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Role of the equation of state in the hydrodynamical model
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The influence of the dependence on energy density (temperature) of the velocity of sound cp on the hy-

drodynamical expansion is considered for the first time. A numerical solution of the one-dimensional Lan-
dau model is given for this more general case. The result can be parametrized by an effective constant
velocity of sound which is very close to the initial value of cp. Using for this initial value the canonical

value 1/J3 corresponding to an unconfined quark-gluon plasma and taking into account in an analytic ap-

proximation the later three-dimensional expansion, the pseudorapidity distributions of secondaries in col-
lisions of pp at Js = 63 GeV and pp at Js = 540 GeV are found to be in good agreement with data.

The hydrodynamical model for multiparticle production
proposed by Landau' in 1953 has been applied successfully
to describe data on high-energy proton-proton and proton-
nucleus collisions, although some assumptions of the
model, especially those connected with the initial conditions,
are not yet completely understood. The expansion of the
initially created hot fluid is described by the equations of
relativistic hydrodynamics for pressure p, energy density ~,
and four-velocity u,

'r)„T&"=0 with T""=(a+ p) u"u" +pg""

together with the equation of state

p=c (E)E

In his original paper, ' Landau used the equation of state

p=
3

of an extremely relativistic gas of noninteracting particles,
i.e., a velocity of sound

with

i

R=ln

(ef is the energy density of a free pion), where n, P, y, 8 are
adjustable parameters. For specific calculations we use the
parameter values given in Table I, which satisfy our general
conditions for a reasonable equation of state. Set I
describes the results of Plumer et aI. , who calculated the
velocity of sound in a confined quark-gluon plasma, while II
and III are chosen so that they could exemplify the influ-
ence of the form of cc(e) on the solution of the problem.
Figure 1 shows c2 as a function of energy density for these
equations of state.

In Fig. 2 the evolution of the hydrodynamic system in a

pp collision with c.m. -system energy Ws is sketched. Im-
mediately after the collision shock waves propagate out-
wards, and when they meet the edges of the incoming pro-
ton all matter is at rest in the Lorentz-contracted and
shock-compressed volume

' 1/2

c= d
0 (3) '

cp 2m~ 4~
1+cia KJs 3m„3

c =n +pta hn(y e+)8 (4)

of Jl/3, and the model was soon generalized to arbitrary
constant velocity of sound which was considered a free
parameter. However, it is known that cp is not constant but
rather a function of the energy density e. Since e changes
during the hydrodynamical expansion, we are faced with a
nonlinear problem, and the question arises as to what is the
influence on the hydrodynamical expansion of the depen-
dence of cp on e. As a matter of fact, we know at present
that in the initial compressed system of quark-gluon plasma
cc—- 1/J3, while at the end of the expansion, when the sys-
tem hadronizes, one believes that ca —-1/J7 (Ref. 3). To
answer this question, it is sufficient to consider the one-
dimensional approximation. Since even the one-
dimensional hydrodynamic equations with variable velocity
of sound cannot be solved analytically, we use numerical
methods. For simplicity, we concentrate on pp collisions.

We parametrize the dependence of c on the energy densi-
ty in the form

TABLE 1. Parameters for variable velocity of sound in (4).

1
5

5
21

5
21

2
15

2
21

2
21

0,31

0.5

0.2

—1.35

—1.15

(m„ is the mass of the pion, and m~ is the mass of the pro-
ton), where we have assumed, as suggested by the
phenomenological analysis of Ref. 5, that the Lorentz factor
is determined by the energy KJs (K is the inelasticity) of
the hydrodynamic subsystem. (A justification of this modi-
fied Lorentz-contraction factor can be found in Ref. 6,
where it is argued that for a quantum-mechanical system, as
the quark-gluon system is supposed to be, the size is deter-
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c2 II
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variable velocity of sound we can still introduce X, but it is
no longer useful, since its equation cannot be solved analyt-
ically. For a numerical solution it is easier to solve the sys-
tem of first order (1) directly by the method of characteris-
tics. s

With the definitions

0.25- c 1 dc
1+c2 1+c2 dy

the differential equations of the characteristics C+ read

(8)

0.15
-1 0

I

5 logto{cjctj

r

GX

dt
sinhk cosh'(1 —2d +f ) + [(I —d ) (d +f) ]'

cosh X —d(sinh A+cosh k) —f sinh2X

FIG. 1. c2= P/a as a function of energy density for the parame-
ter values in Table I.

mined by the wavelength. ) The initial energy density is
given by

ZEs
E'p =

Vp
(6)

y=ln —,A, =tanh 'v

For constant velocity of sound this system can, in the NTR,
be reduced to a linear partial differential equation of second
order with constant coefficients for the potential X which
can be solved exactly by Laplace transformation. For a

~. NTR

Then these simple ~aves move inwards and between them
and the boundaries to the vacuum the simple wave regions
(SWR) develop. The simple waves meet at x=0, are re-
flected, and create the nontrivial region (NTR).

In the one-dimensional model, Eqs. (1) and (2) constitute
a quasilinear hyperbolic system of two partial differential
equations of first order for energy density e and velocity v
or logarithmic density y and longitudinal rapidity X:

The system (1) has the characteristic form

1+ C

dA. g Cp
(10)

(jx U +CO

1 +COB

together with (9) and (10). Starting the numerical solution
at the moment when the simple waves meet at x =0 (t = tt
in Fig. 2) and integrating numerically only in the NTR with
(11) as the boundary condition at the (characteristic) boun-
dary to the SWR, we avoid the above-mentioned problem.
Furthermore, we exploit the symmetry of the collision and
solve the equations only for x ~ 0 with the boundary condi-
tions

0, y=o9
()X

along the line x=0. We used a second-order algorithm.
The accuracy of the numerical solution can be determined
by comparing the result for the special case of a constant
velocity of sound with that of the exact solution. The rela-
tive error of x or t at any energy density and velocity is a
slowly growing function of t and does not exceed 10 at
breakup.

The distribution of particles in rapidity is determined at
breakup, and in order to calculate it from the numerical
solution we use the formula'

These equations have to be supplemented by initial and
boundary conditions. At first one is tempted to use t=0 in
Fig. 2 as the initial time and the boundaries to the vacuum
as boundaries. However, there we have

+oo, y~ —oo

and (1) is degenerate to a parabolic system. On the other
hand, by the usual method9 it is possible to obtain an exact
solution in the SWR even for variable velocity of sound.
This solution is given by

dV cosh' —sinhX.
9X . Bt

d A, ()A. QA.
(12)

FIG. 2. Evolution of the hydrodynamic system (dash-dotted line,
shock wave; dashed line, simple wave). I is the Lorentz-contracted
diameter of the proton 2rcrn~/KJs; rc and m~ are the radius and
mass of the proton.

In Fig. 3 we represent the rapidity distribution in the one-
dimensional model for constant and variable velocity of
sound at 63 and 540 GeV, The deviation of the curves for
variable c from those for cp = T is larger for the smaller
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FIG. 4. Pseudorapidity distributions at 540 GeV (upper curves)

and 63 GeV (lower curves). Data from Refs. 14 and 13; theoretical
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FIG. 3. Distribution in longitudinal rapidity for (a) 63 GeV and

(b) 540 GeV, for constant velocity of sound Jl/3, Jl/4, 41/5,
v 1/6, and for the equations of state I, II, III in Table I.

energy, but for the realistic equation of state I it is very
small at both energies. In other words, and this is the main
result of this investigation, the expansion with the variable
velocity of sound occurs as if only the initial value of co
would matter. This result could not been foreseen without
this numerical study since, although the expansion is most
violent at the beginning when co = T, the system spends
much more time in the regime with smaller velocity of
sound. The numerical results show that the first effect. is
more important.

In order to compare our result with the experimental
data, the transverse expansion and the statistical distribution
at breakup has to be taken into account. We did this along
the lines of Chadha et al. ," but correcting for the differ-
ence between rapidity and pseudorapidity, which was
neglected by these authors. Since details can be found else-
where, ' we show only the result. In Fig. 4, theoretical
pseudorapidity distributions at 63 and 540 GeV for the velo-
cities of sound 41/3 and 41/4 are compared with the exper-
imental data. ' '" For 540 GeV the data are well described
by the theoretical distribution with cq = T and the same
holds for 63 GeV if we take into account that the acceptance
of the detector decreased from 80% to 0 in the range
3 (!ri!( 4 and approximately 1.8 particles were therefore
lost in the forward and backward directions. The theoretical
distribution for co = ~ is clearly incompatible with the data,
and this is a fortiori so for even smaller values of co.

In conclusion, we find that the initial value of the velocity
of sound determines completely the course of the hydro-
dynamical expansion. The fact that the data strongly sug-
gest that this initial value is indeed 1/J3 as expected for an
unconfined quark-gluon plasma is a new confirmation of
quantum chromodynamics and of the hydrodynamical
model, and of their mutual compatibility. It is also amusing
to realize that Landau's initial guess of the equation of state
turns out to be correct, although for completely different
reasons than those assumed in 1953 when the existence of
constituents of hadrons was unknown. We leave it to the
reader to decide whether this is an accident or the result of
a prophetic stroke of genius.

Finally, we should compare our results with those of oth-
er authors who have also used the Landau model in order
to extract from the data a value for the velocity of sound,
which in the view of the preceding discussion can only be
considered an effective value. Since most of these compar-
isons gave values of about 1/J3 (Ref. 2), we concentrate on
two papers where other values were obtained. In Ref. 15,
different data were fitted with different velocities of sound
varying between 1/J2. 2 and 1/J6. While this is not incom-
patible with our result, the wide range of values obtained in
Ref. 15 should be commented on. The main reason for this
divergence of values is that the authors of Ref. 15 rely
heavily on the distribution in transverse momentum, which
is not very well known theoretically, and therefore the value
of co2 obtained by this method depends on the model for
the transverse expansion and is not very reliable. In Ref.
16, proton-nucleus collisions were considered in the one-
dimensional tube model and a comparison with experimen-
tal data yielded ca= I/v 7.5. However, it may well be that
the apparent discrepancy stems from the insufficiency of the
one-dimensional approximation. More importantly, the as-
sumption made in the conventional application of the Lan-
dau model to proton-nucleus collisions, that thc nuclear tar-
get can be assimilated to a tube of nuclear matter, in which
sound propagates with the same speed as in one nucleon,
might be too strong.



3l K. WEHRBERGER AND R. M. WEINER 225

tL. D. Landau, Izv. Akad. Nauk SSSR, Ser. Fiz. 17, 51 (1953).
2E. I. Daibog et al. , Fortschr. Phys. 27, 313 (1979); E. V. Shuryak,

Phys. Rep. 61, 71 (1980).
E. V. Shuryak, Yad. Fiz. 16, 395 (1973) [Sov. J. Nucl. Phys. 16,

220 (1973)].
4M. P'iQmer et al. , Phys. Lett. 139B, 198 (1984).
sP. Carruthers and Minh Duong-Van, Phys. Rev. D 28, 130 (1983).
R. M. %'einer, in Local Equilibrium in Strong Interaction Physics,

proceedings of the Workshop, Bad Honnef, Federal Republic of
Germany, 1984, edited by D. K. Scott and R. M. Weiner (World
Scientific, Singapore, in press).

71. M. Khalatnikov, Zh. Eksp. Teor. Fiz. 27, 529 (1954).
R. Courant and D. Hilbert, Methods of Mathematical Physics II (In-

terscience, New York, 1962).
~L. D. Landau and E. M. .Lifshitz, Course of Theoretical Physics 6

(Fluid Mechanics) (Pergamon, New York, 1959).
tsG. A. Milekhin, Zh. Eksp. Teor. Fiz. 35, 1185 (1959) [Sov. Phys.

IETP 8, 829 (1959)l.
ttS. Chadha et al. , Phys. Rev. D 10, 2817 (1974).

K. Wehrberger, in Local Equilibrium in Strong Interaction Physics
(Ref. 6).

t3W. Thome et al. , Nucl. Phys. B129, 365 (1977).
~~K. Alpgard et al. , Phys. Lett. 107B, 310 (1981).
tsB. Andersson et al. , Nucl. Phys. B112, 413 (1976).
t6N. Masuda and R. M. Weiner, Phys. Rev. D 18, 1542 (1978).


