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Long- and short-distance contributions to kaon decays
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We work out in d'etail both the long- and short-distance graphs for K~~~, K~„, K, , and K ~
decays. The long-distance amplitudes, which we find to dominate, are related to the AI= 2

enhancement in K2„and K3 decays. The short-distance diagrams contribute typically about 20%.
MS code no. DL2318 1985 PACS numbers: 13.25. + m, 12.30.—s, 13.40.Hq

I. INTRODUCTION

During the past decade we have witnessed increasing
enthusiasm for short-distance quark-model calculations of
kaon weak decay processes, ' perhaps at the expense of the
long-distance hadronic pole graphs. ' However, we now
have a better understanding of (i) a possible bI = —,

'
K2

long-distance scale [derivable in the quark model using
the Cabibbo-GIM (Glashow-Iliopoulos-Maiani ) left-
handed quark current], (ii) the g-q' mixing angle (driven
by the quark-annihilation diagram ) which enters into
many long-distance g and r) weak transitions, (iii) the
Kobayashi-Maskawa (KM) weak mixing parameters (due
to the recent measurement of the B meson life-time )

which enter into all the short distance weak transitions,
and (iv) short-distance estimates for heavy quark
loo s

In this paper we survey in a model-independent manner
the following kaon decays and their relation to AI= —,

enhancement: K~m~, KL ~yy, KL, ~pp, K~3m,
K—+m ee, K~a ~y (abbreviated by K2, . . .). We find
that the b,I= —, long-distance scale of (rr

~
H„~ K ), which

accounts for almost all of Kz, K, , and K„r (except for
—5% spectator graphs), also contributes to —120% of
the KLrr, KL„„, and K,, amplitudes. We furthermore
show that the short-distance KL&& and KL„„- boxes and
s~dy transition in K,—, are all about 20% of the ob-
served amplitude magnitudes. Since the relative signs be-
tween the long- and short-distance KL&& and K,, ampli-
tudes can be demonstrated as negative, we suggest that
there now exists one universal picture of AI = —,

' enhance-
- ment which correctly predicts almost all kaon decays.

The Kz, „and K amplitudes are unique in that they
receive only short-distance contributions. In a related
work, ' we shall extend this long- and short-distance
analysis to the KL -K~ mass difference.

First, in Sec. II we briefly review the EI= —, enhance-
ment of K2 decays, stressing that any PCAC (partial
conservation of axial-vector current) model properly ac-
counting for the momentum variation of the matrix ele-
ment consistently sets the scale for ( rr [ H„~ K ) . The
long-distance K3 K and ~ pole graphs also lead to the
same magnitude of (m.

~
H

~

K). Then in Sec. III we in-
vestigate in detail the other two-body decays, KL&z and

Kz -, whose rates are likewise determined by the AI = —,
'

scale (m ~H ~K). Recent quark-model analyses of the
g, g' mixing mechanism ' have reinforced our approxi-
mate belief in the quadratic mass formula, leading to an
almost exact cancellation between the long-distance g and
g' pole contributions to the KL&& and K~„„amplitudes,
leaving the ~ pole to control both decays. The associated
short-distance box graphs as calculated by Refs. 10 and 13
in these two cases are both of order 20%%uo. For KLrr, the
relative sign between the long- and short-distance ampli-
tudes is then shown to be negative, leading to good agree-
ment between theory and experiment. The observed error
on the g —decay rate blurs the conclusion on the K&-
analysis at the 25% level, but still theory and experiment
are in rough agreement.

Next in Sec. IV we examine the three-body kaon decays.
The four AI = —, K3„decays are linked to K2 via current
algebra and PCAC' and therefore again to the same
long-distance scale of (m

~

H
~

K). The long-distance
K+,, amplitude is also scaled to (m

~

H
~
K) by inner-

bremsstrahlung diagrams and, although ambiguous up to
a factor of 2 due to the uncertainty regarding the differ-
ence of K+ and m+ charge radii, it is significantly larger
than the short-distance s~dy contribution. The latter
we calculate, following Refs. 10, 11, and 15, to be roughly
20% of the observed K,, amplitude. Again we show
that the relative sign between these contributions is nega-
tive, making the net theoretical amplitude roughly com-
patible with experiment. Lastly, we briefly look at K
decay and appeal to the results of Ref. 16, where it is
shown that the inner-bremsstrahlung graphs approximate-
ly match the observed K~~m+m y and K+~n+m y
branching ratios. We argue that the former is scaled to
Ks —+m. +7r and therefore to the bI = —,'-dominated long-
distance scale of (rr

~

H
~

K ). Finally, in Sec. V, we sum-
marize these results, stressing that al/ kaon weak decays
(except Ktz and K~+) stem from the same bI= —,

' scale of
(~/H /K).

, 3 PCAC SCALE

We remind the reader that PCAC applied naively to a
soft ~ in K2 0 decay or a ~+ or ~ in K + decay2' 7r+n
leads to different (unphysical) b,I= —,

'
amplitudes even

though isospin symmetry dictates that
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FIG. 2. Long-distance kaon (a) and pion (b) pole graphs for
K~3m decay.

FIG. 1. Lorig-distance K2 kaon tadpole diagram.

for H~ transforming like bI = —,. The problem is in the
strong Em momentum variation of the model E2 "tad-
pole" amplitude Mp of Fig. 1 (see, e.g. , Ref. 3). Account-
ing for the rapid momentum variation of the
Weinberg' Em amplitude while conserving momentum '

ln

M =M„+Mp Mp(p —0),
or alternatively reformulating the entire problem in terms
of a nonlinear chiral U(3) XU(3) invariant Lagrangian, '

one is always led to the same PCAC on-shell relation:

1&~~IH IKs&
I

=

where SD stands for short distance (or structure depen-
dent in hadron language). The long-distance (LD) ampli-
tude corresponds to the hadronic m, g, and q' poles of
Fig. 3, which give

( 'IH. IK, ) (qlH. IK, )
&err 2 2 ~rr + 2 2 errPly —Pl ~ Ply —Vl~

(q'IH IK, )+, , M„.rr, (5)

Eflux

—Pl ~~

where the weak transitions are of the dominant AI= —,

tadpole form as given by (2). Note that the first n. pole
term in (5), of magnitude

I
(n. IH IKI )

I
=3.9X10 GeV (2)

For K3~ decays, however, the PCAC rapidly varying
K~ and mn pole structure of the K plus m pole graphs of
Fig. 2 directly gives the pure K3 pole model on-shell re-
lation between M = —,

' amplitudes:

where f =93 MeV. The right-hand side of (1) is twice
the inconsistent naive PCAC result as found in Refs. 2.
Given the validity of (1), the observed' K2~ bI= —,

' rate
requires the scale

M 0
expt

1/2
3

r.„
=(1.26+0. 10)X 10-' .

I
(m IH IKL )

I (mx —m ) '=1.69X10

is already close to the experimental value'

(6)

f

(3mo
I
H„

I
Kl )

I =, I
(~

I

H
I
KL, )

I
(3a)

I
(~

I

H IKI ) I
=4.3X10 GeV (3b)

Since (2) and (3b) are practically identical and well within
the expected PCAC errors and slight hI = —,

' contamina-
tion of (3), we shall henceforth assume the scale (2) when
considering other kaon decays in this study.

III. KL, ~yy and KI.~p+p DECAYS

We now investigate in detail both long- and short-
distance contributions to the El rr decay amplitude,
which we write as

LD SD
MELrr ™&&rr+M&zrr

for f —93 MeV, where Figs. 2(a) and 2(b) each contribute
equally to (3a). Equation (3a) also follows in the
nonlinear-chiral-Lagrangian scheme, ' and again (3a) is
twice what one obtains in the naive soft-pion approach of
Ref. 2. Fitting (3a) to the observed' K3 rates with

f
(3' III IKI ) I

=2.5X10

one finds

I g& =c»4'
I gNs& s'"0

I gs&, —
In'& =»n0

I UNs&+cosd
I gs&

(7a)

(7b)

with the mixing angle found from
2 2 2 2(mv —ms )(m„—m )

tan p=,$-42.0 (g)
(mv —m~ )(ms —m„2)

for ms ——2m' —m . Then substituting (8) into (7) we
obtain

I
7T ) g$7j

FIG. 3. Long-distance m, g, q' meson pole graphs for
KL, ~yy decay.

To account for the g and ri'. contributions in (5), it is
most transparent to carry out the mixing relative to the
I =0 nonstrange-strange quark basis, where the effect of
gluon exchanges generates the rediagonalization,
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= —,
' (5 cosP —V 2 sing) =0.923,

yy
(9a) I MK, yy/M yy I

=(1.79—0.39)X10

=1.40~10—", (13)
I = —,(5 sing+ V 2 cosp) = 1.466, (9b)

and for &P'
I
H~

I
P~) transforming like d' J in the U(3)

quark model,

&qIH. fry, ) = —(cosP —V2 sing) =0.203,
&~'IH Irc, )

&g'IH„IZ, ) = —(sing+ V 2 cosp ) = —1.720 .
&~'IH fz, &

(10a)

(10b)

We spell out this mixing analysis in detail in order to em-
phasize the nearly complete cancellation of the yl and ll'
pole contributions in (5), leading to

M yy

[1-0.804+0.864]
mz —m~

=1.79)& 10

(12)

Combining (12) with the m yy anomaly a/re~ leads to
only a 20% correction to (11). The relative sign between
Figs. 3 and 4 is negative because, while the relative sign is
Positive between MK yy and M yy in (5) for

&m
I H~ I KL, ) positive as determined in Ref. 4, and

likewise for MKsD as found in Ref. 13, the KM-matrix

convention for s 1 in Ref. 13 (and in Ref. 21) is opposite to
that of the GIM current as used in Ref. 4. Thus we sub-
tract (12) from (11) to obtain the total KJ yy amplitude rel-
ative to m0yy,

If we had ignored the ll' pole term, then the magnitude of
(11) would drop by a factor of 5. However, the above
quark-based mixing picture is further supported by the
@CD calculation of the U(1) anomaly and /=42' corre-
sponds to 9=p —tan ' v 2——12.7, relative to the
singlet-octet basis which is close to the conventional
quadratic-mass-formula value of 9=—11'. Thus we shall
accept (11) as an accurate estimate of the long-distance
hadronic component of the KL, yy amplitude.

In order to include the short-distance "box" graph of
Fig. 4, we follow Ma and Pramudita' who estimate that
the u-quark graph in Fig. 4 dominates over the e- and t-
quark contributions in the KM matrix, ' ' giving

V2
I
MK yy I SD ~fKGF~1cl c3 ~

L 7T

very close indeed to the observed ratio (6). In passing, we
note that the quark-model choice for the yI-yl' mixing an-
gle (/ =42.0 or 8= —12.7 ) uniquely leads to (13). If we
instead had taken the quadratic mass formula version
(8= —10.7', /=44. 0), then the long-distance amplitude
(11) decreases by -20%, thus spoiling the role of the
short-distance amplitude in (13).

Next we turn to Ez„„-decay, treating the long-distance
hadronic n. , g, and g', poles of Fig. 5 in a manner similar
to Kl yy decay. The analog of (5) is then (since the weak
transitions can be taken as real),

LDReMg ~p
——

&~'IH. ISC, }
ReM pp

Vl~ —m~

&q IH. Ix, )+ 2 2 ReM~PP
P?lg —P? ~

& yI'
I
H

I
KL )+ 2 2 Rejig pp

'fnlr,. —7?1 ~~

(14)

Just as in the El yy case, where we set the off-shell scale
to the measured ~oyy rate and fixed the nyy, nyy amplitude
by SU(3) and mixing, so here we fix the measured yI —rate

0 P.IT
and determine the off-shell m -, ll amplitudes via thePIT' PP
same mixing procedure. Once again the q and q' pole
contributions almost cancel for / =42', leading to the am-
plitude ratio determined from (14),

LDReMg pp =(1.83—1.59+1.71))&10
'9PP

=1.95' 10—' . (15)

I MK pp I
=[4m l'/P]'~ =(2.5+0.3) &&10 (16a)

um& 1 1+PK
IImMK ~p I

= "
f
MK yy f

ln
4 '" PK 1 PK—

=2.0~10—", (16b)

To compare (15) with experiment, we must fold in the
observed KL„„and q„„- decay rates with the absorptive
parts of the 2y intermediate states. In particular, one
finds

FICx. 4. Short-distance quark box diagram for EL~yy de-
cay.

FIG. 5. Long-distance m, q, q' meson pole graphs for
&z.~pP decay.
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for

Px ——1 —4m„ /mx.

and then (16) implies

~
ReMz»

~

=(1.5+0.2) && 10

Similarly for g —decay, one obtains

ReMqpp i
( 1 0+0 2) && 10

Dividing one amplitude by the other, we deduce that

ReM~ pp =(1.6+0.4) X10
Re~gpp expt

(17)

It is also possible to employ a (quark) model to obtain esti-
mates of ReM&&&, but we shall refer only to experiment
here.

Finally, one must add the short-distance second-order
weak box graph of Fig. 6. Following the work of Inami
and Lim, ' Ref. 27 expresses the box-graph contribution
(here dominated by the t quark) as

"penguin" graph, ' although the latter scale appears to be
too small to be the origin of the AI= —,

' rule. Since we
wish to present this analysis in as model-independent a
fashion as possible, we shall avoid a long- or short-
distance interpretation of E2 decays but continue to call
(~

~

H
~
K) and the related meson-pole graphs like Figs.

2, 3, and 5 as "long-distance contributions. "

B. X„
The general form of this matrix element is

Mz, —,
——3 (px. +p )"u,y&v-, ,

where the observed E+~~+ee rate' requires'

~

A ~,„p,——(1.8+0.2) X10 mx.

(20)

(21)

The associated long-distance "inner-bremsstrahlung"
graphs of Fig. 7 correspond to the amplitude

, ~
( + ~H ~K+)

~

F (Q') —F +(Q')

m~ —fP1 ~

Mx pp
—sicis2 &&10 G(x, ), (18a) (22)

2
3

IV. THREE-BODY KAON DECAYS

A. E3

xg
G(x, )=- (18b)

4 x, —1

where x, =m, /mg . For s3-0, s2-0. 1, and m, &40
GeV, (18) is of the order of the error on (17). Thus we
conclude that the long-distance amplitude (14) and ratio
(15) for second-order photon exchange dominates KL„„
decay and the ratio (17) over the short-distance second-
order weak box graph. Alternatively, Ref. 27 examines
the branching ratio B(KI ~pP/yy) whose dominant
long-distance part is essentially independent of the scale
of (~~H~ ~K). The dominance of the LD over the SD
part again follows, including perhaps a small (LD) K*
pole component.

where Q =(px —p ) is the momentum transfer invariant
of the photon and the AI = —,

' structure of H requires

=—,'(0.48 fm —0.28 fm )

= (0.21+0.08)mx (23)

In (23) we have excluded the one observed low value for
r +, the remaining values averaging

The latter is the AI =
2 scale given by (2).

Unfortunately, the charge-radii difference in (22) is
somewhat ambiguous at the present time, with the
vector-dominance-model (VDM) value ' and the quark-
model value about one-third the observed difference of
charge radii

F' (0)—F' (0)=—,(r —r )

First we return to the long-distance pole-model graphs
of Figs. 2 and Eqs. (3). As is well understood, ' the direct
soft-pion limit vf the K3 /K2 ratio is

i Mx ~/M oi =(2f )

r + ——(0.48+0.01) fm

Combining (23) with (22) and (2), we find

l
~,D I

=(3.2+1.3,) X10—'mx-'. (24)

which also follows from (1) and (3). While this suggests
that Fig. 1 is likewise a long-distance Kz pole graph, it is
also possible to model Kq 0 according to a short-distance

Since (24) is twice the experimental value (21), whether we
adopt (24) or the smaller VDM —quark-model version, the

~ 0 ~ 0 OO ~ Jq

K+

FIG. 6. Short-distance second-order F-exchange box dia-
gram for El —+pIT decay.

FIG. 7. Long-distance pion (a) and kaon (b) pole inner-
bremsstrahlung graphs for E+~a+ee decay.
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long-distance contribution to K+,—, certainly cannot be
neglected.

As for the short-distance contribution, we follow Ref.
15 and consider only the s~dy quark transitions of Fig.

I

8 for K+~m. +ee decay. In order to account for the
heavy-quark loops in Figs. 8, we again apply the analysis
of Refs. 10 and 11, finding from the latter reference the
effective s~dy quark current (e & 0)

e
j„'sD———

2 ~ g Vg', VeF(x;) Q sy„d, x;=m; /m„, i,
i=uct

I

F(x)= 1

1 —x
23
108

1 x
18 1 —x

5 2 x 2 x
54 3 (1—x) 9 (1—x)

x+ 2+
1 x 2 x ,2 x

lnx +- lnx +— lnx
3 (1—x) 9 (1—x) 3 (1—x)

1 x 4 1 4 1 4 1 2 1
3

lnx —— lnx
2 (1—x)2 9, 1 —x9 (1—x)2 9 (1—x)3 3 (1—x)2 (25b)

In (25a) we have retained only the covariant which contri-
butes to the K+-m+ transition, i.e.,

(m. + (synod ~K+) =(px+p )„.
Combining Fig. 8 with the photon propagator and ee pair,
we obtain the form (20) with

I ~sD
~

= (0.714sicic2 c3)=0.36X10 mx
aG~ 2 —9 —2

217 2

(26)

for s3 «sz -0.1, practically independent of the top-
quark mass.

The relative sign between (22) and (26) is negatiue be-
cause the VVF sum in (25a) is negative, so the sign of the
(px+p )& coefficient in (25a) is positive. On the other
hand, the effective long-distance current can be expressed
as

jpiD (n ~H ~Kg)(Px+P )~

and (,n ~H ~KL ) is negative (given the analysis of Ref.
4) for the same KM matrix convention as in Ref. 21.
Thus the long- and short-distance contributions to E,—,

interface destructively to

(
A

i
=(2.8+1.3)X10 mx.

Given the possible reduction in the charge-radii difference
in (23) by up to a factor of 2 and the larger error on (27),
the agreement with observation (21) appears to be reason-
able. We might even say that the short-distance scale (26)
pins down the long-distance amplitude (24) and therefore
(27) to near the lower error,

~

A
~

—1.8X10 mz
which is then close to experiment.

Since both Lq~m. +m y and K+~m. +m y have now
been measured, ' we can form the decay rate ratio,

I
Ks ~+

I K+ ~+My expt

=930,

which displays the striking M= —,
' enhancement analo-

gous to

I
Ks ~+

K+ ~+~'
expt

=450 . (28b)

Although we do not include QCD corrections here, we
note that our short-distance estimate (26) is not incompa-
tible with Ref. 15, whose C7 coefficient lnm, /p should
be evaluated at p —1 GeV for nf ——3, where
AMs(3) =250 MeV (MS denotes modified minimal-
subtraction scheme) for a, (p )=0.5, corresponding to
AMs(5) = 130 MeV as is now found from QCD
phenomenology. Then one has

C7 (2/9m)lnm, ./p -0 06, .
which yields 20%%uo of the experimental scale, a,s does (26).
Note, however, that QCD corrections could invalidate our
arguments about the relative signs.

There are no long-distance contributions to either
Ks +ne+e —by . virtue of (m ~H~ ~Ks) =0 up to CP
violation, or to K+~m+vv since the Z mass is much
larger than the momentum transfer involved. These de-
cays are then pure short-distance processes. Note also
that KL, ~m e+e if. CP is conserved as long as a single
photon is exchanged. '

Alternatively we may examine the branching ratios

B(Ks~n.+n y/m'+m )exp), -0.0027,

B(K+~~+my/m+n ),„p,-0. 0013, .
(28c)

FIG. 8. Short-distance radiative s-d-quark diagram contri-
buting to K+~m+ee decay.

both of which are suppressed by the typical bremsstrah-
lung scale factor of a/m-0. 0023. These results argue
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convincingly for the dominance of the long-distance
hadronic-bremsstrahlung graphs and for the continuation
of the AI = —,

' rule via the amplitudes

s ~+~ & vs~+~ p k p~+

S.+ & S' + I

I + =0.002 55I (30)

Since (30) is so close to (28c), we may presume that (29a)
is essentially the entire Kz —+~++. y amplitude. We only
differ from Ref. 16 in interpreting (29a) as a long-distance
contribution driven directly by (n

f
H

f
K) in (1)—(3).

The factor-of-2 difference between (28a) and (28b) or in
(28c) could then be due to the kinematical variation in
(29a) and (29b), or to smaller s ~d y' contributions
(-20%%uo or less) as in K~tree or due to both effects.

We follow Ref. 16, which argues that the s ~d y
short-distance contribution is small and integrates over
(29a) for cov ~ 50 MeV to find [calling (29a) the IB contri-
bution)

U. SUMMARY

We have first shown that E2 and E3„decays self-
consistently require the same AI = —,

' scale of

f
&~'fH. fK, )

f

=3.9X10-' GeV',

which is one-half the value found in the original refer-
ences on this work based on the naive "chain rule" '

f(nn fH fK ) f=(2f ) 'f((n —1)n. fH fK )
f

This AI = —,
' scale then uniformly predicts dominant

long-distance contributions to the other observed kaon de-
cays: El&&, K~ —,&++
the short-distance quark contributions to the latter four
decays and find them typically -20% of the associated
long-distance contributions and of the opposite sign.

Note added in proof. While the theoretical estimate in
Ref. 4 of (0

f
H„

f
K ) is somewhat unclear, a more re-

cent treatment of (~
f
H„

f
KL ) for the s-d quark self-

energy graph with 8 exchange based on light-plane wave
functions obtains a AI= —,

' scale of —3.4&10 GeV,
consistent with the phenomenological findings of this
study [N. Fuchs and M. Scadron, University of Arizona
report, 1985 (unpublished)].
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