PHYSICAL REVIEW D

VOLUME 31, NUMBER 8

15 APRIL 1985

Differential cross section of electron-positron bremsstrahlung

Eberhard Haug
Lehrstuhl fiir Theoretische Astrophysik, Universitdt Tiibingen,
Auf der Morgenstelle 12, D-7400 Tiibingen, Federal Republic of Germany
(Received 29 August 1984)

A formula is given for the doubly differential cross section of electron-positron bremsstrahlung
which is exact in lowest-order perturbation theory. Angular distributions and energy spectra of the
emitted photon are computed in the center-of-mass system and in the laboratory system. The results
are compared with available approximations and with the cross sections of electron-electron and

electron-proton bremsstrahlung.

I. INTRODUCTION

The calculation of the fully differential cross section for
the production of bremsstrahlung in collisions between
free electrons and positrons is a straightforward applica-
tion of quantum electrodynamics. However, even in
lowest-order perturbation theory eight Feynman diagrams
contribute to the matrix element, four of them represent-
ing scattering graphs and four representing virtual annihi-
lation graphs.! Therefore the evaluation of the traces is
very laborious and the resulting cross-section formula is
extremely lengthy. It is most simply derived from the
corresponding expression for electron-electron bremsstrah-
lung®? by means of the well-known substitution law.*

Stimulated by experiments with colliding electron-
positron beams of high energy, most calculations of the
angular distribution and spectrum of electron-positron
(e “e*) bremsstrahlung were performed at ultrarelativistic
energies’>~ 10 where only two of the eight Feynman dia-
grams give an appreciable contribution. Besides, it can be
shown that all the interference terms of the matrix ele-
ment can be neglected within the high-energy approxima-
tion. The resulting cross sections were given either in the
center-of-mass system or in the laboratory system, i.e., the
rest system of one of the incident particles.

Recent interest in the process of e “et bremsstrahlung
arose from the study of hot astrophysical plasmas which
are expected to exist in active galactic nuclei and in
gamma-ray bursters.!!=1* At semirelativistic tempera-
tures electron-positron pairs are created through photon-
photon, photon-particle, and particle-particle interac-
tions.!> For a full understanding of all the physical pro-
cesses occurring in hot astrophysical plasmas it is in-
dispensable to know the cross sections of the contributing
reactions in a wide energy range. So far, the lack of the
e ~e ™ bremsstrahlung spectrum has been most serious.!%

In the present paper a manageable formula for the cross
section of e “e* bremsstrahlung differential in photon en-
ergy and angles is given. It is obtained by integrating
analytically the fully differential cross section over the an-
gles of the outgoing positron, without any approxima-
tions. Since the formula is expressed as a function of in-
variant products, it can be specialized to any frame of
reference, e.g., the c.m. or the rest system of one of the in-
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coming particles. This property is essential for the astro-
physical applications. The angle-independent photon
spectrum can be easily computed by numerical integra-
tion. The results are compared with various approxima-
tions and with the corresponding processes of electron-
proton (ep) and electron-electron (e “e ~) bremsstrahlung.

II. CROSS SECTIONS

In the elementary process of e~et bremsstrahlung
(Fig. 1) an electron with four-momentum p =(e_,p) and a
positron with four-momentum g=(e,,q) collide under
the emission of a photon with four-momentum
k=(k,k)."” The outgoing particles have the four-
momenta p'=(e_,p’) and -q¢’'=(€’,,q’). The differential
cross section for unpolarized particles is given by"*

are’ 8%p+q—p'—q'—k) ,d’p' d’q’ d’k
do=—j 21712 A= , ’
T [(pg)*—1] e €, k

(1)

where a~T5 is the fine-structure constant and
ro=e?/mc? is the classical electron radius. A is the ab-
solute square of the matrix element summed over the spin
directions of the electrons and positrons and the polariza-
tion directions of the photons; it is a complicated function
of invariant products between the four-momenta of the
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FIG. 1. Elementary process of electron-positron bremsstrah-
lung.
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particles and photon which is too lengthy to be repro-
duced here. A was derived by means of the substitution
rule from the traces evaluated by Anders'® for the corre-
sponding process of e “e ~ bremsstrahlung.

By squaring the conservation law,

p+q=p'+q'+k 2)
the relation,
(p'q')=(pq)—(pk)—(gk) (3)

can be derived. Using Egs. (2) and (3), only 5 of the 10
possible invariant products are independent. The integra-
tion of (1) over d>p’ is easily performed by means of the &
function resulting in

ary? A 8e,+e_—¢€,—€_—k)
do=— 2 172 "
T [(pg)—1] €_€ k
Xd3qr d3k , (4)
where €”_ is now defined by

=[(p+q—q' —k)*+1]'/2. (5)

With the aid of the relations d3q'=q’2dq'dﬂql
=€,q'de dQy, d3k=k*dk dQy, and
) , e'_qu
f6(6++e_—e’+—e_—k)de+= P S
|€_q"—€,(p'q") |
' 2
€_
——=1___
l€r(p'g" ) —€_|

the fully differential cross section becomes

d’c _arg’ A4 kq"

dkdQidQy 72 [(pg)*—1]12 | €, (p'g))—€_ |

@)

In order to express energy and momentum of the outgo-
ing positron by the momenta p, q, and k, Eq. (2) is multi-
plied by the four-vector g’ yielding

q""(p+q—k)=(p'q")+1 (8)
or

Ce', —Bq'=D 9
with the notations

B=q'-(p+q—k), C=e_+e€,—k,

(10)
D=(p'q')+1.
4'=q’'/q’ is the unit vector in the direction of the outgo-
ing positron. Using €'?—g'?=1, the solution of (9) is

, _CD+BW ,_BDiCW an
“+=Tciipr 1T g

with
W=D*+B*—c)'"2=L e pgr—e | . 2

The choice of the signs in (11) depends on the frame of
reference considered. With the aid of (3) D can be ex-
pressed by the three invariant products (pg), (pk), and
(gk). Using (12) the fully differential cross section is
given by

d’c _ aro’ A kq'?

dk dQdQ, - [(pg?—11'72 W
It is easy to see that the function W takes a very simple

form if one specializes to the center-of-mass system S’ of
the outgoing electron and positron where

(13)

p’+q'=p+q—k=0,

e’+=e’_Ee’=%(e++e_—k)=% , (14)
(p'q')=2¢"—1,
and
W =2€'p'=2€q’ . (15)
In the system S’ the cross section takes the form
do _ ary’ kq' A ‘ (16)
dkd0dQy | 27 € [(pg)*—1]'72

This equation is the most convenient starting point for the
integration over the solid angle Q- since only the function
A depends on the angles of the final positron, and this ex-
pression can be integrated exactly. As the momenta p, q,
and k form a triangle in the system S’ [cf. Eq. (14)], the
orientation of the vectors p’ and q'= —p’ is quite arbi-
trary. So the full solid angle Q =4 is allowed kinemati-
cally, i.e., the limits of integration are independent of the
momenta p, q, and k.

The laborious but elementary integration yields a cross
section which again can be expressed in covariant form,
namely, by the three invariant products (pq), (pk), and
(gk). Introducing the notations

(pg)=7, (pk)=kKy, (gk)=k,, (17)
and
pPP=p'+q'’?=2[(p'q")+1]
=2(7-__K1——K2—+—1) (18)

the e “e™ bremsstrahlung cross-section differential with
respect to the photon energy and photon angles can be
written as

d’o
dk dQy
ary® k (p
- 2 P(72_1)1/2
The expression for (I/Tr)(pz——4)1/2 f AdQ, is given in
the Appendix. It is not possible to further integrate

o(k,0) over the photon angles analytically. However, the
numerical computation of the cross section

o(k,0)=

_4)1/2

[ 4ada,. 9

olk)= (20)
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is quite easy in the c.m. and in the laboratory systems:
Because of the rotational symmetry around the momen-
tum vector p or q, respectively, the cross section is not
dependent on the azimuth angle; so the solid angle of the
outgoing photon is simply given by dQ; =2msin6d6 and
one has to perform only a single integration over the angle
6.

In the general case of arbitrary directions of the initial
momenta p and q, as, for instance, in a thermal astro-
physical plasma, the computation of o(k) requires two
numerical integrations.

III. COULOMB CORRECTION

The cross sections derived in the preceding section are
exact within lowest-order perturbation theory. Whereas
radiative corrections are assumed to be small in the energy
region considered, the Coulomb correction may be signifi-
cant at low energies. Correct results can be expected only
if the conditions

a a
a=—<1, a'=— «1 21
B B
are satisfied, where
2_1)2
p=lr=D "
T
(22)

2_gy12

_ Lp'g =112 _ plp
B'= o'’ =t
p'q’) p?—2
are the relative velocities (in units of the speed of light) of
the electrons and positrons in the initial and final state,
respectively. For the bremsstrahlung process in the field
of a nucleus, the cross section in the Born approximation
can be corrected by a simple factor derived by Elwert!®
for nonrelativistic energies. This factor which is given by
the ratio of probabilities for finding the final and initial
electron, respectively, at the position of the nucleus, has
been shown to yield accurate results in the full energy
range for nuclei with low atomic numbers Z.2%2! In the
case of electron-positron bremsstrahlung a corresponding
correction factor can be obtained by calculating the ratio
of probabilities of finding the two initial and the two final
particles, respectively, at the same position. It has the
form

>

—2ma

’

a

F#_*_:—
e e a

l—e

This factor is always larger than 1 as a consequence of the
Coulomb attraction between electron and positron. That
is, the true values of the cross sections are always higher
than those given by the formulas of Sec. II. Due to the
small factor agl—; in the quantities a and a’, however,
F,_, . is approximately equal to 1, especially at high ener-

e
gies (3,8 =1). An important exception is the short-
wavelength limit given by p—2. Here a'-—>c« and

F, ,i— . As can be seen from Egs. (19) and (A1),

e
o(k,0) tends to zero for p—2. By applying the factor

F,_, . the quantity (p°—4)'/? cancels out resulting in a

finite cross section at the short-wavelength limit. This
fact is well known in the theory of electron-nucleus brems-
strahlung.?’

Generally, the factor (23) is dependent on the momenta
P> q, and Kk, i.e, it is different for various photon angles.
In the c.m. system, however, p? is independent of the pho-
ton angle so that F,__, is only a function of the photon
energy k for given momenta p and q.

In the following sections the Coulomb factor is not tak-
en into account because its effect is not significant at the
energies considered.

IV. RESULTS

The formula (A1) can easily be programmed for the
computation of the doubly differential cross section
o(k,0). One should, however, pay attention to the fact
that roundoff errors may occur in the calculation of cross
sections at very high energies which may even lead to neg-
ative values of o(k,0). In these cases it is necessary to
employ variables with double precision. The following re-
sults for o(k,0) and o(k) are given in the c.m. system and
in the laboratory system where one of the initial particles
is at rest.

A. Angular distributions in the c.m. system
The c.m. system is defined by
p+q=p'+q +k=0, €, =€_=e€. (24)
The invariants 7 and p? have the form
r=26*—1, p*=4ele—k), (25)

i.e., they are independent of angles. Because of the sym-
metry of Eq. (A1) with respect to the products

k1=(pk)=k (e—p cosf) ,
(26)
Kky=(gk)=k (e+p cosf) ,

where 6 is the photon angle relative to p, the photon dis-
tributions in the c.m. system are symmetric about
0=1/2, and all angles 6 are allowed kinematically.

Figure 2 shows the cross section o(k,6) as a function of
6 for the kinetic energy E=(e— 1)mc*=10 keV of the ini-
tial particles and for various photon energies hv=mc?k.
At these nonrelativistic energies the photon angular distri-
butions form smooth curves. The minimum at 6=/2
for low photon energies changes into a maximum at
higher values of hAv. The corresponding cross sections for
e ~e ™ bremsstrahlung® are smaller by a factor of 20 to 30
resulting from their quadrupole nature. The maximum
values of o(k,0) for e e~ bremsstrahlung are given in
Fig. 2 by marks at the vertical axes.

In Fig. 3 are plotted the angular distributions for mildly
relativistic particle energies, E=300 keV, and various
photon energies. Due to the relativistic beaming most of
the photons are emitted near =0 and 6=7. The angular
distributions are similar to the corresponding curves for
e e~ bremsstrahlung,3 however, the latter cross sections
are still smaller, in particular for low photon energies.
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FIG. 2. Differential cross section o(k,8) of e~e™* brems-
strahlung in the c.m. system for E=10 keV and various photon
energies Av. The maximum cross sections of e e ~ bremsstrah-

lung are given by marks on the ordinates.
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FIG. 3. Differential cross section o(k,0) of e et brems-
strahlung in the c.m. system for E=300 keV and various pho-
ton energies 2v. The maximum cross sections of e e~ brems-
strahlung are given by marks on the ordinates.

At relativistic energies (€>>1) the cross sections for
e e* and e “e~ bremsstrahlung are virtually equal. For
E=50 MeV (cf. Fig. 3 of Ref. 3) the relative differences
are of the order of 103 for the important angles around 0
and 7. Here the relativistic beaming is most pronounced,
the width at half maximum of the curves being
01,,~1/(2¢€). Around 8=m/2 the cross section has de-
creased by many orders of magnitude.

An excellent approximation for the cross section o(k,6)
in the c.m. system at ultrarelativistic energies which holds
both for e~et and e “e~ bremsstrahlung has been de-
rived by Baier, Fadin, and Khoze® (BFK) who systemati-
cally expanded all quantities in powers of 1/€* and re-
tained the leading term of the expansion. The equality of
the cross sections for the two processes follows from the
fact that at these high energies the exchange-type Feyn-
man graphs for e e ™ collisions make the same contribu-
tion as the diagrams of direct type, whereas the contribu-
tion of the annihilation graphs in the case of e “e* col-
lisions can be neglected. The agreement between the BFK
formula and the present results is better than 0.1% for
E=50 MeV and the important photon angles. The only
distinct differences occur at photon energies very close to
the high-frequency limit p?=4 or k =p?/e at large angles
0. Here the cross section for e e bremsstrahlung is
higher than that given by the BFK formula, in contrast to
the e “e ™ case where it is lower.> The inaccuracy of the
approximation is, however, not significant because the
contribution to the total cross section o(k) from these
large angles is fully negligible.

B. Angular distributions in the laboratory system

In the laboratory system one of the initial particles is at
rest. Choosing q=0, the quantities 7 and p? have the
form

T=€_, p*=2[e_+1—k(e_+1—pcosh)]. (27)

Here 0 is the photon angle relative to the direction of the
incoming electron. The maximum photon energy occurs
for p?=4 and is given by

—1

€
Koy (€_,0)= ——————— 2
manl€,0) =TT (28)

The absolute maximum of k is reached in the forward
direction 6=0:

e_—1

S (29)
e_—p+1

kmax(e—):

Photons with energies (e_ —1)/(e_+p+1) <k <kpaxle_)

can be emitted only into a cone with half apex angle 6,
given by

(e_+1Dk—(e_—1)

Oo= . 30

cosb, ok (30)

Figure 4 shows the cross sections o(k,8) for the kinetic

energy E_ =(e_—1)mc?=10 keV of the incoming elec-

tron for various photon energies. For comparison the an-

gular distributions of electron-proton (ep) bremsstrahlung

are depicted. The ep cross sections are smaller at low
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FIG. 4. Differential cross section o(k,0) of e et brems-
strahlung in the laboratory system for E_ =10 keV and various
photon ‘energies hv, compared- with the cross section of
electron-proton bremsstrahlung (ep).

photon energies, whereas they exceed the e et cross sec-
tions at higher photon energies.

In Fig. 5 are plotted the angular distributions for
E_ =300 keV, again in comparison with the cross sec-
tions for ep bremsstrahlung. With increasing photon en-
ergy the allowed angular region of e “et bremsstrahlung
is more and more restricted due to the kinematical effect
characterized by the limiting angle 6, [Eq. (30)]. The
shapes of the e~e™ angular distributions are similar to
those of e ~e ~ bremsstrahlung (cf. Fig. 4 of Ref. 3), how-
ever, the values of o(k,8) are higher in the e "e ™ case by
a factor of about 3. At low and medium photon energies
the e e cross sections exceed the ep cross sections (ex-
cept for the small contribution at angles 6 > 6,), whereas
at higher photon energies the ep bremsstrahlung dom-
inates.

At extreme-relativistic energies the e “et bremsstrah-
lung is emitted essentially into a narrow cone in the for-
ward direction. For E_ =200 MeV the e "e™ cross sec-
tion is virtually equal to the e “e ~ cross section (cf. Fig. 5
of Ref. 3) at most photon energies and angles, the relative
differences being generally less than 1%. Hence the for-
mula of BFK® is a fairly good approximation for small
angles 6 and sufficiently far away from the short-
wavelength limit, as in the e~e~ case.’® Since the
momentum transfer to the recoiling particle is very low at
the important angles 8 <1/e_, the cross sections for
e~e™ and e “e ™ bremsstrahlung are approximately equal

80° 0° 10° 20° 30° g 40°

0° 20° 40° 60°

FIG. 5. Differential cross section o(k,0) of e et brems-
strahlung in the laboratory system for E_ =300 keV and vari-
ous photon energies hv, compared with the cross section of
electron-proton bremsstrahlung (ep). The maximum cross sec-
tions of e “e ™ bremsstrahlung are given by marks on the ordi-
nates.

to the cross section for ep bremsstrahlung at very high en-
ergies.??

C. Photon spectra in the c.m. system

The photon spectra are calculated by numerical integra-
tion of the angular distributions o(k,0) in the c.m. sys-
tem. Figure 6 shows the spectra for kinetic energies
E=10, 100, and 300 keV. At low energies E <<mc?, i.e.,
P =¢q << 1, the short-wavelength limit of the bremsstrah-
lung spectrum is given by

kmax=p?~2(e—1) or hvy,~2E .

In the nonrelativistic dipole approximation Garibyan®
has derived a simple formula for the total cross section of
e et bremsstrahlung in the c.m. system:?%2*
2 2 172
onp(k)= 18 20 ptlp —k)
3 ka p__(pZ_k)l/z
As can be seen from Fig. 6, this expression agrees quite
well with the present results for kinetic energies E <10
keV where the error is of the order of a few percent. In
the region of intermediate energies E, however, the ap-
proximation (31) may only be used as a rough estimate of
the true cross section.
For extreme-relativistic energies the expression

(31)

6



31 DIFFERENTIAL CROSS SECTION OF ELECTRON-POSITRON . ..

ok E=300 keV

] 100 keV 200 300 400 hy 500

FIG. 6. Cross section o(k) of e "e™ bremsstrahlung in the

c.m. system for various initial energies E, compared with the
nonrelativistic approximation (NR).
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3 €

(32)

is a good approximation for the cross sections of both
e"et and e "e~ bremsstrahlung as long as the condition
€—k >>1 is satisfied, i.e., the photon energy is not near its
maximum kp,,=p2/e. Baier, Fadin, and Khoze’ have
found, however, that the bremsstahlung cross sections for
electron-positron and electron-electron collisions differ
appreciably very close to the high-frequency end of the
spectrum (p2—ek <1). They gave a cross-section formula
which is valid for all photon energies including the hard
end of the spectrum. As the corresponding expression’
for the differential cross section o(k,0) this is an excellent
approximation down to energies E of a few MeV. It de-
scribes also the sharp drop of o(k) near the short-
wavelength limit (see Fig. 7 of Ref. 3), in contrast to Eq.
(32).

D. Photon spectra in the laboratory system

Figure 7 shows the photon spectra in the laboratory
system (g =0) for kinetic electron energies E_ =10, 100,
and 300 keV. For comparison the cross sections of ep
bremsstrahlung are also plotted. The latter are consider-
ably smaller at low photon energies but they exceed the
e~e™ cross sections at higher photon energies, i.e., the ep
spectrum is harder than the e “e™ spectrum. The inter-
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section of the two curves is shifted to lower values of
k /k max for increasing energies E _.

For nonrelativistic energies E_ a general formula can
be derived from Eq. (31) taking into account that ong(k)
has to be dependent on [p—q|. The argument of the
logarithm in (31) can be expressed in terms of x =k /k,,,.
If the initial momenta p and q are arbitrary, the highest
possible photon energy is

(pg)—1
. (33)
€4+e_—|p+q|

kmax(p’q)=

In the nonrelativistic limit this expression reduces to
kmax(P,q)~%(p—q)% ie., it is a function of |p—q].
Therefore, in any frame of reference the nonrelativistic
cross section for e e * bremsstrahlung can be written as

16 ar’ 14(1—x)!2
1_(1_x)1/2 ’

O'NR(k)=T e xIn
where x =k /Koy (p,qQ)~4k /(p—q)>. In the c.m. system
this is equivalent to Eq. (31), and in the laboratory system
(q=0),

(34)

64 ar’  p(p—4k)”
3 T3 n 2 172
3 p’k  p—(p*—4k)
For kinetic energies E_ <20 keV Eq. (35) is a good ap-
proximation except for the neighborhood of the short-

wavelength limit. The shape of the spectrum depends a
little on the choice of x which can be taken as x =4k /p?

ong(k)= (35)
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FIG. 7. Cross section o(k) of e~“e* bremsstrahlung in the
laboratory system for various electron energies E_, compared
with the nonrelativistic approximation (NR) and with the cross
section of electron-proton bremsstrahlung (ep).
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or x=2hv/E_. For intermediate energies E_ the for-
mula (35) can still serve as a rough approximation as can
be seen in Fig. 7 for E_ =100 keV.

For the energies of Fig. 7 the cross sections of e “e ™
bremsstrahlung® are considerably lower than the e “e™
cross sections, the ratios being about 150 for E_ =10
keV, 10 to 15 for E_ =100 keV, and 3 to 5 for E_ =300
keV.

In the extreme-relativistic energy region €_ >>1 the
cross sections for e “e ™ and e e~ bremsstrahlung coin-
cide. The approximation formula of Baier, Fadin, and
Khoze® for the laboratory system is not as accurate as the
expression for the c.m. system since the reciprocal expan-
sion parameter (pq) is equal to €_ in the laboratory system
(q=0) but it is ~2¢€* in the c.m. system. As a conse-
quence the agreement between the present results and the
BFK formula is better than 1% only at energies E_
beyond 1000 MeV (see Fig. 10 of Ref. 3).

V. CONCLUSIONS

Angular distributions and photon spectra for e~ e™
bremsstrahlung were computed in the c.m. system and the
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laboratory system in the whole range between nonrela-
tivistic and extreme-relativistic energies. From the com-
parison with available approximation formulas and with
the cross sections of other bremsstrahlung processes the
following conclusions can be drawn.

(i) The cross sections of e e+ bremsstrahlung are con-
siderably higher than the e “e ~ cross sections up to ener-
gies of a few MeV. At extreme-relativistic energies the
cross sections for the two processes coincide except for a
very small region near the high-energy end of the spec-
trum.

(ii) In the laboratory system the cross sections of e “e *
and ep bremsstrahlung are of the same order of magni-
tude. The ep spectra are harder than the e “e ™ spectra.

(iii) The analytical formulas for the cross sections in the
nonrelativistic and extreme-relativistic limits were found
to be good approximations, in particular in the c.m. sys-
tem. At intermediate energies, between ~20 keV and
~10 MeV, there is no-alternative to the formula derived
in this paper.

(iv) In hot astrophysical plasmas with a positron com-
ponent the e “et bremsstrahlung will give a significant
contribution to the total x-ray emission.

APPENDIX

The integration of the fully differential cross section over the angles of the outgoing positron results in the formula:

2 2
1 9r+4 3 ) Kyp o’ Ky 2k,1 KT 1
—( 2__4)1/2 AdQ, =( 2_4)1/2 il mhe AP 3)— + —_< —_ =
T P f q P 4K1K2 4K12 P + 4K13 K](TZ—I) K13 K12 2Kl 2
1 K 1 K1Kky—2.5p7 2
4 . 1 x 1 4 1 . 1K2 (A . _4p?
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The complicated function 4 in the integrand was de-
rived from the corresponding expression for e e ~ brems-
strahlung® by means of the substitution rule* The
correctness of 4 was verified by a comparison of e "e ™
bremsstrahlung cross sections with an independent calcu-
lation of Mack and Mitter.?> The two results agreed ex-
cellently. The correctness of the formula (Al) was
checked as follows.

(1) All terms of (A1) including those which are obtained
by interchanging «; and k, have been calculated separate-
ly. Thus all the errors violating symmetry could be
discovered easily.
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(2) The cross sections computed with the aid of (A1) in
the c.m. and laboratory systems were compared with the
results from numerical integration of the triply differen-
tial cross section over d(), yielding full agreement within
the accuracy of the numerical integration in all energy re-
gions.

An additional test for the correctness of (A1) provides
the fact that the resulting cross sections in the c.m. and
laboratory systems agree with the available approxima-
tions both in the nonrelativistic and in the extreme-
relativistic limits.
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