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The nonstationary collapse of a radiating fluid shell of matter has been followed through its event

horizon in the Vaidya metric in terms of Israel coordinates. The surface density and pressure of the
shell were obtained from the integration of the collapse history and are displayed as functions of the
shell radius. The shell behavior is determined by two free parameters: its mass function and
luminosity-radius relationship. The effects of varying the forms of these two functions have also
been examined.

I. INTRODUCTION

The Vaidya metric' has seen considerable recent use at
the semiclassical level as a framework for the study of the
space-time surrounding an evaporating black hole. In
addition, at the classical level, it has seen application as a
model for the exterior of quasistationary spherical radiat-
ing objects. None of these considerations involve the fu-
ture event horizon of the Vaidya metric. ~ In fact, while
the complete gravitational collapse of a radiating boun-
dary surface has been followed analytically for the case
when no event horizon forms, there does not appear to be
any attempt in the literature to follow a collapse through
the event horizon in the Vaidya metric.

The problem examined in this paper is the complete
gravitational collapse of a radiating shell of matter. A
Vaidya exterior is matched onto the shell and, in contrast
to previous work, the shell is given a surface energy-
momentum tensor characteristic of a perfect fluid. As
such, it has both a surface density o and pressure P. The
collapse of the shell is examined within the framework of
Israel's complete set of coordinates for the exterior. In
this way, the collapse may be followed down to zero ra-
dius. The equations required to complete the description
of the shell are the luminosity-radius relationship and the
Vaidya mass function. Both must be specified, but are
not limited to any particular form, so that the choice may
be made from the physics of the model rather than
mathematical convenience, again in contrast to previous
work.

The general approach to the problem used here is fairly
straightforward in principle. With the mass function and
the luminosity-radius relationship specified, we integrate
the equation of motion of a collapsing shell. From the de-

tails of the collapse history, we obtain the surface proper-
ties of the shell. In practice, the collapse equations we are
interested in are very difficult to solve even for very sim-
ple (nonphysical) choices of the undetermined functions.
As a result, no analytic solution is, in general, possible.
The work reported here is, therefore, primarily numerical
in nature.

II. COORDINATES

The line element

ds =2c dv dr —[1—2m(v)lr]dv +r dQ (2.1)

where c =+1, and dQ—:d8 + sin Od(I) is the Vaidya
metric. ' For c = —1 ("outgoing" coordinates) v is a re-
tarded time, while for c= + 1 ("ingoing" coordinates) it
is an advanced time. This provides the solution to the
Einstein equations for an energy-momentum tensor of the
fOHI1

Tp ——qk kp, (2.2)

where k is a radial null vector. The function q may be
identified with the local radiation energy density. The
Vaidya solution, then, describes a "radiating
Schwarzschild metric"; a spherically symmetric geometry,
but with radial unpolarized radiation around the central
mass.

As in the Schwarzschild case, the coordinates (r, &,P, v)
do not adequately describe the entire space-time. For ex-
ample, if we set c = —1 (outgoing coordinates) and con-
sider the behavior of an incoming null geodesic, we find
that as r decreases, U diverges. The limiting case is
r =2m ( ao ) at v = ao. This is analogous to the
Schwarzschild surface r =2m at U = oo the "future" event
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m(u)=(2u +1)/(u +1) . (2.12)

This is equal to 2 for large u and decreases smoothly to 1

for u=0. This choice also has the property that we have
Schwarzschild-type (constant mass) behavior for u = oo,
and the deviation from this becomes more pronounced as
the system evolves in time (decreasing values of u). The
corresponding Vaidya geometry is pictured in Fig. 2;

The curves of constant radius illustrate that the coordi-
nate r has a complicated behavior. One of the solutions
to r =2m(0) is the null surface u =0, representing the fu-
ture event horizon. Distinct from this is the surface
r =2m(0) which is spacelike for m =m (u). In addition,
if we consider an r =constant curve for u & 0, we find that
it is spacelike for w &0, timelike for w & 0 (the reverse is
true for u & 0), and null as it crosses the w=0 axis.

The behavior of null geodesics is also complicated.
From Eq. (2.5) we see that there are two radial null direc-
tions at every point. The two families of null geodesics
are defined by

For most of this work we will be interested in m (u) de-
creasing to the future (chosen as u&0) for u&0. To
avoid a singularity in the coordinates along u=O we take
m'(0)=0, [with m "(0)&0] defining a local minimum in
m at u=O (U infinite). We also take m(u)=m( —u).
This is by no means a requirement, but is done here sim-
ply for convenience. A mass function chosen according to
these criteria is, say,

III. SHELL STRUCTURE

From the basic geometry we can obtain the equations
describing the behavior of the shell. Define u' to be the
(timelike) tangent vector to the shell (X). For a surface
energy three-tensor of the form

S,J (c——r+P)u; uj+Pg, q, (3.1)

and enveloping space-times of the form (2.4), we may
derive expressions for the surface properties. It follows
that'

u =constant (2.13)

and

dw!du = —(2m'/U+w /4mr) . (2.14)

The behavior of this second class must be obtained by the
integration of Eq. (2.14). Some of the curves hit r=O at
one end, while the other end asymptotically approaches
m=0. There is also, however, a set of curves that impacts
r=O at both ends. This is a major qualitative difference
from the Schwarzschild case. The only reason for this
behavior is the presence of the 2m'/U term in Eq. (2.14).
For 2m'/U "sufficiently large, " the slope of the curve is
sufficient to force ii across w=O. After this, the curve
will inevitably hit r=0.

In this latter type of trajectory, there is obviously a
maximum value of r The location. of this maximum may
be determined by examining r along the geodesic as a
function of, say, u. We obtain (b)

)
r=a

r'(u) =2m'+w/4m + Uw' (2.15)

which, with Eq. (2.14), implies that the maximum occurs
at w=O. The axis w=O [corresponding to r =2m(u)]
then represents an apparent horizon. Obviously, for the
type of function m (u) that we have specified, this class of
geodesic is limited to a maximum value of r of 2m ( oo ).
Hence, any geodesic that crosses the hypersurface
r =2m ( oo ) is of the first type, all others hit r=O at both
ends. This second type of geodesic does not exist at all in
the Schwarzschild metric, it is purely a result of the non-
constant nature of the function m (u).

FIG. 2. The Vaidya metric in Israel coordinates with m(u)
given in (2.12). Domain u =[—4,4], range w =[—50,50]. (a)
This diagram displays the surfaces of constant r; the figure is
analogous to 1(a). Shown are the integral values from r=0 to
r=10, inclusive. As in Fig. 1(a}, there are two branches for
r =2m(0) =2. One is the axis u =0, the other is the curve pass-
ing through the origin. No simple form exists for the u~U
coordinate transformation. (b) This diagram displays the radial
null geodesics obtained from the integration of (2.14). (The class
u=constant has again been omitted. ) Note that there are two
classes of geodesic as described in the text. The space-time is
clearly qualitatively different from the Schwarzschild metric
[Fig. 1(b)].
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and

4rrR o =R [—(R +1—2m/R)' ] (3.2)
W

—2(Um" —m'l4m) Ufm" m—'(f /4m + Uf'R')
U2 2U2f 2

8~P = RR+R +1—mlR —u m'IU

R (R + 1 —2m/R)
(3.3)

where R =r (u) is the history of X, the dot represents dif-
ferentiation with respect to the proper time on X, and, for
any A, [A]=(A +)—(A —) (evaluated at X).

With the mass function m specified, and Eqs. (3.2) and
(3.3), only one more relationship is required. One possible
procedure would be to provide an equation of state
[P =P(o)] and invert Eqs. (3.2) and (3.3). Alternatively,
we might give the history of the luminosity of the shell,
and then trace the history of o. and P. In this paper we
use this latter procedure. '

From the timelike condition on the Lagrangian for ra-
dial trajectories (2.5) we obtain

dw/du = —1/2u —2m'/U w /4mr, — (3.4)

where r is given by Eq. (2.3). The jump in the luminosity
across X follows from Eqs. (2.2), (2.6), and (2.7), and is
given by

4rrR [T pu n~]=[m'u lU]=f(R) . (3.5)

With m —=constant, Eq. (3.5) reduces to the luminosity
from X, measured on X. This is the case that is examined
here. " From Eq. (3.5) we have

u = Uf (R ) /m ',
so that the shell collapse is described by

dw/du = —m'l2Uf (R) 2m'IU —w /4mR .—

(3.6)

(3.7)

This history is a special case of (3.4), with the details of
the shell collapse forced by the choice of the functions m
and f. For given f (R), m (u), and suitable initial condi-
tions, we integrate (3.7) to follow the collapse of the shell.

Equations (3.2), (3.3), and (3.7) provide all that is re-
quired to determine the shell history, but we require

~ ~

values for R and R. By treating R as a function of u we
have

2mRww' —w (mR '+ m 'R )

4m R
(3.12)

which requires no extra information.
In general, there is little chance of finding any analytic

solution to (3.7), even for unphysical choices for m(u)
and f(R). As a result, Eq. (3.7) is solved here numerical-
ly. The method used here is a standard fourth-order
Runge-Kutta technique. '

IV. NUMERICAL INTEGRATIONS

We begin with m + given by Eq. (2.12), m —=0, and
f (R)=R, corresponding to a luminosity proportional to
the surface area of X. Figure 3 gives the results of in-
tegrating the collapse trajectories under these conditions
from a set of initial points. These histories are timelike,
but exhibit similar qualitative properties to the null geo-
desics of Fig. 2(b). If we trace the trajectories "back-
wards" (u increasing) we note that there are again two
families of curves, one that impacts R=0 at both ends,
and one that collapses from R = ~. This means that we
can have "purely" collapsing shells, as well as some ini-
tially expanding. Although the early history of the initial-
ly expanding shells is of doubtful physical significance,
their evolution is instructive and is included here for clari-
ty.

From the trajectory information the evolution of the
shell parameters o and P follows from Eqs. (3.2) and (3.3),
and is given in Figs. 4 and 5. Figure 4 describes the P vs
R curves along the trajectories of Fig. 3. Note that P is
almost always less than zero. In addition, the value of P

R =R'(u)u =(2m'+w/4m + Uw')u . (3.8)

Since u is given by (3.6), we have R =R' f(R)Ulm',
which contains no unknown terms.

~ ~

The remaining requirement is an expression for R.
Clearly,

R =R'~+R'~ =R"i '+R'u . (3.9)

The u term is available from Eq. (3.6). Differentiation
leads to

Uf'(R)R' +f(R)
2m ' 8m' '

R" is available from (3.8), as

f (R)Um
2(m')

(3.10)

R"=2m"+w'/2m —m'w/4m + Uw" . (3.11)

An expression for m" is obtained from differentiating
(3.7):

FIG. 3. Shell trajectories in Israel coordinates. A family of
trajectories in the u- w plane has been plotted for different initial
points. The defining form for m (u) is given in Eq. (2.12), while

f (R)=R . Note that the trajectories are labeled for later refer-
ence. Two types of behavior are possible. The trajectories la-
beled 1,2,3 have monotonically decreasing radius, while 4,5,6 are
initially expanding.
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minimum. The second class of trajectories [Fig. 4(b)] ini-
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During the initial expansion, the pressure is positive, t en
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tive and can [in the exact limiting case between the trajec-
tories of Figs. 4(a) and 4(b)] become infinite at
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beyond R =2m (u). In addition, for periods of large ac-
celeration (R) in the shell s history, the pressure is posi-
tive. A positive surface pressure is needed to drive the ini-
tial expansion, at least for the f (R) ~R . The collapsing
section of the curves is quite similar to the curves in the
first case.
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