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Hadronic contributions to the anomalous magnetic moment of the muon
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We have evaluated the hadronic contribution to the muon anomaly arising from diagrams con-
taining hadronic light-by-light scattering subdiagrams using two different models. Our result is
49(5) &(10 "which disagrees with an earlier calculation. We have also improved the contribution of
the hadronic vacuum polarization diagrams to second- and fourth-order QED diagrams, using the
latest experimental data. The results are 707(19)&(10 ' and —'90(5) X 10 ", respectively. The
complete hadronic contribution is thus 703(19)&10 ' . The remaining error comes predominantly
from the experimental inputs needed for evaluating the hadronic vacuum polarization effect.

I. INTRODUCTION AND SUMMARY

a'"v =11659370(120)X 10 ( l. la)
P

a '"+~ = 11 659 110(110)X 10

where the numerals enclosed in parentheses represent the
uncertainties in the final digits of the measured values.
The best theoretical estimate reported prior to this article
s5, 6

(1.1b)

a„'"= l l 659 213(100)X 10 (1.2)

in good agreement with (1.1).
While the electron anomaly is dominated by the QED

effect, the muon anomaly is much more sensitive to phys-
ics at smaller distances because of the larger mass scale of
the muon. Thus a&" of-(1.2) has a substantial contribution
(=7X10 ) from the hadronic effect. Even the effect of
weak interaction is not negligible. In the steinberg-Salam
version of the theory the weak-interaction contribution to
a& to one-loop order is

a&(weak) = 195(1)X 10 (1.3)

Here we have used the latest information on the %'einberg
angle and the lower bound for the Higgs boson mass.
The error in (1.3) is not to be taken too seriously, however,
since the size of the two-loop contribution is not known at

The anomalous magnetic moment a„ is one-of the basic
properties of the muon which is measurable with great
precision and also calculable from theory. Thus it pro-
vides a sensitive tool for testing the validity of the theoret-
ical framework. In early days it served as a testing
ground of QED. More recently it has been used for detec-
tion of the hadronic vacuum polarization effect. It has
also been used to impose constraints on the possible inter-
nal structure of the muon' and constraints on possible
models for explaining the unexpected abundance of the ra-
diative Z decay, along with useful bounds on supersym-
metric theories.

The most accurate measurements of the muon anomaly
thus far are those obtained at the CERN muon storage
ring:4
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FICx. 1. Hadronic vacuum polarization contributions to a&.
{a) Lowest-order hadronic vacuum polarization contribution to
a„. (b) Hadronic vacuum polarization corrections to diagrams
with an electron loop. There are two diagrams of this type. (c)
An example of hadronic corrections to the fourth-order muon
vertex diagram. There are 14 diagrams of this type. {d) Im-
proper fourth-order hadronic vacuum polarization corrections
to the second-order QED diagram.

present. Note that the contribution (1.3) is only a factor 5
smaller than the present experimental error. This means
that, if measurement of a& is improved by an order of
magnitude, a& will provide an important testing ground
of gauge theories of the electroweak interaction at the
one-loop level, independent of processes such as muon de-
cay, Cabbibo universality,

i
b,S

i
= 1 semileptonic decays

of neutral E particles, KL —Eq mass difference, and mass
shifts of W and Z bosons, which also require one-loop
corrections for good fits.

In order to realize such a test, however, it is necessary
to improve not only the experimental error but also the
theoretical error by an order of magnitude. The theoreti-
cal error in (1.2) comes mostly from the uncertainty in ha-
dronic contributions, while it also contains a non-
negligible QED component. We have tried to improve
both contributions substantially over the last three years.
Our results are summarized in a recent publication. ' In
this article we report in detail the result of our work on
the hadronic contribution to a&. It arises from two types
of diagrams: Hadronic vacuum polarization diagrams
and hadronic light-by-light scattering diagrams shown in
Figs. 1 and 2, respectively. The dominant contribution,
which also has the largest error, comes from the diagram
of Fig. 1(a), and it is this error that is the most serious
obstacle for further improvement on the theoretical side.
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II-
FIG. 2. Hadronic light-by-light scattering contributions to

Nevertheless, it is very fortunate that this contribution to
the muon anomaly can be evaluated without the
knowledge of the underlying theory of strong interactions,
owing to the fact that it can be directly related to the
e+e annihilation cross section measured in the
colliding-beam experiment. Using the most recent experi-
mental data, we have been able to improve the contribu-
tion to the muon anomaly due to the diagram of Fig. 1(a)
to

a&(had la) =707(6)(17)X 10 (1.4)

a&(hadlb) = 107(3)X 10

a„(had le )= —199(4)X 10 (1 6)

a„(hadld) =2.3(0.6) X 10

We have not included the contribution of Fig. 2(d) of Ref.
5, since we believe that it is already included in the
evaluation of a„(had la).

As for the hadronic light-by-light contribution, it is un-
fortunately not possible to use experimental data directly.
Instead we have to evaluate this contribution using the
theory of strong interactions. Although it is now com-
monly believed that quantum chromodynamics is the
correct theory of strong interactions, it is powerless for
the problem in question, since we are dealing here with
the processes dominated by momenta of order m& where
perturbative QCD is not expected to be reliable. There-
fore, at present, the hadronic light-by-light contribution to
the muon anomaly can be evaluated only in a rnodel-
dependent way. Such a calculation was attempted previ-
ously, assuming that the blob in Fig. 2 can be approxi-
mated by quark loops of various flavors and colors. In

where the first error is statistical and the second is sys-
tematic. " Here and throughout this paper we have used
the ac Josephson value of the fine-structure constant

a '=137.035963(15) .

We have also updated the results of Ref. 5 for the higher-
order hadronic contributions to a& arising from the dia-
grams of Figs. 1(b), (c), and (d), using the same new data.
Our results are

az(hadron) =703(19)X 10 (1.8)

where we have combined statistical and systematic errors
for simplicity. "

The present status of the QED contribution is
r

a (QED) =0.5 —+0.765 858 10(10)P 77

3 '4

+24.073(11) — + 140(6)

= 11 658 480(3) X 10 (1.9)

Here the a term is updated using the newest value of the
muon mass, the u term is improved by a reevaluation of
the light-by-light term, and the cz term is evaluated for
the first time. The details of these QED calculations are
given in a separate paper. '

Summing up the contributions (1.3), (1.8), and (1.9), we
obtain the new theoretical prediction'

ap" ——11 659 203(20) X 10 (1.10)

in good agreement with the experimental value (1.1).
In summary, we should like to emphasize that the

theoretical error of (1.10) is now down to the size compar-
able with the magnitude of the weak-interaction effect
(1.3), bringing the latter within the range of laboratory
detection. We believe that the error of (1.10) can be re-
duced further, in particular, in view of the novel approach
to the measurement of R (s) at CERN' which detects a
m+n pair produced by a 300-CzeV e+ (from ir decay)
incident on the e 's of target atoms. In this experiment,

view of the large error in the reported result
[—26(10)X 10 ' ], we have reevaluated this contribution,
using two different approaches. The first one is based on
the same assumption as in Ref. 5 (except that the expan-
sion in I„/m~ is not made). The second approach is
based on the assumption that the blob in Fig. 2 can be ap-
proximated by charged pion loops and various low-energy
resonances. Our results are

a&(had2) =60(4) X 10 " (quark loop approximation)

(1.7a)

=49(5)X 10 " (pion loop and resonances),

(1.7b)

which are consistent with each other, but disagree strong-
ly with the previous evaluation. (Note the difference in
sign. ) We believe that the disagreement is due to the poor
convergence of numerical integration in Ref. 5. In the
following we use (1.7b) rather than (1.7a), since (1.7a) is
sensitive to the choice of quark mass. Since the magni-
tude of (1.7) is less than —,

' of the error of the dominant
hadronic contribution (1.4), contrary to the previous re-
sult, the uncertainty in (1.7) due to the model dependence
will not affect our estimate of the overall hadronic contri-
bution. Summing up the results (1.4), (1.6), and (1.7b), we
find the total hadronic contribution to be
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in which m+m and p+p pairs are counted simultane-
ously, R (s) can be measured with an absolute accuracy of
a few percent.

Thus far this experiment has reported measurements
of ~F (q )

~

at q =0.101, 0.127, 0.152, and 0.178
(GeV/c) with an error of about 7%. This is a significant
improvement over the previous results. ' The new mea-
surements are consistent with the dispersion-theoretical
extrapolation whose parameters are determined predom-
inantly by measurements at much larger q where the ac-
curacy is generally higher. For these reasons the values
and errors of a„(hadl ), whether the new CERN data are
included or not, are essentially unchanged at present.
[The values (1.4) and (1.6) incorporate the data of Ref.
14.] Nevertheless, one should not overlook the signifi-
cance of this experiment which marks an important step
in freeing the evaluation of a&(hadl) from any theoretical
prejudice (however well founded that may be).

It will be clear from the above argument that a substan-
tial improvement of a&(hadl) by this technique requires
measurements of

~

F (q )
~

at larger q . It may be possi-
ble to explore it up to q =0.35 (GeV/c) at CERN SPS.
The 1-TeV proton beam at Fermilab will extend the range
to q =1 (GeV/c), well beyond the p, cu resonance re-
gion. If these experiments succeed and if further im-
provement is made in colliding-beam experiments, the
theoretical error of a& will go down to 3&&10 ' or less,
removing a major obstacle for the experimental test of the
electroweak effect (1.3). Thus, now appears to be the op-
portune time to launch a new measurement of a„
designed to reduce the experimental error of (1.1) by at
least an order of magnitude. '

The outline of this paper is as follows. In Sec. II we
discuss the hadronic light-by-light contributions to a& us-

ing the picture in which the blob in Fig. 2 is approximated
by quark loops of various colors and flavors. In Sec. III
we present two versions of calculation of the hadronic
light-by-light contribution to az assuming that the ha-
dronic blob in Fig. 2 can be approximated by pion loops
and low-energy resonances. Hadronic structure effects are
taken into account using the vector-meson-dominance
model of photon. In Appendix A we discuss a new
evaluation of the vacuum polarization contribution to a&.
Some technical details concerning the parametric repre-
sentation approach to theories with derivative coupling
are given in Appendix B.

a„(had2) = —26(10)X 10 (2.1)

for this term, assuming that it is effectively given by the
sum of quark loop contributions of various colors and fla-
vors (see Fig. 3). Furthermore they assumed that quark
masses mq are larger than the muon mass m& so that an
exPansion in m„/mq is justified. The result in (2.1) as-

II. HADRONIC LIGHT-BY-LIGHT SCATTERING
CONTRIBUTION TO a„.APPROXIMATING THE

HADRONIC PART BY QUARK LOOPS

In this section we discuss the contribution to a& from
the hadronic light-by-light scattering amplitude depicted
in Fig. 2. Calmet et al. obtained the result

i c =U, c,s,c

FIG. 3. Quark loop contributions to a~.

a ( m„/mq = 1)=0.370 986(20) X (3e 4) X
3

(2.2)

For eq 3 this is equal to 27.6)&10 ' . Comparison of
(2.1) and (2.2) raises two questions:

(i) Is it reasonable that a(m&/mq) changes sign as
(my/mq)2 decreases from 1 to 0.1?

(ii) Why is (2.1) of the same order of magnitude as (2.2)
instead of being an order of magnitude smaller which
would be the case if a (m„/mq) behaves as ( m„/mq ) q

To answer these questions we have reexamined the con-
tribution of Fig. 3. We started by integrating the exact
expression, rather than the leading term of the expansion
in m„/mq as was done in Ref. 5, for the light-by-light
contribution for various values of quark mass: mq=0. 3,
0.5, 1.5, 10, and 1000 (in GeV). Evaluation was made us-
ing the integration routine RIWIAD (Ref. 19) with the
same number of hypercubes (=2X10 ) and the same
number of iterations (=7) for all mq. In this manner we
have been able to compare the speed of convergence of our
integration procedure for various values of mq. Since
a (m~ /mq ) will be approximately proportional to
(m& /mq ), the product ( mq /m& )2a (m& /mq ) will be
roughly independent of m& /mq. We list
(mq/mz) a(m&/mq) for eq ——1 in Table I. As is seen
clearly from this table, this quantity is positive and rough-
ly constant for all values of mq. It is also seen that the
relative numerical accuracy deteriorates steadily as mq in-
creases, indicating that the value of this integral is a result
of delicate cancellation between positive and negative con-
tributions and the cancellation becomes more and more
difficult as mq increases. To verify this observation we
have examined the behavior of the integrand analytically
in the limit of large mq. We have found that the integral

sumes the quark mass values of m„=md ——0.3, m, =0.5,
and m, =1.5 GeV. The error of (2.1) is due to the numer-
ical integration procedure only. It is not only the size of
the error of (2.1) but also its negative sign that has attract-
ed our attention to this contribution. This was rather
unexpected since it is known' to be positive for
m&/mq = 1 (i.e., the contribution from the muon loop).

Let a (m„/mq) be the naive quark loop contribution of
Fig. 3 due to a quark of mass mq and electric charge eq.
Then, adapting from pure QED calculation, ' we can
write
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m, (GeV)

0.3
0.5
1 ' 5
10

1000

10 (mq /m~ ) a (mq/mq )

1.91(0.13 )

1.96(0.22)
2.18(0.47)
1.84( 1.56)
5.94(9.16)

TABLE I. Values of (mq/m&} a(m&/mq) for eq
——1. cussed in Secs. IIIA and B. To make this picture more

realistic we have also incorporated the vector-meson-
dominance (VMD) approximation. This is discussed in
Sec. IIIC. Finally, the contribution of resonances is dis-
cussed in Sec. III D.

A. Charged-pion-loop contribution —direct method

contains various terms which behave as (m&/
m~) ln(m~/m&) and regains the expected (m„/m~)
behavior only as a result of delicate cancellation of loga-
rithmic terms from different parts of the integration
domain. This means that the coefficient of (m&/mz) in
the expansion of a(m„/m~), which is an integral over
Feynman parameters, is not pointwise integrable contrary
to the implicit assumption of Ref. 5, and hence cannot be
evaluated reliably by a Monte Carlo procedure.

We have thus identified the cause of the problem in the
evaluation of (2.1) and resolved it to our satisfaction.
From Table I we can readily evaluate the contribution of
the quark loop light-by-light contribution to the muon
anomaly.

Assuming m„=~~ ——0.3 GeV, m, =0.5 GeV, and
m, =1.5 GeV, we find

k t Il„pg (kt, k2, k3, kg) =0,
k /II pg (k ] k2 k3 k4) =0, etc.

(3.1a)

(3.1b)

In this subsection we consider the hadronic light-by-
light scattering contribution based on the picture in which
the hadronic part in Fig. 2 is represented by charged pion
loops. As was mentioned earlier, we treat the pion as an
elementary field and use scalar QED to describe the pion-
photon interaction.

There are altogether 21 Feynman diagrams that contri-
bute to the lowest order light-by-light scattering ampli-
tude in scalar QED. They are shown in Fig. 4. The total
amplitude is given in terms of the fourth-rank vacuum
polarization tensor II,&~ (k t, k q, k3, k4), where k;,i
=1,2, 3,4, are the momenta of photons attached to the
pion loop and the Pauli-Villars regularization is under-
stood. Because of gauge invariance we have

a (had2) =60(4) X 10 (1.7a)

which, as expected, is positive and substantially smaller
than (2.1).

III. HADRONIC LIGHT-BY-LIGHT SCATTERING
CONTRIBUTION TO a„.APPROXIMATING THE

HADRONIC PART BY PION LOOPS
AND RESONANCES

In the previous section we evaluated the correction to
a& due to the hadronic light-by-light scattering ampli-
tude, approximating the hadronic part by the sum of
quark loops of various colors and flavors. There are,
however, some problems with this approximation. First
of all, the result depends strongly on m~. Because of
quark confinement, however, there is an ambiguity in the
definition of the quark mass m&. Second, the contribu-
tion (1.7a) is governed by the low-energy behavior of the
virtual quark loop (whose typical momenta are of order
m„). It is not clear to what extent this approximation
represents the correct physical picture in the low-energy
region.

In order to test the validity of the above approximation
we have evaluated the same contribution in another pic-
ture in which we approximate the hadronic part of the di-
agram in Fig. 2 by a loop of the lightest hadron, pion, and
various low-energy resonances. Since typical momenta of
virtual photons attached to the hadron loop are of order
mz, these photons are not hard enough to resolve the
internal structure of the hadron. Therefore, to a reason-
ably good approximation, we may treat the pion as an ele-
mentary field and use scalar QED to describe the photon-
pion interaction. Two versions of this treatment are dis-

+ 5 MORE

(c)

+ 6 MORE

FIG. 4. Typical fourth-order diagrams contributing to the
light-by-light scattering amplitude in scalar QED. There are 21
such diagrams altogether.
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As is indicated in Fig. 4, the set of 21 Feynman diagrams
can be classified into subsets, 3, B, and C, comprised of
3, 6, and 12 diagrams, respectively, each being gauge-
invariant with respect to photon 1. Relations (3.1a) hold
for each of the three subsets separately. As a consequence
of (3.la) the total amplitude, as well as the partial ampli-
tudes corresponding to the subsets A, B, and C, are finite,
even though each contributing diagram is logarithmically
divergent according to power counting.

Attaching the photon lines 2, 3, and 4 of these dia-
grams to the muon line, we obtain 21 sixth-order vertex
diagrams. Charge-conjugation invariance (invariance
under reversal of the direction of momentum flow in the
pion loop) and time-reversal invariance reduce the number
of independent diagrams to be evaluated to eight. They
are shown in Fig. 5 together with the corresponding mul-
tiplicity factors which account for the diagrams related by
the symmetries mentioned above.

To set up the Feynman integrals we make use of the
Feynman-Dyson rules in parametric space described in
Ref. 20. Note, however, that the parametric rules given in
Ref. 20 must be modified slightly for theories with deriva-
tive coupling such as scalar QED. As is shown in Appen-
dix 8, the change to be made is

p. Al A2

(b)

8 I p. 82

A~= —]'6F (D; )f(dz), for a=A],B, ,
U V

= —»F"(D;) (dz) 2, for rr=gz, B2 C, C2
1

= —„F"(D;) (dz)-, for rr=C, C
U2 V3 (3.2)

C t p. C2 p. C3 p. C4

FIG. 5. Vertex diagrams containing scalar QED light-by-
light scattering subdiagrarns.

Brg ~B,~
in Eq. (37) of Ref. 20(a). After this is done, one may
proceed in the standard way.

Omitting the overall factor of (a/]r), the amplitude
corresponding to the diagram a( =A through C) of Fig. 5
can be written, in the notation of Ref. 20, as

These amplitudes have overall divergences and diver-
gences associated with the corresponding light-by-light
scattering subdiagram S . Projecting out the magnetic-
moment term from (3.2), we find that the contribution to
the muon anomaly arising from diagram a is of the form

1M = —
]6 (dz), , for a=A„B],

U V

Fo 1(dz)» ——, , for a=A„B„C„C,,UV 2UV
Fo 1 Fr 1

(dz) + for a=C, CU2V3 4 U3V2 8 U4V 3 4 (3.3)

The details of the parametric functions U, V, Fo, F&, and
F2 for each diagram in Fig. 5 are given in Ref. 21. Fo,
F], and F2 were obtained with the help of the algebraic
manipulation routine scHooNscmr (Ref. 22) (and in some
cases by hand calculation).

The integral M depends logarithmically on the Pauli-
Villars regularization mass of the light-by-light scattering
subdiagram S~. In this case, however, we can safely re-
place the regularization term by a term obtained by apply-
ing the Xs operation + ' to the integrand of (3.3) without
affecting the final result. The difference

aHIL ——gr)~AM~, a=A] through C4, (3.6)

where Cs is the overall divergent constant of subdiagram
aS, while M &s is the magnetic-moment term of the dia-

a
gram a/S which is obtained from the diagram a by
shrinking the subdiagram S to a point. b,M in (3.4)
represents the renormalized contribution to the muon
anomaly arising from diagram cx. The total contribution
can then be written as

AM~=M„—Xs M~ (3.4)
where the multiplicative constants

is now finite and can be evaluated numerically. The in-
tegral Ks M factorizes as

a

1, for n=—A~,

2, for +=~2,B),C),C3, (3.7)

&s ~a=Cs ~ass (3.5) 4, for n=B2, C2, C4,



31 HADRONIC CONTRIBUTIONS TO THE ANOMALOUS. . . 2113

Diagram Subcubes (&&10 ) Iterations

TABLE II. Numerical results for various terms in (3.6).

aHss = —0.043 7(36)
CX

3

(3.10)

A)

B)
B2
C)
C2
C3
C4

—0.3927(5)
0.2767(6)

—0.4617(4)
0.1603(4)
0.4024(10)
0.8309(12)

—0.3017(10)
—0.5579(30)

5
5
5

5
5

31
35
26
25
26
35
13
10

account for the time-reversal and charge-conjugation sym-
metries. Note that g g Cs M«s ——0 in contrast to the

spinor QED case where the corresponding sum is non-
vanishing.

The results of numerical evaluation of individual in-
tegrals are summarized in Table II. The quoted uncer-
tainties represent the 90% confidence limit estimated by
the integration routine RIWIAD. By denoting the contri-
butions arising from the gauge-invariant subsets A +B
and C as a~&+~~ and aH~&, where A and 8 have been com-
bined for convenience of comparison with (3.18), we find
from Table II that

q„A~g =&G(p+ q/2) &G—(p q/—2), (3.11)

where XG is calculated from self-energy diagram G and
AG is the sum of vertex diagrams obtained by inserting an
external vertex in 6 in all possible ways. In our case all
self-energy diagrams shown in Fig. 6 vanish by (general-
ized) Furry's theorem so that

B. Charged-pion-loop contribution —alternative approach

As a check of the calculation presented in the previous
subsection, we evaluate in this subsection the contribution
of the same set of diagrams using a method based on the
%ard- Takahashi identity.

Let us note, first of all, that the three gauge-invariant
sets of vertex diagrams in Fig. 5 can be obtained from the
self-energy diagrams shown in Fig. 6 by inserting an
external vertex in the pion lines in all possible ways. As is
well known, proper vertex and self-energy parts are relat-
ed by the %'ard-Takahashi identity

3 q„A~G(p, q)=0, G =A,B,C . (3.12)
asss+s ———0.4174( 10) (3.8)

Differentiating (3.12) with respect to q' and dropping
terms quadratic and higher orders in q, we obtain

asss, =0.373 7(35)—
3

(3.9) AG(p, q 0) = —q„
BA~G(p, q)

~9'v q=0
(3.13)

Adding (3.8) and (3.9), we find the total contribution to
the muon anomaly due to the Feynman diagrams of Fig. 5
to be

Using the labeling of the momenta as in Fig. 7 and the
gauge-invariance condition (3.1), the formula (3.13) for
G =A,B and C can be written as

X,(P4+m„)r s.(Ps+m, b.
2 2 2 2 2(2~) (2m) p6 p7 ps (p4 —m& )(pz —m& ) Bq„ q=0

(3.14)

1
(dz) for G =A,B,

U V

~ I("'—) 2 2

FO
for G=C .

U V

Parametrizing (3.14) according to the method of Ref. 20
and projecting out the magnetic-moment term, we obtain
an expression of the form

asss.s, =QnGMG (3.16)
6

where the summation is over all the self-energy diagrams
of Fig. 6, and the multiplicative factors

1, for G=A,
2, for G =B,C, (3.17)

(3.15)

The details of the parametric functions appearing in (3.15)
are given in Ref. 21. The algebraic manipulation was
again performed with the help of SCHOONSCHIP. The in-
tegrals MG(G =A,B,C) are finite and ready for numerical
integrati'on. The total contribution to the muon anomaly
due to the diagrams in Fig. 5 is given by

FIG. 6. Self-energy diagrams which correspond to the vertex
diagrams of the gauge-invariant subgroups A, B, and C.
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q

P P XP o-

FIG. 7. A diagram indicating momentum labeling.

0HL+L = —0.4 1 55 ( 9 ) (3.18)

while the contribution arising from the diagrams of sub-

group Cis
3

aHI L
——0.3772(18) (3.19)

The numbers of subcubes used for numerical integration
are 3 X 10 for the subgroups A and B, and 15 X 10 for
the subgroup C. The numbers of iterations are 7 for the
subgroups A and B, and 14 for the subgroup C. These re-
sults are in excellent agreement with the results (3.8) and
(3.9) obtained in the previous subsection. Combining
(3.18) and (3.19) we find the contribution to the muon
anomaly coming from 21 Feynman diagrams of Fig. 5 to
be

'3

account for the time-reversal (for G =B) and charge-
conjugation (for G =C) symmetries. Since the integrals
Mz and Mz have similar structures [see (3.15)], they can
be combined into one integral. Hence, the number of in-
dependent integrals is reduced from 8 (for the previous
approach) to 2 (for the present approach), enabling us to
save time and effort of computation. Evaluating these in-
tegrals numerically by RIWIAD, we find the following
result for the joint contribution to the muon anomaly due
to subgroups 3 and 8;

3

efqgmz e~ e~

(p —m~)p p p —m 2
(3.21)

Here we have used g=e/fz (Ref. 24). Thus the p-photon
line splits into two terms: The first term is exactly the
same as that in scalar QED without VMD, i.e., "bare pho-
ton" line, and the second term is the p line which provides
a momentum cutoff to the scalar QED integral at the p
mass. Therefore, we have to make only a slight modifica-
tion to the original scalar QED integrals in order to ob-
tain the integrals of the VMD model. Numerical evalua-
tion by the integration routine vEGAs (Ref. 25) shows that
the result for the subgroups A and B is changed to

3

aHI+I ———0.2703( 12 ) (3.22)

while the result for the subgroup C becomes

structure can be described by QCD. However, the
momentum scale of our interest is small and the perturba-
tive QCD does not apply here. The best available approx-
imation to the actual hadronic picture at this energy scale
will be the vector-meson-dominance (VMD) model. In
VMD one assumes that hadrons are elementary but pho-
ton has hadronic structure; a photon transforms into a
vector meson (such as p, co, or P) and the vector meson in
turn couples to structureless hadrons. One benefit of
VMD is that it provides a cutoff for momentum integra-
tion and makes resonance contributians to the muon
anomaly, which are otherwise logarithmically divergent,
finite as discussed in Sec. III D.

As the lowest-order approximation to the VMD pic-
ture, we take into account only the lowest-mass constitu-
ents of the photon (p and co). One of the diagrams con-
tributing to a& in this picture is shown in Fig. 8. The
coupling constants of the p meson to the pion and the
photon are —

if& and igm&2, respectively T.he p-photon
. line which connects the pion loop and the muon line in
Fig. 8 can be written as

CX

QHI. L,
= —0.0383(20) (3.20)

A slight disagreement between (3.20) and (3.10) is presum-
ably caused by a delicateness of cancellation when
separate contributions are put together.

P P

C. Incorporating vector-meson-dominance picture

Our discussion thus far has been based on the usual sca-
lar QED: We have been treating the pion as elementary.
This treatment is not quite satisfactory in the sense that
the pion, in fact, has structure. In principle the hadronic FIG. 8. A diagram with vector-meson insertions.



HADRONIC CONTRIBUTIONS TO THE ANOMALOUS. . . 2115

aHI I =0.2578( 15 )

) 3

(3.23)

The numbers of subcubes used for numerical integration
are 8 X 10 for the subgroups A and 8, and 7 && 10 for the
subgroup C. The numbers of iterations are 10 for both in-
tegrals. The quoted uncertainties again represent the 90%
confidence limit estimated by the integration routine vE-
GAS.

Combining (3.22) and (3.23), we have the following con-
tribution to the muon anomaly coming from the 21 Feyn-
man diagrams of Fig. 5 in the VMD picture:

3

aHI I = —0.0125( 19) (3.24)

We believe that this value is closer to reality than the
values (3.10) and (3.20) obtained without proper attention
to the extended structure of hadrons, and thus we will
quote (3.24) instead of (3.10) or (3.20).

D. Resonance contributions

In this subsection we consider the contribution to the
muon anomaly arising from various low-energy reso-
nances. The contributing diagrams are depicted in Fig. 9.
Let us start with the lowest mass resonance, m . The ef-
fective Lagrangian for the process m —+2y is given by

(3.25)

where F""is the dual of F"', a is the fine-structure con-
stant, and f (=93 MeV) is the pion-decay constant. The
overall divergence of the integrals corresponding to the di-
agrams of Fig. 9 is removed by the magnetic-moment pro-
jection, but the integrals still contain logarithmic sub-
divergence, as can be seen by power counting. The
vector-meson insertion (in the sense of VMD), however,
provides the momentum cutoff and renders the integrals
finite. The contribution of the diagram in Fig. 9(a) is
given by an expression of the form

where U, V, V, and other parametric functions are given
in Ref. 21. The contribution of the diagram in Fig. 9(b) is
given by a similar expression. Evaluating these expres-
sions numerically by VEGAS, we find

3

a (m. )=0.052(5)P
7T

(3.27)

where the number of subcubes for the integrals is 16X 10,
and the number of iterations is 10.

Since the contribution to a& will decrease as the mass
of resonance particle increases, we expect that higher mass
resonance contributions to a& may be ignored compared
to the contribution from the m resonance (3.27). The
next-lowest-mass resonances to be taken into account are
the scalar resonances e and S' (at about 1 GeV). Using
the effective Lagrangian density

&H a(f—a+f'S")F„„F~", (3.28)

where f (f') are coupling of e (S*) to the electromagnetic
field, we find numerically

a&(e)=0. 13f a„(m ) (3.29)

a„(had2) =49(5) X 10 (1.7b)

which is consistent with (1.7a), the result obtained using
the quark-loop approximation. The error is our estimate
of the model dependence (i.e., dependence on the cutoff
mz). Note that the m resonance contribution (3.27) dom-
inates (1.7b).
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aq(S*)=0.13f' a„(m. ) . (3.30)

Since f, f'=0. 1, az(e) and a&(S') are in fact negligible
compared to az(m ). Contributions of the higher-mass
resonances will be even smaller and may be ignored com-
pletely. Combining (3.24) and (3.27), we obtain the fol-
lowing contribution to the muon anomaly due to the pion
loop and resonances:

a& [Fig.9(a)]=
2 —1 pdz

64m U

81 Cl
2U V 4U2

(3.26)
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APPENDIX A: HADRONIC VACUUM
POLARIZATION CORRECTIONS TO a„

In this appendix we give a new evaluation of the contri-
bution to the muon anomaly due to the hadronic vacuum
polarization diagram in Fig. 1(a). Previous estimates for
this contribution are '

(a)

a~(hadla) =660(100)&& 10

=702(80) &&10 (Al)

FIG. 9. Resonance diagrams contributing to the muon anom-
aly.

Using the most recent experimental data, we have updated
this estimate to
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a„(hadla) =707(6)(17)& 10 (1.4) Let us now outline the calculation that has led to this
result. , As is well known this contribution can be written

S28

where the first error is statistical and the second is sys-
tematic (see Table III). Note that the statistical error is
more than 10 times smaller than the previous errors in
(Al).

00

a„(hadla) = f ds crH(s)IC(s),
4~ 4m

where

(A2)

1 —(1—4m& /s)'
K(s)=x 1 — +(1+x)'( +x ')»(1+x)—x+ +

2 2 1 —x 1+(1—4m& /s) 'i (A3)

and oH(s) is the total cross section for e+e annihilation
into hadrons. Since X (s) is a slowly varying function of s
for most of s, the contribution to the integral (A2) comes
mainly from o„,(e+e —+~+~ ) in the low-energy re-
gion.

The e+e —+~+~ cross section in this energy range
can be expressed in terms of the pion form factor F (s) as

+ 8m. aq0.(e+e ~n.+m )=
sq~ ~F (s)

~

(A4)
s

where
1/2

Taking account of the p-co resonances, we can parametrize
F (s) using the modified Gounaris-Sakurai (GS) formu-
la29, 30

A) —m A2
2

A, +A2q +f(s)

0. =gP;HJPJ, (A9)

where P;=Ra„/BA; and H;J is the covariance matrix.
The systematic error in the measurement of

~

F (s)
~

in
this region is about 2%.' ' ' ' It is, however, not clear,
especially after fitting the parameters, how the systematic
error of a~ depends on those of the experimental data for

~

F (s)
~

. In order to get some feeling we have evaluated
(A2) in the same energy range by simply joining the data
points of oH(s) by straight lines, i.e., the trapezoidal rule.
From the deviation of the mean values of a„ in the two
methods, we estimate the systematic error to be about 3%.
The result is listed in Table III. Note that the second
method is completely devoid of the dispersion-theoretical
bias.

The co resonance and P resonance are treated by the
Breit-Wigner formula

tion region was taken to be 2m„&vs & 1.1976 GeV.
The statistical error from this region has been evaluated
by the formula

where

2
iA4 m~+ A3e

s —m„+im„r„
G(s), (A5) ~BW

377
2

(vs —MR) +
4

(A 10)

f (s) =—m ——+— ln
s 2 q' vs+2q
3 n vs 2m vs

(A6)

MG(s)=
s —M +iMr

(A7)

A, =0.290(2)(GeV), Az ———2.30(1),

A3 ———0.012(1), and A4 ——1.84(9) .
(A8)

The g is 175.7 with 95 degrees of freedom. The integra-

In (A7) only the real part is kept for v s & m +m„. The
first term in the brackets in (A5) is the standard
Gounaris-Sakurai formula. ' The second term accounts
for the p-co interference. 3 The factor G(s) was intro-
duced by Quenzer et al. to incorporate the effects of the
p-co inelastic channel. We take M=1.2 GeV, I =0.15
GeV, and n=0.22. Using the data for IF

~
from

Refs. 14, 29, 33, 34, and 35, we have obtained the follow-
ing mean values for the fitting parameters:

o„,(e+e ~hadrons)
(Al 1)

o(e+e ~p+p )

This treatment is permissible because the background R is
more or less constant (i.e., =3+e~ ) for most of s. Since
a„depends on R linearly [see (A2)], we can estimate the
systematic error of a& by that of the measurement of R.

R (s)=

where M~ is the mass of co or P, I „,is the total width of
co or P, and I + is the partial width of co or P decaying

into an e+e pair. The statistical error was estimated us-
ing the statistical errors in the measurements of I „,and
r + . The systematic error is again somewhat unclear.
%'e use 3.2% which is the systematic error in the mea-
surements of 1 „,and I + (Ref. 36).

The other resonances have been treated using a narrow
width approximation identical to the one used by Barger
et aI. The error estimates are made in the same way as
for the co and p resonances.

The background contribution to (A2) from the region
1.1976 GeV& vs &30.8 GeV has been evaluated by the
trapezoidal rule, using the experimental data for R, where
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TABLE III. Hadronic contributions to the muon anomalous magnetic moment arising from Fig.
1(a). The first error is statistical and the second is systematic.

Contributing process
and energy range

P, co~'1T 7T

(2m & V s & I.1976 GeV)
co~3&

(3m &Ws &2.0 GeV)

(3m (Ws &2.0 GeV)
J/Q(3. 100)

g(3.685)
g(3.770)
+I +It +tll

e+e ~m. +m

( 1.1976 & V s & 3.0 GeV)
e+e —~~++-m'

(0.8432 & ~s & 1.002 GeV)
e+e ~K+K

(1.05 & Ws & 3.0 GeV)
e+e ~Ks KL

(1.088& V s &2. 15 GeV)
e e ~pp

(1.9 & ~s & 2.2375 GeV)
e+e —~m+m. -m'

(1.42& V s &2.05 GeV)
e+e —~Ks'K

(1.4415&Ms &2.05 GeV)
e+e —~~+a.-~'m-'

(0.99 & V s & 2.05 GeV)
e+e —+++~ m+m

(0.986&Ms &2.05 GeV)
e+e —+K+K ++n.

(1.45& Vs &2.05 GeV)
e+e ~m+m m+m m'

(1.202&@ s &2.0S GeV)
e+e ~m+m ++m
(1.44&Ms &2.05 GeV)

e+e ~~++ vr+m m+~
{1.45 & V s & 2.05 GeV)

e+e ~ more than two hadrons
(2.05(V s &3.15 GeV)

e+e ~ hadrons
(3.15&Vs &7.8 GeV)
{7.8&Vs &30.8 GeV)

(~s &30.8 GeV)
(Asymptotic freedom with 6 quarks)

Contribution to 10.' a„
506.39(2.15)(15.0)

46.64(4.75)(1.49)

40.17(1.80)(1.29)

5.64(71)(85)
1.47(21)(22}
0.18(4)(4)
0.085(3 )(5)

Background
3.05(28 )(31)

2.92(81)((81)

4.32(32)(46)

0.98(47)(10)

0.17(3)((3)

0.96(7)(10)

1.12(9)( (9)

23.95(79)(3.00)

14.02(35)(1.12)

1.39(9)(18)

1.75( 15)(21)

5.05(46)(1.00)

0.43(4)( 12)

21.63(81}(4.33)

19.81(27)(2.77)
4.27(26)(26)
0.4

706.8( 5 ~ 9)(16.4)'

Reference

14,29,33,34,35

36

36

37
37
36
38

33,39

40

33,34,41,42

34,43,44

41,45

47

34,41,47

34,49

50

53
54

'The second error is obtained by treating systematic errors by the least-squares method. Simple addition
of these errors will give a value of about 34.

Note that for the contributions from the processes
e+e ~n+m m (0.8432. GeV&vs &1.002 GeV), and
e+e +X+K (1.05 Ge—V &~s &3.0 GeV), we have
subtracted the Breit-Wigner tails of co and P resonances,
and the P resonance itself, respectively, in order to avoid
double counting. Fina1Iy, the contribution from the re-
gion vs )30.8 GeV was estimated by the lowest-order
QCD with six quarks. The results are summarized in

Table III. The total contribution from this diagram [Fig.
1(a)] is given by (1.4).

APPENDIX 8: CLARIFICATION OF THE
PARAMETRIC METHOD IN THEORIES

%PITH DERIVATIVE COUPLING

In this appendix we present a minor simplification of
the parametric method in theories with derivative cou-



2118 T. KINOSHITA, B. NIZIC, AND Y. OKAMOTO 31

pling (e.g., scalar QED, QCD, etc.).
Given a Feynman diagram 6 with N internal lines, the

Feynman-Dyson rules generate an integral of the form

use 8;J instead of B,J, where

U
B,q —B,q 6 J zl

(87)

F(p;)M= f +dr,
g(p; —m;2)

(81)

where m; is the mass of the line i, n is the number of in-
dependent integration loops, r, is the loop momentum,
and F (p; ) is a polynomial in the line momenta

p~,p2, . . . ,p~. Following the method of Ref. 20, we
decompose the momentum of the line i as

[cf. Eq. (4) of Ref. 20(a)].
In order to show that this prescription is indeed correct,

we present here a sample calculation of the pion self-
energy diagram in scalar QED. The Feynman integral
corresponding to the pion self-energy diagram is

d "r g (p i+p2)"(p 1 +p2)
(2m. ) (p& —ml )(p2 —m2 )

(88)

p;=q;+k;, (82)

where q; is a linear combination of external momenta and
k; is the sum of loop momenta flowing in the line i. Next
we replace pi' in the numerator function F(p;) by the
operator

d V P1P1

(2') (pl —m& )(p2 —mq )
(89)

where the indices 1 and 2 refer to pion and photon lines,
respectively. In this integral the only term relevant for
the present discussion is

D/'= ,
' f,dm—

For example, for F(p; ) =pf', we have

(83) Since the integral is quadratically divergent, we have to
introduce two Feynman cutoffs to gain necessary powers
of I/V before we can apply the parametric rule. Then,
taking (85) into account, we find that

N

g (pj —mJ )

(84) ', f (dz) f,z, dm, 'f z,dm, '
16' m

DAD1 1

This replacement of p," by D," can be extended to prod-
ucts of pi"s as long as F(p;) contains no product of the
form pt'p . (all p; referring to the same line), which is
the case for ordinary spinor QED. However, products of
this type appear in scalar QED and other theories with
derivative coupling. Terms of the form p,"p; . . require
special care because after the first application of D;,
the second D; acts not only on the denominator

,(pj —mj ), but also on the numerator p;(=q;+k;),
producing an extra term. How to handle this situation
can be found in Ref. 20(c) [see Eq. (6.5) of Ref. 20(c)].
Namely, use

g" 1

z1U V

(810)

DPD v
1 1~2

g Ig I g"' &ll g~' 1

2 UV 2 z1V
(811)

Here we have used Eqs. (19) and (31) of Ref. 20(a). Using
(86) and (87), we find

Pi"Ps 1 g"=D"D.
(p; —m;) (p; —m;) 2(p; —m;)2 22 ~ ~ 2 22 2 2 f (85)

Since the third term of (811) and the last term of (810)
cancel each other, we have

or its generalization, and apply the parametric rules of
Ref. 20(a). In fact, the second term in (85) leads to a
slight simplification of the parametric method. Namely,
in Eq. (37) of Ref. 20(a) which reads

I~ = f (dz) f,z~d &mf z2dm2

g IPg fY

X
U2 P2

DP 1

ym

DPD v

ym

rp
l

ym

gtpgtv

ym
1

, etc.
2(m —1) U'p'

(86)

which confirms our assertion.

2U V

(812)
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