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The string-flip model of quark confinement is extended and applied to ¢2g 2 systems with color,
spin, and flavor degrees of freedom. A realistic model for systems of two light mesons is construct-
ed and the meson-meson interaction is investigated with the resonating-group method. Choosing the
confinement strength for the confined (“hidden-color”) state is discussed in detail. We find that the
interaction in the confined state often produces two-meson bound states or low-lying sharp reso-
nances. The 2% two-vector-meson systems and the K-K interaction are studied in detail. The re-
sults are compared with those for other models and the possibility of observing “hidden-color” dom-

inant resonances is discussed.

I. INTRODUCTION

Recent development of perturbative and nonperturba-
tive approaches to quantum chromodynamics (QCD) pro-
vides us with a fundamental understanding of hadron
structure and interaction. For high-momentum-transfer
phenomena (hard process), perturbative QCD is very suc-
cessful, due to the asymptotic free nature of QCD. On
the other hand, soft QCD processes are much less under-
stood. There QCD is very complicated due to the color
confinement. Although Monte Carlo calculation for lat-
tice QCD is a promising nonperturbative approach, calcu-
lations done so far still have uncontrollable approxima-
tions. Furthermore, it seems rather complicated to apply
it to multihadron systems.

Under these circumstances, many effective quark
models for low-energy phenomena have been proposed.
One of them is the quark potential model. An effective
Hamiltonian for valence quarks is introduced. The inter-
quark potential contains a long-range part, which confines
the quarks in a color-singlet hadron, and a short-range
spin-dependent interaction. The confining potential for
quarks in a single hadron may be taken as the sum of a
two-body force, i.e.,

V= Ev(r,-j) s

i<j

(1.1)

where v(r;;) is an infinitely rising function of the distance
between the two quarks, i and j, such as v(r;)«<r;”
(n =1 or 2). Such effective Hamiltonians have succeeded
remarkably well in explaining the low-lying hadron spec-
trum.!2

This success leads one to try to understand multihadron
systems with a similar model. A lot of work has been
done in this context.3~> For hadron-hadron interaction, it
was pointed out that exchange forces due to antisymme-
trization of quarks are important and that the most reli-
able approach to the exchange force is the quark-cluster
model.> The confining potential for multihadron systems
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which is appropriate for the quark-cluster model should
satisfy the following conditions: (i) In a color-singlet had-
ron, the confining potential is reduced to the form (1.1)
and confines the quarks, (ii) it guarantees the asymptotic
separability of color-singlet hadrons, and (iii) it allows the
exchange symmetry among the quarks (and among the an-
tiquarks). The first two conditions guarantee a consistent
treatment of single-hadron and multihadron systems. The
third condition is necessary for a proper antisymmetriza-
tion, which is important in order to investigate the ex-
change forces between hadrons. The most conventional
form which satisfies the above conditions is given by the
sum of a color-dependent two-body potential,® i.e.,

V:‘CE (Ki'kj)v(r,-j) ’

i<j

(1.2)

where A; denotes the color operator of the ith quark and
the constant C is determined by condition (i). This is a
unique choice for the two-body potential with global color
gauge invariance. A difficulty of the model, however, was
pointed out by several authors,’ that it gives a long-range
attraction, called color van der Waals force, between two
color-singlet hadrons, which seems to contradict experi-
mental data on the nucleon-nucleon scattering.

Recently an alternative, called the string-flip model,
was proposed® to avoid the color van der Waals force.
The quark confinement is described in terms of a two-
body potential v (string), which is assumed to be the same
as v(r;) in Eq. (1.1). In a multiquark system, strings con-
nect the quarks according to a given configuration rule.
The string configuration in a single hadron is obvious.
The confining potential energy is given by Eq. (1.1). For
a multihadron system the string configuration is deter-
mined as the shortest string (or lowest-energy) combina-
tion among all the possible combinations. This process
gives us a many-body force, i.e., an n-body confining po-
tential in an n-body system. One may easily imagine a
picture of, for instance, the meson-meson interaction in
this model. A system with two well-separated mesons has
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two strings. One of them makes a meson by connecting a
quark 1 and an antiquark 1 and another connects 2 and 2.
The quarks belonging to different mesons when well
separated do not interact with each other at all and there-
fore no long-range (power-law) force appears. When the
two mesons are put close to each other, the strings flip
suddenly into another combination, i.e., 1-2 and 2-1, if the
latter has shorter string length or lower confinement ener-
gy. This mechanism produces direct and exchange
meson-meson interactions supplemented by the exchange
symmetry. We wish to stress that for the single-meson (-
hadron) system the string-flip model gives the same Ham-
iltonian as the two-body potential model. The single-
hadron phenomenology therefore cannot distinguish them.

The string-flip model is similar to flux-tube models of
quark confinement® and is expected to mimic the confine-
ment mechanism in QCD. In fact, if confinement is relat-
ed to a phase transition of the vacuum, color-electric flux
tubes are produced instead of strings. The adiabatic ap-
proximation to the color-electric field gives us a configu-
ration of the color flux tubes around quarks (color
charges), which is represented by the string-flip model.

The color degree of freedom is important in the con-
finement mechanism. Only the color-singlet system exists
in isolation, while the colored one is confined. The con-
fining potential should depend on the color of the system.
In Ref. 8, the authors proposed a colored string-flip po-
tential model, which contains color projection operators
onto the color-singlet component of subsystems. They
pointed out that there is an ambiguity in choosing the
strength of the confining force in the confined (‘“hidden-
color”) state without changing any property of the (color-
singlet) hadron spectrum. The hidden-color state may
have a very low energy and therefore may produce a
bound or sharp resonance state due to the coupling with
two-meson systems.® Such bound or resonance states are
very new objects, never seen before because they are dom-
inated by the hidden-color component.

The purpose of this paper is to investigate properties of
the string-flip model in two-meson (g27 ) systems by the
quark-cluster-model approach. We concentrate on the
behavior of systems with color and other internal degrees
of freedom. A realistic model is proposed for the light-
meson systems and is compared with the conventional
two-body potential model.

This paper is organized as follows. The quark-cluster
model for two-meson systems is given in Sec. II. Wave
function and equation of motion of two-meson systems
are presented.

In Sec. III we briefly review the string-flip model which
incorporates no internal degrees of freedom for quarks.
Even this simple model shows interesting behavior in
two-meson systems which depends on the symmetry
structure of the wave function. The internal degrees of
freedom are expected to play important roles because they
determine the orbital symmetry of the system.

Color is introduced in Sec. IV. We discuss ambiguities.

in choosing the colored string-flip model. The “colored”
model taken here is slightly different from that in Ref. 8,
although the role of the hidden-color state seems to be
qualitatively the same. It is surprising that various dif-
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ferent features are seen by changing the strength of the
confining force in the hidden-color state, which does not
affect the single-meson dynamics.

In Sec. V, we introduce spin and flavor and try to make
a realistic model. A short-range spin-dependent interac-
tion is also introduced in order to fit the low-lying meson
spectrum. It is found that the various features seen in the
colored model remain in the realistic model. We examine
two particular cases where bound or sharp resonance
states have a good chance to be experimentally observed.
A possible interpretation of present candidates for ¢%g >
resonances is discussed and compared with other models,
such as the MIT bag model and the two-body potential
model of confinement.

The conclusion appears in Sec. V1.

II. WAVE FUNCTION, EQUATION OF MOTION
FOR TWO-MESON SYSTEM

Let us consider a system with two quarks (1 and 2) and
two antiquarks (1 and 2). We take the Hamiltonian for
this system as

_ A 5,21 12
K=dm+ 2m ;p, 2(4m) [;P,] ’ 2.2

where we assume that the system is nonrelativistic and all
the particles have the same mass m. We introduce the
following coordinate system,® which is appropriate to dis-
cuss the two-meson scattering problem, i.e.,

RZ%("I +r2+r—1+r—2) N

x=%(r1+r2—— —1-—7'7') N

(2.3)
y:%(r1+r—1—r2—r~2) ,
z:%(rl—}—r—z——r—l—rz) .

The kinetic energy (2.2) is expressed in terms of the new
coordinates (2.3) as

1
K:4m+E(px2+py2+pzz). (2.4)

The center of mass R of the total system is separated out
because the potential ¥ is independent of R. The coordi-
nate x is always confined, i.e., ¥(x,y,z)—0 as x — oo, for
the g2 system cannot be free from the g2 The other two,
y and z, can be free. The system has to have a definite
symmetry under the exchange of the two quarks (1«<2),
which means :

Y(x,y,z)=+W¥(x,z,y) (symmetric) , (2.5)

or
Y(x,y,z)=—W¥(x,z,y) (antisymmetric) . (2.6)
Thus the general wave function of the system is written as

V(x,,2)= 3, [$m (X)X (D) Ed (x,2X,n ()], (2.7)



2276 MAKOTO OKA 31

where X,,(z) represents a relative wave function in a two-
meson channel m and ¢,,(x,y) denotes the corresponding
internal function.

The resonating-group method!® (RGM) is employed to
solve the bound state and the scattering problem of two
mesons. Assuming that the internal wave function
ém(x,y) is known, an equation for X(R) is derived from
the Schrodinger equation as

0= [ éh(x,9)8(z —R)H —E)¥(x,p,2)dx dy dz
=3 f[Hmm,(R,R’)—EN,,,,,,:(R,R')]Xml(R’)dR'.

(2.8)

Here the integral kernels H,,,(R,R’), or Hamiltonian
kernel, and N,,,(R,R'), normalization kernel, are split
into direct and exchange parts, i.e.,

Hpm(R,R)=HP, (R)8R —R")*H, . (R,R") , 2.9)
N R,R") =8, 8(R —R")+Nn (R,R") (2.10)
with

HE,(R)= [ ¢}, (x,0)Hb,,(x,y)dx dy

:Ein—i—vR% Vi (R), 2.11)
HS (RR)= [ ¢],(x,p)8(R —2)H$(x,2)
X8(R'—y)dx dy dz , (2.12)
N3 (RR)= [ ¢ (x,p)8(R —2)¢,(x,2)
X8(R'—y)dx dy dz
= [ 61X, R )plx,R)x . (2.13)

Equation (2.8), a set of coupled integrodifferential equa-
tions for X,,(R), is solved under appropriate boundary
conditions for bound-state and scattering problems. A
variational method!! is employed to solve Eq. (2.8) numer-
ically, where the relative wave function X,,(R) is expand-
ed as a sum of locally peaked Gaussians.

The set of relative wave functions {X,,(R)} may not be
uniquely determined because in some cases particular sets
of functions {X{”(R)} (n=1,2,...) vanish the total wave
function (2.7) due to the (anti)symmetrization. Each
(XI(R)} satisfies ‘

S [ Npm(R,RX (R )R’ =0 (2.14)
o

and is known as a “Pauli-forbidden” state. To determine
{X,(R)} uniquely, we need an additional condition,

S [ XnRWP(RYR =0 for all n . (2.15)

The nonuniqueness of {X,,(R)] and the existence of
Pauli-forbidden states play important roles in the two-
meson interaction.!?

Any totally color-singlet ¢2g 2 state can be expressed as
Eq. (2.7), i.e., an infinite sum of cluster states with two
color-singlet mesons.'* In Eq. (2.7), the index m runs over

all the possible ground and excited internal states of two
mesons. We, however, have to truncate the sum over m’
to solve Eq. (2.8) numerically. One or a few lower eigen-
states are taken into account in the actual calculation.
The convergence of the truncation is a dynamical prob-
lem. We will find in Sec. III that for the colorless model
the single-channel approximation is little affected by the
coupling of excited internal states for energies up to the
excitation threshold.

The situation changes when one considers the color de-
gree of freedom. Two color-octet ¢gg systems can be com-
bined into a totally color-singlet state as

\Ijs(x,y,z)=¢8(x,y)Xg(Z)id’g(X,Z)Xg(y) s (2.16)

where ¢g(x,y) denotes a totally color-singlet state with
two color-octet ¢g systems, i.e.,

ds(x,2)=[pg(1,1)g(2,2)]; . (2.17)

W, is often referred to as a hidden-color'* (HC) state since
the colored gg system must always be confined and is hid-
den, i.e., Xg(z)—0 when z— o in Eq. (2.16). In principle,
we do not need to introduce any HC state explicitly in the
RGM calculation, because Wy is equivalent to a sum of
cluster states with two color-singlet mesons. The trunca-
tion of internal states of the meson, however, leads to a
problem of slow convergence if some HC states are
dynamically favored. When the color degree of freedom
is introduced in the string-flip model in Sec. IV, we will
find that the HC states can couple so strongly that we
need to consider them explicitly. The lowest orbital state
is taken as ¢g in the RGM calculations and the effect of
its coupling will be investigated.

As is well known, the two-body confining potential
(1.2) gives rise to a long-range color van der Waals force.
It comes from the coupling of color-dipole polarized
states, which is again equivalent to a sum of the two
color-singlet meson states with high orbital excitations.
In the actual calculation, the color van der Waals force is
effectively eliminated by the technical approximation of
truncating the sum in Eq. (2.7) to the low-lying meson
states. To justify this truncation procedure, the quark
Hamiltonian with the two-body. confining potential (1.2)
should be considered as an effective one in a limited space
of low-lying internal states for the mesons in the RGM
wave function.

III. COLORLESS MODEL

Let us briefly discuss a simple model which has no
internal degrees of freedom such as color, spin, and flavor.
It only incorporates the string-flip mechanism proposed in
Ref. 8. This model has already been studied in detail in
Ref. 8, where the equation of motion is solved quasi-
analytically. We confirm their results using the variation-
al method in solving the resonanting-group equation (2.8)
and present a few details in order to make further discus-
sion clear.
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The Hamiltonian proposed in Ref. 8 reads

H=K+V=h,+h,, , (3.1)

1 2 1 2
K=4m+— 3 ple— .
) 2[:1’1 3 [2171]

i

=4m+L(px2+py2+p22) , 3.2)
2m
V=v(x)+V(,z), (3.3)
with
1
- 4
hx 2me +v(x) ) (3.4)
1
hyz=4m+—2;(py2+p22)+ V(y,z), (3.5)
v(x)=20ox>=3maw’x?, (3.6)
V(y,2)=min(v(y),v(z))=2v,min(y%z?) . 3.7

Here harmonic confinement is chosen for simplicity and
one sees that the variable x is decoupled as a harmonic-
oscillator Hamiltonian whose solution is known. At large
y (> z) the Hamiltonian h,, is reduced to

1 m
2, M 2,2

2m P 2 ’ (3.8)

1
hy, =4m + E;l‘pyz—%—

which is the sum of a free y motion (i.e., two mesons
move freely) and a harmonic oscillator for z, which is the
internal coordinate of the mesons with the additional vari-
able x.

The variational method to solve the resonating-group
equation is applied for hy,,. We carry out the single-
channel calculation, where the internal state of the meson
is restricted to the Os, and the coupled-channel calculation
with the 1s excited state for the variable y. We summa-
rize the results as follows. (1) The S-wave scattering
phase shift for the antisymmetrized (A) scattering prob-
lem, where the quarks (antiquarks) are antisymmetrized in
the orbital space, behaves like that for the scattering from
a hard sphere with the radius Ro~1.5b [ b =(4muv,)~1/*].
The corresponding relative wave function, X(R) has a
node almost independent of the energy at R =R,. Such
behaviors are well known to come from the existence of a
Pauli-forbidden state, which is the relative Os motion in

the present case.!? (2) A strong attractive force is indicat-
ed between the two mesons for the symmetrized (S)
scattering problem. There exists a shallow bound state
whose binding energy is 0.04 fiw. The S-wave scattering
phase shift shows a sharp resonance just below the thresh-
old energy for internal excitation. The resonance is a
“virtual” bound state in the excited channel and the cou-
pling with the ground-state channel is very weak. (3) Ef-
fect of the channel coupling is almost negligible except for
the S scattering at the vicinity of the resonance. (4) The
variational method employed here is found to be safely
applied to such sharp resonances in the scattering prob-
lem.

IV. COLORED MODEL

In the colorless model discussed in the previous section,
we found that the effective interaction between mesons is
dictated by the symmetry structure of the orbital wave
function. The exchange interaction induced by the an-
tisymmetrization gives a strong hard core like repulsion,
while that by the symmetrization gives an attraction
which has a bound state. It is expected that introduction
of internal degrees of freedom for the quark is important
because the orbital symmetry structure of the system is
determined by that of the internal degrees of freedom.
Pauli-forbidden states no longer exist in the single-channel
approximation with the internal degrees of freedom,
though they may play a role in the coupled-channel for-
mulation as is seen later.

It is essential to introduce the color since the quark is
believed to be confined in a color-singlet system. We seek
a model which confines all the color-nonsinglet subsys-
tems including a single quark while it allows free motion
for the color-singlet hadrons. Extending the string-flip
model to include color, we confront ambiguities. From
the single-meson spectroscopy, we can learn the string po-
tential for the color-singlet ¢g system. For the colorless
model, the same ¢g potential should appear also in the
q%G ? system, because any gg subsystem can be made free.
In the colored model, however, one can arbitrarily choose
the confining force for the color-nonsinglet gg system.
Change of the confining potential for color-nonsinglet
subsystems does not affect the single-meson spectrum,
while it changes the meson-meson interaction.

Here we try a simple extension of the original string-
flip model by introducing a color projection operator as
follows:

2v
V—_——p—o{2x2+y2+22—9(y2-—22)[(2——p)x2+y2+(1—P)ZZ]Py—9(22'"}’2)[(2—P)x2+22+(I—P)yz]Pz} , (4.1)
I
with 22 are color singlet), then
Py=PuPy, 4.2) V=200(x>+2%)=vo[(r; —r{ )4 (r,—r5)?] , (4.4)
P,=P5Py; , 4.3)

where Pj is the projection operator onto the color-singlet
system for i and j. Suppose that y >z and P,=1 (11 and

which gives the internal potential. If P,=0 and still
¥ >z, which corresponds to a hidden-color (HC) state with
large separation, the potential reads
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2v
=2 (2x2+y2+2?)
p

Vo
P

[(ri—r?+(ra—r3) 2+ (ry =132+ (ra =171,

4.5)

which confines all the particles. The parameter p is intro-
duced in order to change the strength of the HC confine-
ment. If p is greater than 2, then the confining force per
particle is weaker than that in a color-singlet meson. We
therefore expect that for a large p the energies of HC
states become lower and the explicit introduction of the
HC state is necessary to avoid the slow convergence of the
truncation in the two-meson states. If p is less than 2, HC
states are pushed up by the confining potential. Because
changing p is entirely independent of the dynamics of the
single meson, we obtain many different models for g7 >
systems which have equivalent meson spectra.

We may determine the value of p by the long-distance
behavior of the confining force. The global color gauge
invariance relates the confining strength between two
color-octet objects to that in a color-singlet meson. In
fact, using matrix elements of F;-F;, where F; is a color
SU(3) generator, we obtain p= % However, we here con-
sider p as a free parameter with the following reason. The
global gauge invariance or the potential proportional to
F;*F; gives us a repulsive (anti)confinement in the color-
octet gg system, which is not realistic. Our model has an
attraction there and the energy for HC states is different
from the F;-F; potential model. In the present investiga-
tion, the energy difference between color-singlet cluster
states and HC states in the short-distance region is impor-
tant and therefore the value p=+ determined by the
long-range behavior may not be relevant.

The form of the potential (4.1) is not a unique extension

77. T T T T

T T T T T T3

L colored A-scattering
single channel

S (rad)

FIG. 1. The A-scattering phase shifts for the colored model
with several values of p obtained by the single-channel calcula-
tion. k denotes the relative momentum and b =(1/mw)"%
The inelastic threshold corresponds to kb =2, i.e., the threshold
energy Ey,=2%iw. There exists a bound state for p=4.0 (6.0),
the binding energy of which is 0.014%w (0.11%w).
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of the colorless model. One may also introduce the gg
and g g confining force for HC states, which is not con-
sidered here as is seen from Eq. (4.5). One such potential
is chosen in Ref. 8. They took a special choice for the gg
and § g confining potential which enables them to decou-
ple the x coordinate completely from the others. By this
special assumption, they could solve the meson-meson
scattering problem quasianalytically. The variable x is no
longer decoupled in our choice of the confining potential
(4.1).

Let us first consider the antisymmetrized ( 4) scattering
where the quarks are antisymmetrized in the color-orbital
space. Figure 1 shows the S-wave A-scattering phase
shifts in the single-channel calculation, which only takes
the ground-state Os meson into account. We take several
values of p as typical ones. It is at first surprising that
resonancelike structures are seen being highly dependent
on p even without the HC coupling. This behavior of the
phase shifts is consistent with that of the direct potential
VP(R) (Fig. 2), which depends strongly on p. Such p
dependence can be understood by knowing that in general
an antisymmetrized two-(color-singlet)-meson state is not
orthogonal to the HC cluster states. For instance, the
two-meson state with Os relative motion is also expressed
as a HC state, i.e.,

11, 1)@1(2,2)X(05)] « o [@g(1,1)pg(2,2)X(0s)] ,

(4.6)
T
_{
-
3 4
= 4
~
o +
: .
> -
-0.5 -
-1.0 —
[ IR NN N N
0 1 2 3 9

R/b

FIG. 2. The direct potential ¥2(R) between the two mesons
for the colored model (solid curves) and for the colorless one
(dashed curve). b=(1/mw)2
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where 7 stands for the antisymmetrization operator and
both the orbital parts of ¢, (color-singlet meson) and g
(color-octet gg) are taken as Os states. The energy of the
HC state is very sensitive to the parameter p. The two-
meson state, therefore, feels an attractive force in the in-
teraction region via the HC component of the wave func-
tion, if p is large. We will see in a moment that the lowest
bound state or resonance, the energy of which is highly
dependent on p, has a wave function very similar to Eq.
(4.6).

HC states with excited relative motion are independent
of the cluster state with two ground-state mesons. The
resonating-group-method (RGM) Eq. (2.8) is solved in-
cluding both the Os meson and the Os color-octet ¢g sys-
tems in the wave function (2.7). Figure 3 shows the A4-
scattering phase shifts for several choices of p. A lot of
sharp resonances are observed, which are considered to
come from the coupling of two-meson scattering states to
discrete levels of the HC confined channel, because they
have not been seen in the single-channel calculation. In
order to examine the structure of the resonances, we de-
fine color symmetry basis states by

la)=(3)"2|(1,1)(2,2)g) — ()72 (1,1)1(2,2)) ,
4.7)

|s)=(3)"2](1,1)8(2,2)g) + ()12 (1,1),(2,2);) .
4.8)

The color-antisymmetric state |a) belongs to a 3* repre-
sentation of the color SU(3) for the two quarks and there-

7 T T T T l T T T T '

6 colored A-scattering -
coupled with HC

S (rad)
T
l

kb

FIG. 3. The A-scattering phase shifts for the colored model
obtained by the coupled-channel calculation. A bound state
with the binding energy 0.21%w (0.49%w) exists for p=4.0 (6.0).

fore belongs to a 3 representation for the antiquarks. Or-
bital wave functions coupled to | a ) should be symmetric.
On the contrary, |s) belongs to the color-symmetric 6
representation and couples to the antisymmetric orbital
state. As a result, we expect the | a) coupling has lower
energy than |s) for the 4 scattering. The |s) coupling
has a Pauli-forbidden state, which causes the degeneracy
relation (4.6). Because the relative Os motion in |s) is
not allowed by the Pauli principle, one expects that the
lowest bound or resonance state will have a nodeless rela-
tive wave function in the | @) coupling. The explicit rela-
tive wave function confirms the above. The phase and the
ratio of the color-singlet and color-octet components are
found to be almost identical to Eq. (4.7). The HC com-
ponent is favored by the confining potential for the higher
excited resonances. There the color-symmetric |s) cou-
pling is mixed to | a) so as to suppress the color-singlet
component of the wave function in the internal region.
As a result, the coupling to the continuum state becomes
weak and the resonances become very sharp. The widths
of the resonances seem narrower for the higher reso-
nances, because HC wave functions with higher excited
relative motion have small overlap with two-meson
scattering wave functions.

The coupled-channel calculation is carried out includ-
ing the (1s), and (1s), excited two-meson states in order
to see whether a threshold resonance, which appears in the
symmetrized scattering problem in the colorless model,
exists. We found no new sharp resonance coming from
the coupling of the orbitally excited mesons for p=1 and
4 (Fig. 4)."> The resonances for p=4 observed before
remain at almost the same positions, although the reso-

T T T T | T T T T |
7— —
colored A- scdﬂering ]
6 4-channel coupling -
5—
4_
3._
3 ?r
= L
[Z0 BN
O T T
L 4
4 1
= U TR SRS S NN TN SR SR N
20 i 2
kb

FIG. 4. The A-scattering phase shifts obtained by the four-
channel coupling calculation. The inelastic threshold,
E, =2%w, corresponds to kb=2. The binding energy becomes
0.24%w (0.54%w) for p=4.0 (6.0).
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nance wave functions tell us that the (1s), excited state
mixes significantly for the second resonance. The reso-
nance structure for p=6 is affected near threshold. The
second and the third resonances are significantly shifted
due to the mixing of the orbitally excited states.

The role of the color-symmetric | s) and the antisym-
metric | a) states are interchanged for the symmetrized
(S) scattering. Figure 5 shows the S-wave scattering
phase shifts for the S scattering. One sees that the reso-
nances come out at almost the same energies as those for
the A scattering, while the resonance widths are much
larger. In this case the color-symmetric |s) coupling
corresponds to the symmetric orbital state and the lowest
bound or resonance state has a nodeless relative wave
function which belongs to |s). The higher resonances
belong mainly to |s) again and their widths, which show
the strength of the coupling of the HC discrete level with
two-meson continuum state, are larger than those for the
A scattering, as is expected from Egs. (4.7) and (4.8). It,
however, gives threshold resonances for p=4 and 6. The
resonance wave function contains a large portion of the
x-excited channel. The effect of the couplings to the orbi-
tally excited states is again small for the lower energies.

We have employed only the Os color-octet qg state so
far. A question may arise whether this is a good approxi-
mation.® We have to check whether HC low-lying states
are well approximated by the wave function (2.16). For
that purpose the size parameter bg for the colored g7 sys-
tem is changed from that for the meson, b =( 1/mo)”2
We seek the optimum value of bg for each value of p by
searching for the minimum of the lowest HC state (2.16).
(We get a discrete spectrum in this space because HC

———2-channel coupling
—— 4-channel coupling

v
| colored S-scattering ' 1
!
]
I

S (rad)

FIG. 5. The S-scattering phase shifts for the colored model.
The dashed curves show the results obtained by the two-channel
(ground-state and HC) coupling calculation and the solid ones
by the full four-channel coupling calculation. The binding ener-
gy of the bound state for p=4.0 (6.0) is 0. 127w (0.30%w).
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states are always confined.) The calculated A-scattering
phase shifts for the optimal value of bg shows us that the
qualitative features are not affected for a small p, al-
though the position of the resonances, which almost coin-
cide with the eigenenergies stated above, are slightly shift-
ed to lower energies. For p=4, we find a new resonance
(at k =1.90/b) besides the shifts of the resonances ob-
served before. The resonance wave function belongs
mainly to the color-symmetric |a) coupling. The width
is a little larger than the widths for the color-
antisymmetric resonances, because the color-symmetric
coupling (4.8) contains more color-singlet components.
We conclude that the present truncation of the gg states
in the RGM wave function (2.7) is appropriate at low en-
ergies.

V. REALISTIC MODEL

In the previous section, we see that the colored model
shows us various features of the meson-meson interaction.
The bound and resonance states, which appear for large
values of the parameter p, are new. They are dominated
by a cluster state with two color-octet gg systems and thus
seem like hidden-color (HC) bound states. The resonances
are very sharp due to weak coupling to continuum states
of two color-singlet mesons. It is very interesting to in-
vestigate such hidden-color dominated resonances in a
more realistic model. We wish to stress again the role of
the parameter p. There is no way to determine p in a
phenomenological analysis of the single-meson system, be-
cause the gg Hamiltonian is independent of p. Instead, p
determines the confinement strength for the HC state and
thus the extent of the HC coupling in the two-meson or
q°g? system. Only two-meson phenomenology may dis-
tinguish different values of p. We will estimate the
reasonable range of p by comparing the results of the cal-
culation with present candidates for ¢2g ? resonances.

Now we introduce spin and flavor and construct a real-
istic model for the light-quark (u, d, and s) systems. We

- also introduce a short-range interaction between the

quarks and antiquarks. Much work has been done on the
low-lying meson and baryon spectra in the potential quark
model."> Here the potential consists of a confining force
and a spin-dependent short-range interaction. A well
known form of the latter is the one-gluon-exchange poten-
tial,2 which does a good job on the fine structure of the
spectrum. In particular, the color-magnetic interaction,
ie.,

E (K;'kj)(ai-aj)f(rij) 5

is important in explaining detail structures of the spec-
trum and the decay properties. Here we wish to use a
more general form of the short-range interaction,

VSR = 2 (A,KJ)[foeXp( —afrijz)
i<j

—golo;0))exp(—agr;®)]1,  (5.1)

for simplicity. We will call the first (second) term the
color-electric (color-magnetic) interaction. The color-
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magnetic term breaks SU(6) symmetry and therefore
causes the splitting of the pseudoscalar and vector
mesons. The four parameters fo, g, @y, and o, are
chosen so as to fit the meson spectrum. /

We employ the nonrelativistic kinetic energy (3.2) with
effective quark mass m,. We stress here that the nonrela-
tivistic quark Hamiltonian is an effective one which ex-
plains the observed meson spectrum. The kinetic-energy
term cannot be investigated separately from the interac-
tion and is not taken to be an approximation of a relativis-
tic one. The remarkable success of the nonrelativistic po-
tential model in explaining low-energy hadron properties
suggests the effectiveness of the Hamiltonian. An advan-

"tage of the model is that the symmetry structure of the
hadron is shown very clearly. In multihadron problems,
the role of the internal symmetry of the system is very im-

|

2 172
st [} 2]

(Sﬂ Vo

+3

_% {fo(1+2afb2)—2/3+

where p is the reduced mass. A constant C is introduced
to fit the absolute value of the meson mass. Note that the
constant shift does not affect meson-meson dynamics.
The size parameter b is taken so as to minimize the mass
(5.2) for each meson.!” The parameters are fixed to fitting
the experimental values of the masses of p(w), K, K*, and
¢ with the assumption of m, ;=300 MeV and m ;=500
MeV. Table I gives a parameter set and the masses and
the root-mean-square (rms) radii of the low-lying mesons.
Values fitted to the experimental ones are indicated by as-
terisks. Note that we do not fit the pion mass because it
is too light to be regarded as a nonrelativistic bound state.
We assume that g, is independent of the quark mass and
find that the color-electric term can be set to zero, i.e.,
So=0.
The conventional two-body confining potential, i.e.,

— %Uo 2 ()\’t.)\’j )r,~j2 y

i<j

(5.3)

Viwo=

is also considered instead of (4.1) in order to compare with
the string-flip model. Equation (5.3) is totally equivalent
to (4.1) for the color-singlet meson (¢g) spectrum.

Let us consider the two-meson system composed of the
light (u, d, and s) quarks (and antiquarks). We have a
pseudoscalar [, no=(uii +dd)/V2, K, K, and 7,=s5]
and a vector (w, p, K*, K*, and ¢) nonet for the ground
states. Since the Hamiltonian is independent of the iso-
spin, 7 and 7, (p and w) are degenerate. The two-quark
(g?) states are classified by their flavor symmetry (Table
II: we use the notation 4 for the g? state with the 3*
representation of the flavor SU(3) and B with 6. 4 (B)
can couple with the symmetric (antisymmetric) color-
spin-orbital wave function. In general, the orbital sym-
metric states, Ag,, A5, By, and By, are dynamically

g0(1+2agb2)-2/3J ,
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portant and therefore the investigation by the use of the
nonrelativistic model is preferable. There is another ad-
vantage of the nonrelativistic model: The center-of-mass
coordinate of the hadron is separated exactly from the
internal coordinates, which is again important in studying
hadron-hadron problems.

The internal wave function of the ground-state meson is
approximated by that of a harmonic oscillator Os state
with the size parameter b, i.e.,

ol rqq)=./Vex.p( —rq72/4b2) .

We obtain the masses of the pseudoscalar ( P) and the vec-
tor mesons ( V) for the Hamiltonian, which consists of the
kinetic energy (3.2), the colored confining potential (4.1)
and Vg (5.1), as

1
_**),—/ZLT—G—(S/,LVO)VszJ

(5.2)

favored, while the antisymmetric ones will produce a
Pauli-forbidden state in the ¢%7 2 system. By the use of
the notation A4 and B, the ¢%§ 2 systems are classified as
in Table III. The nonstrange sector of BB contains
1=0,1,2 states, which are again degenerate. Combina-
tions marked with asterisks are made from the symmetric
orbital states. It is also noted that the combinations of
different orbital symmetry, parenthesized in Table III, are

TABLE 1. The parameters of the realistic model and the
masses (in MeV) and the root-mean-square (rms) radii (in fm) of
the low-lying mesons. Values fitted to experiment are indicated
by asterisks.

myqa (MeV) 300
mg (MeV) 500
Vo (MeV/fm?) - 488
fo (MeV) 0
ay~'% (fm)
8o (MeV) 120
a, "2 (fm) 3.95
fiw,q (MeV) 503
fiw, (MeV) 390
7 (19) mass 430
rms radius 0.35
p (0) mass 769*
rms radius 0.47
K mass 496*
rms radius 0.32
K* mass 897*
rms radius 0.45
Ns mass 520
rms radius 0.27
é mass 1018*
rms radius 0.42
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TABLE II. The classification of g? system. A’s couple to
the symmetric [2] spin-color-orbit state, while B’s to the an-
tisymmetric [11] one.

Flavor Color Spin Orbital
Agg 3*[11] 3*[11] 0 [2]
A, 3*[11] o311 1 [11]
Aos 3*[11] 6[2] 0 [11]
A 3*[11] 6[2] 1 [2]
By, 6[2] 3*[11] 0 [11]
By, 6[2] 3*[11] 1 [2]
By, 6[2] 6[2] 0 [2]
B 6[2] 6[2] 1 [11]

not relevant for the S-wave cluster state with two
ground-state mesons.

Table IV shows the classification of nonstrange two-
meson states in terms of the symmetry basis given in
Table III. It should be noted here that the states A4, BB,
and [AB,BA]. become the eigenchannels of the Hamil-
tonian instead of the physical two-meson states. The uni-
tary transform between the two is given by

5+ V3n
V32 —+

MyM,
MM,

AA

= 5.
BB (5.4)

for I1°=07%, for instance, where M; stands for a meson
with isospin I. The eigenchannel A4 (BB) couples to the
symmetric(antisymmetric) color-spin-orbital states.

In order to compare results of the calculation with ex-
perimental data, we have to notice several limitations of
the present model. First of all, neither the annihilation
nor the creation of the quark-antiquark pair is taken into
account. As a result, the ground-state vector meson, V(p,
o, etc.), becomes a stable particle. The g%§ 2 resonances
may only decay into two-meson states and thus the other
decay modes are neglected. We also neglect the two-
meson interaction coming via an annihilation process. In
fact, it dominates in some particular channels, such as P-
wave 77 with I =1, where the annihilation process is ap-
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parently important due to the existence of the p resonance.
Introduction of the gg annihilation and production pro-
cesses would be necessary to make a more realistic model
and to treat two-meson channels dominated by single-
meson resonances. We also have to note that the pion
cannot be treated realistically, as was stated above. One
therefore should not consider the 77 interaction seriously
in this model, although most of the experimental data for
two mesons is for 7.

Here we mainly study the following two cases: (1) S-
wave spin-2 (L =0, § =2, JP=27) states of two non-
strange vector mesons both in the 44 and BB flavor sym-
metry, and (2) S-wave spin-0 (L =0, S =0, JP=0"1) K-K
states. The former, (VV)s_, scattering problem, is
chosen because bound states and resonances, if any, may
be observed experimentally. Due to the Okubo-Zweig-
Tizuka (OZI) rule, the 2% ¢27 2 states decay only into two
vector mesons in zeroth order.!®!® The resonances near
threshold are expected to be observed in the yy—pp ex-
periment, for instance. The symmetry structure of the
system is as simple as that of the colored model because
all the spins of the quarks and antiquarks are aligned and
each eigenchannel, A4 or BB, has a definite isospin sym-
metry. It is expected that the coupling of the HC chan-
nel, (VgVg)s~y, will have a significant influence for a
large p. The resonating-group method (RGM) calculation
is carried out for the S-wave (VV)g_, scattering. Three
different confining potentials are tested: (T) two-body
confinement, (S1) string flip with p=1.0, and (S6) string
flip with p=6.0 as an extreme case.

Figure 6 shows the S-wave scattering phase shifts for
the BB scattering, which corresponds to the antisym-
metrized scattering in the previous colored model. We
summarize the results as follows. (1) A strong repulsion
is indicated between two mesons for the model (S1). The
phase shift is very similar to that for the colored model.
The HC channel, (Vg¥V3)g_,, couples weakly and no reso-
nance structure is seen up to 1 GeV. (2) A bound state
with binding energy 374 MeV is predicted for the model
(S6). The phase- shift shows several sharp resonances.
‘The structures of the bound and resonance states are again
very similar to those for the colored model. The color-

TABLE III. The classification of the S-wave ¢2g 2 system. Combinations marked with asterisks are

made from the symmetric orbital states.

Flavor Spin

A4 9 0 Aog Ao, A1aA 10, AosAos, A1 A1
1 <AOa_A la )y(AiaAOa ):A laA lﬂ’(AOSZlS)’(A ISZOS )’A ]szls*
2 A1g A1, A1 A"

BE 36 0 -BOa-E_Oa,BIaﬁla*,BOsEOs*yBls‘Fls
1 (-BOa_B la )7 (BIEBOa )’BlaE Ia*,(B()sB 1s ), (B]sﬁ()s )’Blsﬁ 1s
2 BlaBla*,BlsBls

AE 18 0 (AOa_EOa)’(Al'a_’Ela))(‘4*0.!?0:)7(‘41SFU)_ _
1 AOaB_la*;A IaBBa:(A laBla )» AOsBlsyA lsBOS*)(A lsBls>
2 (A14B14),(AByy)
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TABLE IV. The relations of the two-meson states to the
symmetry classification of the the ¢%g ? system.

I¢ N Two-meson states

A4 o+ 0 PP, VV
o+ 2 | 44
ot 1 | 44
(O 1 PV

BB (0,1,2)* 0 PP, VV
(0,1,2)* 2 | 44
(0,2)* 1 | 44
(0,2)~ 1 PV

1t 1 VV,PV

1~ 1 VV,PV

[4B,B41, 1+ 1 VV,PV

Vv,PvV

[4B,BA]_ 1- 1

antisymmetric component, i.e., B,B;,, dominates as is
expected from the results for the A4 scattering in the
colored model. The bound-state wave function shown in
Fig. 7 clearly shows that the HC component dominates
especially at R >1 fm and thus the bound state is not a
two-mesonlike bound state, as a deuteron for the two-
nucleon system, but really a ¢%G? state. (3) The phase
shift for the model (T) suggests a weak repulsion and the

L BB 2* ]

S (rad)

FIG. 6. BB scattering phase shifts for 2+ (§ =2, L =0).
The solid (dashed) curves correspond to the calculation with
(without) HC channel coupling. For the model (T), the dashed
curve is almost identical to the solid one.

existence of a resonancelike state at around E =300 MeV.
The coupling with the HC channel is negligible for the
phase shift, although the wave function at E =300 MeV
has a considerable HC component in the inner region.
Here we should note that the truncation of the sum in Eq.
(2.7) to ground-state mesons effectively eliminates the
color van der Waals force in the present RGM calcula-
tion. It is expected that the van der Waals force could
modify the present results especially at low energies.

The AA scattering of two vector mesons with S =2
shows very similar features (Fig. 8). For the models (S1)
and (T), the two-meson interaction is more attractive than
that for the BB channel. This is because the color-
symmetric state, |s) defined by Eq. (4.8), which is
favored in the A4 system, has less color-octet component
than the color-antisymmetric one, |a) by Eq. (4.7),
favored in BB. Because the color-octet component feels
strong repulsion for the models (S1) and (T), the 44 sys-
tem gets more attraction than BB. The situation is re-
versed for the model (S6), where the interaction for AA is
less attractive than for BB. In fact, the binding energy in
AA, 262 MeV, is much less than that in BB.  The widths
of the resonances seen for the model (S6) are larger than
those for BB, which is again expected by the difference of
the color-singlet component between the color-symmetric
(4.8) and antisymmetric (4.7) states.

Thus we have obtained several bound and sharp reso-
nance states for large p, which is expected from the results

for the colored model. Those bound and resonance states

R x (Rr)

BB 2+
S6
EB=374 MeV

R (fm)

FIG. 7. The relative wave functions of the bound state with
the binding energy 374 MeV for the model (S6).
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FIG. 8. 2% AA-scattering phase shifts. See the caption of
Fig. 6.

are dominated by HC states, which couple weakly with
the two-meson cluster state. The resonances are very
sharp (I’ <20 MeV) because the coupling is very weak.
The energies of the bound and resonance states are quite
sensitive to the value of the parameter p, because the con-
tribution of the confining potential to the energy of the
HC state is proportional to 1/V/p. Figure 9 shows the p
dependence of the energies of the lowest and second
bound or resonance states for the 44 and BB channel.
One sees that the energies go up very sharply and the
bound state disappears when p decreases for BB, while the
p dependence is moderate for 44. As is mentioned above,
the eigenchannels with a definite flavor symmetry, A4
and BB, are given by the linear combinations (5.4) of the
physical two-meson systems, pp and ww, for I =0, while
the (pp); —; belongs to the BB channel. (Note that the A4
channel has the I =0 state only.) The bound and reso-
nance states obtained above may be interpreted in the
physical systems as follows. Deeply bound states (binding
energy > 300 MeV) cannot decay into two vector mesons,
VV, and also are hindered to decay into two pseudoscalar
mesons, PP, due to the OZI rule. Such states therefore
may appear as resonance states with their widths compar-
able to p meson in the meson table. So far there are no
candidates for such 2% mesons. The lowest 2+ meson is
f(1270) (I°=07%), which is believed to be a member of
the 3P, gg nonet.?® It is therefore unlikely that there exist
2% deeply bound states of two vector mesons. It gives a
condition, p < 5.

Shallow bound states, however, can decay into pp due
to the large width of the p meson, but not into ww. The
I=0 states in the BB channel couples mainly with
(pp); —o [see Eq. (5.4)] and have a degenerate partner with

MAKOTO OKA 31

I =2, which couples only with (pp);_,. On the other
hand, the I =0 states in the A4 channel couples mainly
with ww. One can expect that the 2+ BB states with
I=0 and I =2 come out as pp (4m) resonances around
threshold if p~2—4. The I =0 2% A4 state will also ap-
pear as an ww (67) bound or resonance state for p > 2.

Such g¢?g? states have been investigated as discrete
states in the MIT bag model by Jaffe!® and were adopted
to analyze recent experimental data,”! yy—pp and
J/Y—yVV. According to Ref. 21, three 2% resonances
at around E =100 MeV in the (44, I =0) and (BB, I =0
and 2) can reproduce the strong enhancement of
vy —p%p° observed. If p=2—3 with the parameter set (I),
we find that the resonance spectrum obtained here is simi-
lar to that for the MIT bag model. The resonance states
obtained here, however, have a much larger branching ra-
tio to the HC state than that for the MIT bag model,
where the branching ratio is determined only by kinemati-
cal recoupling coefficients. We have a dynamical
enhancement of the HC state for large p. The smallness
of the coupling with the ordinary two-meson states gives
the resonances very small widths.

The I =0 resonance states can be treated from two-
gluon states because of the large HC component. They
also mix the glueball state with J°=0% or 2% (S-wave
two-gluon bound states).?? Recent reports of the radiative
J /1 decays into two vector mesons (J /1)—y VV)? show
interesting structures around Vs =1.6 GeV. For
J /—vypp, 21 enhancement is seen besides the large 0~
contribution. It is also suggested®* that the 2+ state could
be different from another 2% state 6(1640) observed in
J/Y—ynm and J/¢Y—yKK. If it is true, we may expect
that the two 27 states in the same region are two orthogo-
nal linear combinations of the 2% glueball and the 7 =0
BB ¢%G? state.

Next we consider 0% KK scattering. Several people
have discussed the possibility that the resonance S*(975)
and 8(980) are KK bound states (or g2 2).'"®1%3 Here we
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FIG. 9. p-parameter dependence of the lowest and the second
bound or resonance energies. The solid (dashed) curves show
the energies of the BB ( AA4) 2+ states.
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wish to apply the present model to the KK system and ex-
amine the existence of bound and low-energy resonance
states. The KK system contains a strange quark and a
strange antiquark. Because the strange quark is heavier
than the u and d quarks, the kinetic energy term of the
Hamiltonian cannot be expressed by as simple a form as
Eq. (2.4), which makes the problem too complicated.
Here we simply take a system where all the particles have
the same mass,

mg=[(1/my 4+1/m;)/2]7'=375 MeV ,

in order to avoid the complexity mentioned above.?”> This
approximation does not affect the single-meson spectrum
obtained, because the interaction is taken independent of
the quark mass. The corresponding excitation energy of
the harmonic oscillator, #iw, is 450 MeV.

Several channels will couple with KK, such as 7¢7;,
K*K*,0¢ or pp. Again the flavor degeneracy tells us
that for each flavor-symmetry state, i.e., A4 or BB, chan-
nels of two pseudoscalar mesons (PP) and of two vector
mesons ( VV) are relevant. The unitary transformation be-
tween the physical channels and the flavor-symmetric
ones is given by

MOMSE
MM

1/V2 +1/V2
1/V2 F1/V2

AA

- (5.5
BB

—_—

where the upper (lower) sign gives the transformation for
I=0(1) and My, M;, M, and M stand for the meson
with no strange quark, with s, with 5, and with s5, respec-
tively. One can easily see that for the low-lying ¢’
states the AA flavor-symmetric state has lower energy
than the BB state due to the color-magnetic interaction.!'®
In fact, the 0T Ay, A4,, state feels strong color-magnetic
attraction and becomes the lowest g2 2 state. The K-K
interaction for the 44 symmetry is investigated to exam-
ine the lowest K-K bound or resonance state. Because we
expect the HC state to be important, we have a coupled-
channel problem with four channels PP, V'V, PgPg, and
VgVs.

Figure 10 shows the A4 scattering phase shifts for the
three models, (T), (S1), and (S6). One sees very similar
curves as for the 2% channel. The models (S6) and (T)
have bound states, whose binding energies are 67 MeV
and ~0 MeV, respectively. It is found from the bound-
state wave function that the VgVg channel couples most
strongly in the bound state of the model (S6), because the
color-magnetic interaction gives lower energy to VgVj
than the other excited channels, V'V and PgPg. For the
models (S1) and (T), the effect of the channel coupling is
small and no resonancelike structure is seen.

The quark mass m, and p dependence of the lowest
bound-state energy is illustrated in Fig. 11. One sees that
the p dependence is much weaker than for the 21 V¥V
state energies (Fig. 9). The mass dependence is almost
negligible especially for large p. One can conclude that
two KK bound states (I =0 and 1) with the binding ener-
gy of a few tens MeV are predicted for the string-flip
model with p>3. The M M system, i.e., Ty, or 7y7;,
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FIG. 10. KK O scattering phase shifts in the A4 flavor
symmetry. The solid (dashed) curves correspond to the calcula-
tion with (without) channel coupling with V'V, PgPg, and VgVy.

couples to the bound state as is known from Eq. (5.5),
while the decay into two nonstrange mesons, such as 7,
nom, and Mg, is suppressed due to the OZI rule. We
therefore expect the states to be clearly observed as sharp
meson resonances.

Weinstein and Isgur® investigated the two-meson sys-
tem in the two-body potential model of confinement.
They claimed that the KK system has a very shallow S-
wave bound state, which may be the $*(975) (I =0) and
5(980) (I =1). Our calculation for the model (T) seems
consistent with theirs. We wish to stress here that the
bound state obtained for the string-flip model has com-
pletely different features from those of the bound state ob-
tained for the model (T). The HC coupling is negligibly
weak for the two-body potential model, while the bound
state for a large p is dominated by the HC component.

-50 —
- ./0\5. p
- . 6 o
‘1/1 1 1
300 400 500
mq (MeV)

E (MeV)

FIG. 11. The quark-mass (m,) dependence of the lowest 0%
bound-state energy for several values of p.
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Another calculation with the two-body confining poten-
tial* showed that energies of HC discrete levels are much
higher than the V'V threshold. This is consistent with the
smallness of the HC component observed here for the
model (T). _

When we assume that the S$* (I =0) resonance is a KK
bound state with large HC component, the mixing with
the Ot glueball is to be considered. It was also suggest-
ed?%26 that the S* and 8 are mixed states of gg and ¢%7 >.
To answer the question, which component is most impor-
tant, we will need a more careful analysis of the experi-
mental data, which is not the purpose of this paper.

As a summary of the calculations in the realistic model,
we present several general features obtained here: (1) The
strong p dependence observed in the colored string-flip
model is preserved. For small p (p <2), the effect of the
HC coupling is negligible and generally the meson-meson
interaction is weakly repulsive. On the other hand, a
bound state and several sharp resonances appear for large
p (p>3), which are dominated by a HC confined com-
ponent. Resonance widths vary from several MeV to a
few hundred MeV. (2) The two-body potential model of
confinement shows quite different features from the
string-flip model for the meson-meson interaction. It usu-
ally gives a moderate attraction and the contribution of
HC states is very weak. The bound states obtained are
deuteronlike two-meson states, where HC plays no signifi-
cant role. It should be noted that the color van der Waals
force, which was avoided by neglecting the internal excita-
tions of the mesons, may change the above results sig-
nificantly.

VI. CONCLUSION

The two-meson system is the simplest multihadron sys-
tem, which provides us with a good place to test the po-
tential quark model. We have applied the string-flip
model of quark confinement to the two-meson or ¢%7°
system without any internal degrees of freedom (colorless
model), with color (colored model), and with color, spin,
and flavor (realistic model). We have a free parameter p,
which cannot be fixed by the single-meson spectrum,
when we take account of color. We observed a rich struc-
ture for a large value of p in two-meson spectrum. The
bound states and the sharp resonances are found to come
from the coupling with hidden-color confined states and
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therefore are a quite new kind of multiquark system never
seen before. In fact, we predict the I°=0% and 1~ KK
bound states with a binding energy of a few tens of MeV,
which might be assigned as S$*(975) and 6(980) reso-
nances. We also predict that the two-vector-meson system
with (§ =2, L =0) may have several bound or sharp
low-lying resonance states. The energies of the states are
strongly dependent on the parameter p. Clear observation
of such 27 states an fix the value of p. So far p~3—4 is
preferable if we assume that the 2% resonances around 1.6
GeV and S* and 8 come mainly from the coupling with
the ¢%g 2 hidden-color states.

The final comment is devoted to other possible choices
of the confining potential. The colored confining poten-
tial employed here is one of the simplest extensions of the
original string-flip model without color. The color projec-
tion operator is introduced to confine color-nonsinglet
states, while color-singlet subsystems can come out as free
particles. However, we may consider other prescriptions
to take the color into account. One of them is the intro-
duction of a gq or gg confining force for hidden-color
states, which requires an extra free parameter in the
colored confining potential. A particular choice of the
new parameter taken in Ref. 8 leads to a model where the
x coordinate decouples completely. We see that the re-
sults in Ref. 8 are qualitatively similar to ours in two-
meson systems.

When we apply the string-flip model to a multibaryon
system, we may consider possible form for the colored
confining potential, where the string potential acts only on
pure color-singlet three-quark systems. The model shows
quite different features in two-baryon systems?’ and is
also applicable to many-quark systems,?® where the model
with color projection operators is hard to apply.
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