shows the behavior along trajectories 4,5,6. (c) P[—0.2,0.05] vs R[0,5]. This shows the
behavior along a trajectory “between” 3 and 4. (d) P[—0.2,0.05] vs R[0,5]. This shows the behavior along a trajectory ‘“between” 3

and 4.

at any particular value of R is dependent on the history of
the collapse, although the limiting cases (R=0 and large
values of R) are the same. Figure 5 gives the correspond-
ing o curves. The density o is, as required, positive, and
we also have o depending on the history as well as on R.
Both figures are traced through the horizon (u#=0). For
our choice of m(u), this corresponds to R =2m(0)=2.
Note that the units for o and P are not the same on the
two figures. The units of P and o are those corresponding
to G =c =1. mks (or the equivalent) units are not given,
as we are not interested in the detailed quantitative nature
of P and o. In order for the figures to be the same scale,
| P | must be reduced by a factor of c2.

P is, as mentioned above, generally negative for all
values of R, with the large radius limit being zero. From
Fig. 4(a) we see that, as R decreases, the magnitude of P

increases, and then drops before finally increasing without
bound near the singularity (R=0). As the initial value of
w (wg) along the trajectory (see Fig. 3) decreases, we see a
smaller initial value for |P |, with a lower local
minimum. The second class of trajectories [Fig. 4(b)] ini-
tially expands to a maximum value of R, then collapses.
During the initial expansion, the pressure is positive, then
drops below zero for the remainder of the history.

The transition between the curves of Figs. 4(a) and 4(b)
may be seen in Figs. 4(c) and 4(d). The P vs R relations

. are displayed for two “intermediate” trajectories. The

behavior of these P curves is quite complicated near
R=4=2m (). If we consider a shell collapsing from a
large value of u (the “distant past”) then P becomes posi-
tive and can [in the exact limiting case between the trajec-
tories of Figs. 4(a) and 4(b)] become infinite at
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FIG. 5. Variation of o along the shell trajectories. This
displays the o vs R variation from Fig. 3. The numbers corre-
spond to the labels of Fig. 3. (a) 0[0,0.025] vs R[0,10]. This
shows behavior along trajectories 1,2,3. (b) 0[0,0.025] vs
R[0,10]. This shows behavior along trajectories 4,5,6. (c)
0[0,0.025] vs R[0,10]. This shows behavior along the ‘“‘inter-
mediate” trajectories.

R =2m(w)=4. In this limiting case, R=4 corresponds
to u = w0, where m (u) is constant, and P diverges since
we are forcing = to become null. )

Figures 5(a) and 5(b) show the companion o curves for
the P curves of Fig. 4. For large R, 0—0. As R de-
creases, o increases, eventually diverging at R=0. As be-
fore, we see an effect near R =2m (o). As wp gets
smaller, the “knee” becomes more pronounced until even-
tually, as before, the second class of curves is obtained.

The exact magnitude and location of the local max-
imum in ¢ (and the minimum for P) in Figs. 5(b) and 4(b)
are impossible to locate analytically. It initially appears
from the figures that the extremum occurs at the max-
imum of R, but this is in fact not the case. [Note that the
“peaks” on the P curves of Fig. 4(b) extend off the bottom
of the figure. This is also true for the cases discussed
below. On all figures, however, o and P are finite for
R > 0, except in the limiting case discussed above.]

The overall qualitative behavior is not dependent on the
exact form of m (u) that we have chosen. If we take, say,
m +(u)=2— sech(2u), then there are no qualitative
changes in the properties of the shell. The effect of modi-
fying f(R), is, however, larger. Another possible choice
for f(R) might reflect, say, constant luminosity on 2:
f(R)=1. With changes in f(R) there are changes in the
shell properties (see Figs. 6 and 7). The nature of the ex-
trema in P and o becomes more obvious—they do not
occur at the maximum of R. In addition, the magnitude
of P is significantly less than for f(R)=R? and P does
not become positive for small values of R [as in Fig. 4(b)].
The detailed behavior of o and P is clearly different.

V. SUMMARY AND DISCUSSION

The problem examined here has been the complete
gravitational collapse of a radiating object which forms an
event horizon. The Vaidya metric, which describes the
space-time to the exterior of a radiating object, is much
more complicated than the Schwarzschild metric. The
problem is, in fact, of sufficient difficulty that a relatively
simple model for the radiating object, that of a radiating
shell with flat interior, has been used in order to accom-
plish a detailed collapse history. The collapse scenario
has been examined using a complete set of coordinates for
the Vaidya metric, the Israel coordinates, because ‘“con-
ventional” Vaidya coordinates do not fully cover the en-
tire space-time manifold.

The shell equations derived are complete up to two un-
determined functions. One, the exterior mass function,
was taken as decreasing to the future from an initial
(Schwarzschild-type) constant value. The other, the lumi-
nosity function, was taken to be proportional to the square
of the shell radius in one case and independent of it in
another. Given these two parameters, we have obtained
the family of collapse trajectories in Israel coordinates for
the Vaidya metric. For these trajectories the surface
properties (surface density o and surface pressure P) were
obtained. There are two classes of trajectories, represent-
ing two different types of history for the shell. The first
represents a monotonic collapse from a large value of R.
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FIG. 6. Variation of P along the shell trajectories. This
displays the P vs R relationship for the alternate choice of
f(R)=1. (a) P[—0.04,0.01] vs R[0,10]. Trajectories 1,2,3. (b)
P[—0.05,0] vs R[0,4]. Trajectories 4,5,6. (c) P[—0.04,0.01] vs
R[0,10]. Trajectories ‘“between” 3 and 4.

(b)

L

FIG. 7. Variation of o along the shell trajectories. This
displays the o vs R relationship for the alternate choice of
f(R)=1. (a) 0[0,0.025] vs R[0,10]. Trajectories 1,2,3. (b)
0[0,0.025] vs R[0,10]. Trajectories 4,5,6.

The second corresponds to a shell that is initially expand-
ing, expands to some maximum radius, and then collapses
down to R=0. .

It has been shown that P is generally, but not always,
less than zero.!> Some general properties of the o, P
curves are as follows. For monotonic collapse, o increases
as R decreases. There is a knee in the curve near
R =2m () which increases in height with decreasing
values of wy. There is a local minimum in P, again near
R =2m (). The depth of this minimum increases with
decreasing wy. For trajectories “close to” the second
class, the behavior near R =2m (o) becomes somewhat
exaggerated. The limiting case has P— o0 at R =2m (o0)
as expected.

The second class is slightly different. We see that the
maximum value of R occurs near the axis w=0
[R =2m(u)]. The surface pressure becomes large and
negative, and the shell does not expand significantly
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beyond R =2m (u). In addition, for periods of large ac-
celeration (R) in the shell’s history, the pressure is posi-
tive. A positive surface pressure is needed to drive the ini-
tial expansion, at least for the f(R) < R2. The collapsing
section of the curves is quite similar to the curves in the
first case.
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