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A new method is given to find the exact solutions of the Heisenberg equations in proper time of
the first-order Dirac Hamiltonian in constant electromagnetic fields. We also give the exact ZIttev-

bemegung of spin in a magnetic field.

I. INTRODUCTION

By Zitterbewegung we mean the internal dynamics of
the electron (or neutrino) in which the additional (spin)
degrees of freedom appear as a finite quantum system of
the oscillator type in the Heisenberg picture. This
phenomenon also occurs for a relativistic rotator, for ex-
tended or composite systems, and in general for any rela-
tivistic system with internal degrees of freedom. Its study
is important for an understanding of the foundations of
relativistic quantum mechanics, and of the possible excit-
ed states of the electron.

In a previous paper' we studied in a covariant way how
the position operator of the free electron separates into a
"center of mass" moving in proper time with constant
velocity plus an oscillatory Zitterbewegung. The internal
position and momentum operators. of the Zitterbemegung
generate the Lie algebra of SO(3,2). Acting on a particu-
lar Fourier component of the Dirac wave function with
center-of-mass momentum p, the vector and tensor opera-
tors of this algebra lie in the hyperplane orthogonal to p.
The ZI tterbemegung has the dynamics of a three-
dimensional harmonic oscillator confined to this hyper-
plane. We also generalized this dynamical system to the
larger system with symmetry group SO(4,2) by including
the pseudoscalar and axial-vector operators y and y y".

The purpose of this work is to investigate, in the
Heisenberg picture, the motion of the Dirac electron in
external electromagnetic fields, and to determine the in-
fluence of external fields on the dynamical system
described in Ref. l. An external field should affect both
the center of mass of the electron, causing it to accelerate,
and the internal oscillation of the charge around the
center of mass. We investigate this phenomenon by solv-

ing the Heisenberg equations in proper time for the veloci-

ty, position, and spin of the electron in homogeneous,
time-independent electric and magnetic fields. Although
the constant electromagnetic field is a very special case, it
has some interest because the amplitude of the Zitter-
betvegung is small (about 10 " centimeters) and many
fields in nature are effectively constant over this distance
scale. The exact solutions obtained here show that the
Zitter bemegung and center-of-mass motion of the electron
are inextricably interconnected in the presence of external
fields. Nevertheless, we can obtain a picture of the addi-
tional features of the electron's motion introduced by the
Zitterbemegung, by comparing with the motion of a rela-

tivistic spinless charge in the same fields. When the elec-
tric and magnetic fields are weak relative to a critical
field, we are able to separate the Zitterbetoegung from the
center of mass motion. The critical fields are so large that
for all practical purposes this separation is valid.

Finally we should emphasize that the algebraic struc-
ture of the internal dynamics of the electron, derived and

studied in Ref. 1 and here, transcend the particular four-
dimensional representation. They are also valid for any
relativistic system (e.g. , hadrons) with internal degrees of
freedom or extended structure when described in the
Heisenberg representation.

II. HEISENBERG'S EQUATIONS OF MOTION
FOR AN ELECTRON IN AN EXTERNAL

ELECTROMAGNETIC FIELD

For an electron in an external electromagnetic field we

use the minimal coupling rule p&~~&——p&
—eA& and re-

place the free-particle proper-time Hamiltonian of Ref. 1

by

The velocity of the electron is then

The Heisenberg equation for the motion of the velocity
operator yields

Differentiating again we find

(tr rt [y,o"']+[tt,m]o" y ).
4 4m"m p 2ie p ~ 2e ~

where we have used the commutation relation

(5)
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we can put (4) into the more tractable form

y p+ —y p~+ p'p yv —p
2l . 2le

Ac

or

eyP~ ——IP y +—yl
C 2l

(6')

We note that since —A =mc, when acting on positive-
energy solutions of the Dirac equation, (6') appears re-
markably similar in form to the Lorentz-Dirac equation
for a classical radiating point charge

2
mcu"= Fp~'+ —— (u'"+u"u u )

c 3 4mc

which can be written in the form

(7)

is the Hodge dual of the electromagnetic field tensor F" .
The sum of the four terms on the right-hand side of (4) is

y Hermitian and therefore any solution of this equation
for yp(s) must be y Hermitian. This result is to be ex-
pected since the y -unitary proper-time evolution of yp(0)
will preserve its y Hermiticity.

Using the fact that

j'"A = —2n m o." y
y P(s) = —y '(s )M P,

where the four-by-four matrix operator with elements

M P=A g," 2ieF,"—(x(0))

(10)

is constant in proper time.
At first sight (10) may appear strangely nonlocal since

y", which is related to the velocity operator at proper time
s, depends on the electromagnetic field at the position
x(0) at proper time zero. However, let us recall that in
the proper-time Heisenberg picture developed in Ref. 1

the wave function is laid out for all space and time but is
independent of proper time, while the dynamical vari-
ables, represented by Heisenberg operators, depend on s.
Equations (10) and (ll) mean simply that the external
electromagnetic field should not be regarded as a dynami-
cal variable depending on proper time, but like the wave
function it is laid out in space-time.

Equation (10) yields the formal solution

y "(s)=a'[exp( —iM' s )],"+b'[exp(iM' s )],",

p( )
lA 8 p(()) —!A 8

and furthermore for any integer power of x"(s)

[xP(s)]n eiA s[xy(0)]ne —rA s

Hence for any field F P(x), which can be expanded as a
power series in x, we have

e ' 'F "(x(s))e' '=F P(x(0)) .

Therefore Eq. (9) can be written in the form

e v 2 e(m'cu") = FP~ "+——
ds C 3 4mc

where m' is the variable mass of the radiating charge

(7') where a and b are operators, constant in proper time,
and M'~ is the square root of the matrix operator M.
Hence

yp(s) =y"(s)e (8)

where y"(s), like yp(s), is a four-by-four matrix operator.
Substituting (8) into (6) we find that the terms containing
y' "(s) cancel and we are left with

y "(s)=—y'[A g " 2ie exp( iA s)— —

dm 2 e a
U~U

ds 3 4m6c

and u" is the proper-time velocity. A crucial difference
between (6') and (7') is the appearance of i =v' —1 in
front of the acceleration. A consequence of this factor of
i is that while the classical Lorentz-Dirac equation has
run-away solutions, the quantum-mechanical equation ex-
hibits instead oscillatory Zitterbewegung solutions. Note
also that when A' is taken to zero in (6') this equation
reduces to an operator form of the classical Lorentz equa-
tion.

We shall now take A=c=1. We can eliminate the
first-order term in (6) by using the ansatz

/

yp(s) =y"(s)e, '

= a "[exp( iM'~ s)exp( —i% s)]—P

+b'[exp(iM' s)exp( i A s)]—p . (12)

Since (6) is a second-order differential equation we require
two initial conditions to specify its solution. The initial
condition on yp(s) is

yP(0) =a"+b"
while the initial condition on y "(s) gives

2n- (0)oP'(0) =yP(0)

ia'[M'~ —)„P iaPA-
+ ib.[M'"]„P ibP~ . —

(13)

(14)

Henceforth all operators shall be taken at s =0 unless
their dependence on s is given explicitly. Solving (13)
simultaneously with (14), we find

a p= ,'1 p+,' ~.[M '"]„—p ' ~.~-[M-'"],p-
v 2 A

&&F p(x (s))exp(iA s)] . (9) and

Now, the Heisenberg-picture operator x"(s) is given for-
mally as

b"= y" ri"[M ' '] "—+ ——m —a "[M ' ']" (15b)
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Thus if M'~2, M '~2, and exp(+isM) can be found, the
velocity operator for an electron in an arbitrary external
electromagnetic field is given by (12) with (15).

III. METHOD OF SOLUTION FOR HEISENBERG
EQUATIONS IN A HOMOGENEOUS

EXTERNAL FIELD

When the external electromagnetic field is constant in
space-time, the task of finding the square root of the ma-
trix M becomes much simpler. We first diagonalize M by
a slnlllaflty tlansfofn1atlon

M'=S MS

=diag(A +AJ ), j =0, 1,2, 3

where S is a four-by-four unitary matrix, and A&. is the
jth eigenvalue of the off-diagonal part 2ie[F—,"] of M.
The similarity transformation which diagonalizes [F,"]
leaves the diagonal part [A g "] of M unchanged. This
would not be the case if F " depended on x because then
the matrix S would depend on x so that space-time
derivatives in A would act on it and S [A gJ']S would
not in general be diagonal.

Next we find the square root of M' by taking the
square root of each of its diagonal elements. Using the
fact that y =y y'y y anticommutes with A = vr&y"—
we can write

affects the one and two components, we can combine the
two sets of solutions to give the motion of the electron in
parallel electric and magnetic fields. The velocity and po-
sition operators for an electron in an otherwise arbitrary
non-null homogeneous electromagnetic field can then be
obtained by Lorentz transforming these solutions. For
null fields another method has already been developed
elsewhere.

IV. RELATIVISTIC MOTION OF A SPINLESS CHARGE

and obeys the equation of motion

m U"=eF"~ (21)

When 8=(0,0,8) and E=(0,0,E), the solutions of (21)
are

v'(s)=u'(0)cos s +u (0)sin

We shall need, in order to separate out the center-of-
mass motion of the electron, the motion in proper time of
a relativistic spinless charge acted upon by the Lorentz
force in a constant electric and constant magnetic field.
We recall from classical relativistic dynamics that a parti-
cle with charge e has the proper-time velocity

p"—eA"

(A +A, )'~ =+(A +By') . (17)

Expression (17) shows an ambiguity in overall sign and an
ambiguity in the relative sign between ~ and (iAJy ).
Changing the overall sign in (17) amounts to changing the
sign of M' which an1ounts to simultaneously switching
a" with b" and exp(iM' s) with exp( iM'~ s) i—n (12),
leaving the solution for y&(s) unchanged. We shall also
find that the remaining sign ambiguity in (17) does not
present a problem.

The square root of M is then given by

M'"=s(M )'"s'.
Similarly we can exponentiate M' by exponentiating the
diagonal matrix M' ' and using

exp(+iM'~ s) =Sexp(+i (M') '~ s )S (19)

The calculation involved in the steps outlined above can
be considerably simplified by taking the electric and mag-
netic fields in I to be parallel. So long as the field is
non-null, i.e., does not satisfy

v (s)=u (0)cos s —u (0)sin
fly

S

u (s)=u (0)cosh s +u (0)sinh s
E

u'(s)=v (0)cosh —s +u (0)sinh s
m m

Integrating, we obtain

x'(s)=c'+ u'(0)sin s —u (0)cos s

mx {s)=c + u (0)sin s +u'(0)cos s
m m

x (s)=c + v (0)sinh —s +u (0)cosh s

(23)

E 8=0 and
i
E

f

—
/

8
j

=0,
this does not entail a loss of generality because one can al-
ways find a frame in which E and B lie in the same direc-
tion.

In order to elucidate the separate effects of electric and
magnetic fields on the motion of the electron, we shall ob-
tain solutions for the velocity and position operators in an
electric field and then in a magnetic field, both fields
pointing in the third direction. Then, since the electric
field affects only the zeroth and third components of the
velocity and position nontrivially, while the magnetic field

x (s)=c + u (0)sinh —s +u (0)cosh s
m m

L I

22(x' —c')'+(x' —c )'= [(u'(0))'+(u'(0))'],

m(x —c ) —(x —c ) = [(u (0)) —(u (0)) ] .
E'

(24)

The particle moves with angular frequency 8/m along a
circle in the first and second directions and accelerates
with hyperbolic frequency e/m in the 0-3 plane along a
hyperboloid:



ZITTERBES'EGUNG OF THE ELECTRON IN EXTERNAL FIELDS

Results similar to (20), (22), and (23) can be obtained for a
Klein-Gordon particle in the Heisenberg picture in proper
time.

1 1 4 2ie
Vl

1 —1

A +2ie 0

V. MOTION IN A HOMOGENEOUS ELECTRIC FIELD 0 A —2lp ~

For the case that 8 =0 and E=(O,O, E), the matrix M
is given by

Equation (17) gives four possibilities for the square root of
each diagonal element in m'. From these possibilities we
choose

0 0
0 A 0
0 0 ~2

2ie 0 0
0

~ M1 M) ~ o
1 2

The square root of the submatrix (M 1 I& ) is (0 ~). Us-
2 2

ing (12) and (15) we can immediately write solutions for
the one and two components of the velocity

and using (18) we find

A +3/Ey
Pl

i v—ey''

To find the inverse of

—1/2
8

8

i 3/—e y
S

m+v Ey'

m' we let

A +v e(1 —i)y' 0
0 A +ve(1+i)y

(29)

+ ,'(yj ~JR—'+in.o J~ '), j=1,2
(27)

and write
r

A +vey' i~ay — A 8 1 0
ivory' ~v&y' a ~ —

0 1

oo Mo A 2EE'

M3 M3 2ig A

By inspection we see that the matrix which diagonalizes
APE 1S

(28)

In these solutions the condition that all operators act on
states for which A =m has not been applied yet.

Let us now consider the submatrix

giving two simultaneous equations for 3 and 8 which
yield the solutions

B= i(A +4—e ) '(2@A +v e(A 2+2')y5)
= —i(2e~+ v e(~'+2m)y')(A +4m')-)

and

& =(~'+~E(~' 2E)y')(—A +4E2)

))t e have used the fact that even powers of ~ commute
with ~ and y and therefore every term in the power
series expansion for the exponential in

(~+4e ) = i I desex—p[iy(A +4e2+ig)],
where 5 is an infinitesimal, can be commuted to the right.
Thus we have

(~'+vg(m —2e)y')(A +4m') ' i(2eA +3/e—(A '+2m)y')(A +4m )

i(Zest +—v s(A +2@)y )(A +4@ )
' (A +V@(A —2e)y )(A +4@ )

(30)

To find exp(iM' s) and exp( iM' s) w—e use (19) and obtain

( Ml/2 )0 1

( is(~+Vs(1 —i)y )+ is(A"+Ms(1+i)y )) ( Ml/2 )3s o ——
~ e e =exp I s

( Ml/2 )0 1

(
is(~+vs(1 i)y ) eis(A +(1+i)y )) exp—((M(/2s)3S 3 2 e o ~

( Ml/2s)0 1 (e —is(A +vs(1 —i)y )+e —is(A +We(1+i)y )) ex (
.Ml/2 )3s o ———, e e =exp —l s

I

(
.Ml/2 )0 (e is(~+Vs(1—i)y ) i—s(A +)/s(l—+i)y )) ( lM1/2 )32 e

Combining (31), (30), and (15) in (12) we find the following operator solutions for y (s) and y (s):
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y (s)= —,
'

y [cos(A +V'e(1 i—)y )s+cos(A +V e(1+i)y )s]e

X —,y [cos(A +V@(l i—)y )s —cos(A +v e(1+i)y )s]e

l 0 (~ +v e(A —2e)y [sin(A +v'e(1 —i)y )s+sin(A +v e(i+i)y )s]e
+4e

1 3 (2' +v e(A +2e)y')
[sin(A +V e(1—i)y )s+ sin(A +v'e(1+i)y )s]e

A +4e
1 0 (A s+V e(A —2e)y )

&~O [sin(A +Ve(1 —i)y )s+sin(A +ve(1+i)y )s]e
A +4@

+ K~CT
i s (2' +v e(A +2e)y ) [sin(A +Ve(1 —i)y )s+sin(A +Ve(1+i)y )s]e+4e'
i s (A +Ve(A 2e—)y )

vr — [sin(A +V'e(1 —i)y )s —sin(A +V e(i+i)y )s]eM+4e'
o(2&~+ ~(~ +2e)y )

[ (~ V (1 ) s) (~ V (1 -) s) )
2 A +4e
1 s (~ +v e(PP 2e)—y )

7T~(P z [sin(A +V e(1 —i)y )s —sin(A +V e(1+i)y )s ]e
~ 5 ~ 5 —its

M+4e'
i 0 (2eA +v e(A +2e)y )

[
.

( ~(l .
) s)+ &~O +4e

y (s)=(same with 0~3), (32)

where the sines, cosines, and exponentials are defined by
their power-series expansions.

In order to interpret the solutions (27) and (32) physi-
cally we need to impose the condition that they act upon
states for which

m P, (33)

cos[A +Ve(l —i)y ]s=cosQ&s,

- i.e., positive- and negative-frequency solutions of the
Dirac equation. With this restriction we have

cos[~+V e(1+i)y']s =cosQzs

sin Ops
cos[A +v e( 1 +i )y ]s =[~+v'e( 1 + i )y )

Q~

as can be seen from the power series of the sines and
cosines. It is possible to set A =m in (32) because, as
we have mentioned before, even powers of A commute
with y . We also use A ' =A /m in (27).

We also encounter the term m o. ". Since this term acts
on states for which A =m we can write

n. cr "A = — (m"yy" y"—~ y)~ y—
2

(~" —i~ a "—)m"y+ —m y~
L l

A 2

mc7 "A +——(m yI' ~j"rc y)2 cx

and obtain

sinA &s

sin[A +Ve(1 i)y ]s=[A—+V'e(1 i)y ]—0)
where

Qz ——(m 2ie)'~ =—co ip, —

0) =(m +2le) =co+Ep,

co=ReQ& —— [[(m +4e )'~ +m ]'~ I,2

p=lmQ = I[(m +4e )' —m ]'1

(35)

~~cr "A =i (m y" m I'~ y) . — (36)

~ m~m" y - ~~~ yy'(s) = + y'— cos2ms—
m m

77 0

o. ~sin2ms

for j= 1,2, and

(37a)

Inserting these relations into (32) we then obtain the fol-
lowing expressions for the components of the velocity of
an electron in the constant electric field E=(O,O, E):

y (s)= cos((co+ m)s )cosh(ps) —y z
——y z

— +1 Oco +p +mcu i 3 mp w w-yu i~ w. yIJ,

co +p 2 co +p m(co +p ) m(co +p )

+sin((co+m)s)sinh(ps) ——y z z
——y z z + z z + z za) ~p 2 co +p m(co +p ) m(co +p )
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+sin((co+ m)s )cosh(Ps) —lr — l—r
z

——n. 0 + —lr~cr z zm(co +p ) 2 co +p 2 m(co +p ) 2 co +p

+cos((co+ m )s )sinh(ps) ——n
co +p, 2 m(co +p ) 2 co +p 2 ftl(co +p )

1 0 CO +p —DECO l 3 77lp 'lT 7T /CO lK &'gp+cos((co m)—s)c osh(p s) —y z z + —y z z + z zco +p 2 co +p m(co +p ) m(co +p )

0 IP l 3 CO +P —PICO+sin((co —m)s )sinh(ps) —y z z
——y

cO +p 2 CO +p
7T 'lT'PP 177 7T /CO

m(co +p ) m(cd +p )

+ sin((co —m )s )cosh(ps) ——n
z z

l 0 CO +P +Nl CO

2 m(co +p ) ~2+pz 2 m (~2+pz) 2 ~2+pz

+cos((co —m)s)sinh(ps) — lr —P + lr —P ——lr o. P P + n. Cr—3

co'+p' 2 m (co'+p') 2 cd'+ p' 2 m (cd'+ p')

y (s)=(same with 0~3) . (37c)

Integrating the velocity operator over proper time we obtain the position operator

~ ~J~.y ~ao aj
1 . ~j~yxi(s) =ci+ s+ cos2ms+ yJ srn2ms, g = 1,2

Pl 2P?l 207
(38a)

p co l 3 p (lr lr y(p —co —mcd)+l& lr y(2co+m )p)0 . 2 2 3

CO +p 2 CO +p m(~'+ p') [(~+m )'+p, ']

(( ) )
~

h( )
1 p p l 3 co ( lr lr y(2 +cd)mp+ le lr'y(p co mcd))

cO +p 2 cO +p m(co +p )[(co+m) +p ]

+cos co —m)s)cosh(ps)
1 [iver (co(co +p m) 2—mp )—+lr p(co +2mco+p m)]—
2 m (cd'+p')((cd —m)'+p')

ao CO m~0 P+l
2m(co'+p') 2m(cd +p')

+sin((co —m )s )cosh(ps) [ in p(co +p —+2mco m)+n—(co(cd +p m) ——2mp )]
m (co'+p') ((cd —m )'+p')

%~0 P l '77~CJ CO

2m(co +p ) 2m(co +p )

1 [ ilrp(cd(cdz+p —m)+2mp )—+sr p(m +2mco —cd —p )]
2 m(cd +p )((cd+m) +p )

71~0 CO j &~0 P+—
2 m(co +p ) 2 m(co +p, )

(( )
.

h(
1 [in p(co +p m —2mco—) n(co(co +p—, —m )+2mp }]
2 m(co +p )((co+m) +p )

77 ~CT P l 7T~O CO

2m(co +p ) 2m(co +p )

+sin((co —m)s )cosh(ps) —y z z
——y z z + z z z z

1 p co i 3 p (lr n y(co mco"p)—+i n n—y,p(m —2c"o) )

CO +p 2 CO +p m(co +p }((co—m) +p, )

1 p p, i 3 co [nn y(p(2co .m"))+i, n n —y(co p m"co)]-+cos co —m s sinh Ps —y z 2+ —y z z+2 cd~ +p 2 co +p m(co +p, )((co—m) +p )

x3(s}=(same with 0: =3),

(381)

(38c)
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where c" is a constant operator determined by the initial
condition.

Expressions (37a) and (38a) agree. with the correspond-
ing free particle expressions with p& replaced by
m&

——p&
—eA&. This result is expected since the electric

field exerts no force' in the first or second directions so
that motion in these directions should correspond as
closely as possible to that of the free particle, while at the
same time p must be replaced by m in order that gauge in-
variance be preserved.

It is remarkable that although y appeared in the solu-
tion (32), we had to introduce it in order to find the
square root (29), all terms containing y have disappeared
from (37) and (38). The only Dirae matrices appearing in
(37) and (38) are y" and oi', with p and v ranging from
zero to three. These are the same Dirac matrices which
appear in the free particle solutions of Ref. 1. This means
that the SO(3,2) dynamical system described in Ref. l has
not been enlarged to the SO(4,2) dynamical system as a re-
sult of the interaction with an electric field.

Equations (37) and (38) also reveal that there is no sim-
ple separation between Zitterbemegung and center-of-mass
motion since all of the terms in these solutions are oscilla-
tory. We see from these solutions that the position and
velocity operators oscillate with frequencies co m while at
the same time accelerating hyperbolically with hyperbolic
frequency p.

where A=eB. Again we can immediately write down
solutions for two components of the velocity, in this case
the zero and three components

y"(s) = —,
' (y"+W~ ' is—acr "A ')e

+ ,'(—y" y—ri"A '+i' cr "~ '), (((, =0,3 .

(40)

To solve for the remaining two components we consider
the submatrix

—2i&
M' M 2i& A

(4l)

1 —i5—
i

g1vlng

m'= +2i &
0 A —2i&

Taking the square root of m' and inverting the similarity
transformation that diagonalized m, we obtain

This submatrix is diagonalized via a similarity transfor-
mation by

VI. MOTION IN A HOMOGENEOUS
MAGNETIC FIELD

Now let K=0 and B= (O, O,B). ln this case M is given
by

y'V u
2

+' y'Vu
2

A 0 0
0 A —2i&
0 2i&

0

(39) (43)

0 0 0 A This matrix has the following inverse:

(A +y v'i&(A 2iA'))(A ——4A )
' (2i&A +y v'iA(A +2i&))(A —4A )

( 2i&A —yV'iA'—(A +2iA')}(A —4A )
' (A +y Vi&(A 2i&))(A——4A' )

Exponentiating m '/ we find

1/2 )1 (
(

i(M+iv 2&y )s+ i(A'+)/2&~y )s) (
~ 1/2 )2S 1=~ e 2

(44)

(1 1/2 )1 (
i(M+iV 23Py )s i(M+02&~y )s) S(~ 1/2 )2S 2= e —e

2l
exp lm s

1/2 )1 ~

(
i(A'+i V 2—~&y , )s+ —.i (,9'+ 2&V)s)y( 1/2 )2

(45)

Finally, combining terms, we obtain the solutions

y'(s) = ,' y'[cos(A—+iyV2%)s+cos(A +y &2%)s]e

+ y[eos(~+iy —V2&)s —cos(A +y v'29k )s]e
2
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[ (~+ '~2m) + (~+ 'V'2u) ] -'~'i A 3++'iA A —2i&
2 —4A

z(2'~A + i(~ +2i~)y )
[

~ ~ s~ ~) ( 5~2~) ]
—its+2" —4A

1 ~~ (A + tA(A 2—i&)y )
[

.
a

A —4A
1 ~p (2i&A + iA(A +2i&)y )

[
.

(
. g~ ~) . (~ g~2~) ]a —4A

1 ) (2i&A +&i&(A +2i&)y )
[

.
(

. g~ ~) .
( g~2~) ]+2 —4A'

1 z (A + ~A'(A —2~%)7 )
[ (A s~2%) —'

(A s~2%) ]
iAs-+2 —4Ai, (2i&A +ViA'(A +2iA')y )

[
.

a —4A'

i ~p(A + iA'(A 2i&—)y ) [. (
. 5/ ~) .

( 5/ ~) ],~g
—4A

y (s) =(satne with vr'~m, m ~—vr', etc. ) .

We again use the condition that, acting to the right, A =m and find

sin(co &s)cos(~+iy u'2%)s =cos(co,s), sin(A +iy V'2%)s=(A +iy &2A)

sin( eggs )
cos(A +y V'2%)s =cos(cozs), sin(A +y V'2%)s=(A +y V'2A)

(47)

with

(m2+2~ )1/2 and ~~ (m2 2 )1/2 (48)

leading to the following results for the velocity operator:

y'(s) = , cos(co)—+m)s —,
' (y'+iy~)

i+ —,sin(co&+m)s (~'+i~ )—
2 mcus)

(~'+i ~')~ y
mco&

7Ta
& &

co]+m
(o +io )

2 m Et' )

1 co& —m
+Tcos(co& —m)s —,(y +iy )

07&
+ (n'+i m)m y. "

mco)

(m'+in )(co)+m) 1 ~~, co) —m
+ —,

'
sin(co& —m)s +— (o. '+io )

2 mcoi 2 m ct)
&

1 cop+ m
+ Tcos(cop+m)s ~ (y iy )—
+ —,

'
sin(co&+ m)s —(~' i+ )—

2 m C02

(m' im )m y- "
m cop

1 a a) ap +
(o' i o )—

2 m cop

cop —m
+ —,cos(cop —m)s (y' iy )—

COg
+ (m' i m)vr y—.

P?Z COp

] a ~ cop
—m+ —m (o. ' —io )

2 mQ)p

i, . ~2+m+ Tsin(cop —m)s ——(m in.)—
2 m cop
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y (s) = —,cos(col+m)s —,(y —iy )
1 CO)+ Pl (vr —ilr')Ir. y

Pl CO)

+ —,
' sin(col+ m)s (v—r iver—')

co~ —m 6))+m
(cr —icr ')

2 Pl Ni

+ & cos(coI —m)s I (y —I y ) + (lr irr—')vr y

1
CO)+ Pl

+ —,sin(col —m)s ——(Ir i rr—)
2 Pl CO)

77~ M i
—Pl

+ — (o ' —io ')
2 Pl cO )

1 1 p ~ ] cop+m
+ —,cos(co2~m)s —,(y +iy )

(vr +i'')vr y
Pl Q)p

COZ —Pl
+ —,

' sin(co2+m)s (Ir —+i'')
2 Pl Q)p

1 1 2 ~ 1 2+ —,cos(co2 —m)s —,(y +iy )

COp+ Pl
(o +icr )

2 Pl COp

+ (Ir +i'')vr. y
Pl Q)p

cop+ pl $ 7T~ ~ ) Np —m
+ —,sin(co2 —m)s ——(Ir +ilr ) + — (cr + icl )

2 Pl hap 2 Pl COp

integrating, we find the position operator

Sill( CO I +Pl )S I
Co I +Pl

x'(s) = c'+ —,(y'+iy )
2( Co I +Pl ) Co I

(lr'+i' )rr y
Pl CO)

cos(col+ m)s;, col —m
(vr'+i'—)

2(co, +m) 2 mcol

co)+m
,
'

Ir (O'+i C—r ).
Sill(CO I

—Pl )S I I 2
CO I

—Pl

2 CO I
—Pl CO(

+ (Ir'+ilr )Ir y
Pl CO i

COS(COI —Pl )S

2(col —m)
i, . ~&+m——(Ir +ilr )
2 Pl CO)

~
—m

+ , sr~( o'+ i o )—.
mcus)

Sill(CO2+ Pl )S I I 2 CO2+ m
+ (

I iy2)
2(co2+ m )

(vr' irr )vr y-
Pl COp

COS(CO2+ Pl )S i I 2
CO2

(vr' —ilr )—
2(co2+ m) 2 co2

2 2+m——,Ir (o. io)—.
Pl COp

(Ir' i rr )rr.y-+
Pl COp

sin(co2 —m )s, , 2
co2 m. —

+ —,
' (y' —I y')

2(co2 —m )

COS( CO2 —Pl )S

2(co2 —m )

~p+m
(vr iver )——

2 Pl COp

cop —m
+ I Ir~(o' —I cr )

slI1(col+ pl )s I col+ m
x (s)=c + I (y2 I.yl )

2(CO I +Pl ) Co I

(Ir i rr')Ir y-
Pl COi

C ( OS+COIPl)S i 2 I
COI —Pl

(Ir

iver')—

—
2(col+Pl) 2 col

CO]+ Pl
, Ir (o—io ). —

Pl

sin(col —m)s, , col —m
+ —,

'
(y —iy')

2(COI —Pl ) CO I
+ (m

iver')vr.

y-
Pl CO~

COS(CO I
—Pl )S

2(col —m)

Q) ) —Pl
+ —,rr (o —icr ')

Pl CO)

i . , ~&+m——(Ir i rr )—
2 Ct) )
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sin(coq+ m )s
+ —,(y'+ I y')

2 C02+Pl

co2+ m (?r +i?r')?r y
m co2

eos(col + m )s

2(col+ m )
(?—r +i?r')

2

co2+ m
,'?r—(o +ia ')

Pl COp

sin(co2 —m)s, , co2 —m
+ ,'(y—+iy')

2(co2 —m) '
co2

+ (?r +i?r')?r y
m c02

Cos( C02 —Pl )S

2(co2 —m )

i . , co2+m
(?r +—i?r )

2 CO2

co2 —m
+ , ?r—~(cr +io ')

m
(50b)

The motion in the zeroth and third directions corresponds to the free particle solution (37a) and (38a), since no force acts
in the 0-3 plane.

We see again that all terms containing y have canceled out of the results (49) and (50). The SO(3,2) dynamical system
is not enlarged to the SO(4,2) system as a result of interaction with a magnetic field. These solutions also reveal that the
motion of the electron in a constant magnetic field is oscillatory with four distinct frequencies, col m and co& m. It is
interesting to note that the combination y'(s)+ iy (s) oscillates only with frequencies col+m, respectively,

y'(s)+iy (s)= —(y'+iy )
2

co]+m co] —m
COS((Col+ Pl)S ) + COS((C01 —Pl )S )

+ [cos((col —m)s) —cos((col+m)s)]
(?r'+i?r )?r y

m co]

+—(?r'+i?r')
2

co] —m
sin((col+m)s )—

mco&

co]+m
sin((col —m)s)

1+ ?r~(cr '+—io )
co) —m

S1I1((C01—Pl )S )—
PI CO&

co&+ m
Sill((CO I+Pl )S )

mco~
(5 la)

while y'(s) —iy (s) oscillates with frequencies co2+m

y'(s) I y(s) —= ', (y' I—y')—'co2+ m co2
—m

cos((co2+ pl )s ) + cos((~2 —m)s )

(?r' i?r )?r y-+ [cos((m2 —m )s }—cos((co2+ m )s ) ]
m co2

+ (?r' i?r )——
2

cop —m
sin((co2+ m)s )—

mco

co2+ m
Sill((C|?2 —m)s )

m cop

1+ —?r (o. ' —io }
2

co2 —m
S1n((col —pl )s )— cop+ m

S111((CO2+ Pl )S )
m co2

(5 lb)

When A & m/2, co2 becomes imaginary. This means
that sines and cosines of (co2s) become hyperbolic sines
and eosines of (

~

co2
~
s), and the motion acquires a hyper-

bolic acceleration in addition to the oscillation. %'e ex-
pect, on physical grounds, such a threshold (or phase tran-
sition) to occur when the cyclotron frequency (A'/m ) be-
comes equal to the Zitterbewegung frequency. However,
for fields of this strength pair creation effects become im-
portant and the single-particle theory must be extended or
interpreted differently.

VII. CENTER OF MASS AND INTERNAL
MOTIONS IN WEAK ELECTROMAGNETIC FIELDS

I

and magnetic fields do not allow a straightforward
separation into center-of-mass motion plus Zitter-
bemegung; they are intertwined in a complex way. How-
ever, we do know that when no external fields are present,
this separation is possible. Therefore we expect that when
the external fields are sufficiently weak, we can separate
the internal and center-of-mass motions. In this section
we investigate the solutions (37b), (37c), (38b), (38c), (49),
and (50) which together give the velocity and position of
an electron in constant electric and magnetic fields both
pointing in the third direction.

In the limit that e«m and A «m, we can approxi-
mate

We have found that the exact solutions (37), (38), (49),
and (50) for the velocity and position in constant electric

Eco=m+ —m, p-
m m

(52)
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M~ —I?l +, 6)2 —m-
m

These limits correspond to

E,„,= 1..3 X 10' V/cm,

a,„,=4.4X 10"a.

where the components of the center-of-mass velocity are

0 . 30 &7TQ
u, (s) = cosh s + sinh s

m m m m

3

u, (s) = cosh s + sinh s
'IT'IT f 6 K . 6

m m m foal

For comparison, at the Compton wavelength, the fields
produced by an electron are E= 10' V/cm,
B=2.5&10' G. Dropping terms of order e/m and
A'/m, unless they appear in the arguments of the (circu-
lar or hyperbolic) sines and cosines, we find that the velo-
city operator has the form

yl'(s) =u", (s)+q"(s),

~'~y u m2 .
u, '(s) = cos s + sin

m m m

u, (s)=
2

cos s
~ m. y

m m
sin

m m

and the components of internal velocity are

$

S

(54)

q (s) = cosh s 0
0 ~a ap .

yo — y cos(2ms) — cr osin(2ms )
m 2 m

E+ l slnh — $
m

7Ta . 3

cr 3cos(2ms) — y3 — sin(2ms)
fPl fPl

l) (s)= cosh s
m

3 17a
y3 — y cos(2ms) — o sin(2ms )

m m

+isinh — s
m

l) (s)= cosh s

7Ta p 7T 7T
0

cr cos(2ms) — y — sin(2ms)
m m

3

y cos(2ms) — o sin(2ms )
7T TT a al

m

(55)

2

+ isinh s — cr cos(2ms) — y —
2

sin(2ms)a2

. m m m

q (s) = cosh s 2 ~'~ yy2 — cos(2ms)—
m

7Ta
o sin(2ms )

Keeping only the terms of lowest order in e/ml and A/m we find that the position operator x (s) of the charge also

separates into a center of mass X&(s) plus an oscillatory internal coordinate Q "(s) where

0 3 3

o( )
m lr lr y .

h + h + 0 g3( ) yslnl m 7T
s + — cosh s +c

m m

(56}
1

~l( )
m lT lr y

m'
m

s — cos
m

'2 1

s +q, X (s)= sin s + cosm ~~@
m m m

$ +C

Q (s}= sinh s
2m m

3 7Ta
y3 — cos(2ms) — o sin(2ms)

m m

1+ cosh s 0 7r 7T
0

o cos(2ms)+ y — sin(2ms)
m m

Q (s) = cosh s3 1

2m

7Ta
cr cos(2ms)+ y — sin(2ms)

m

l+ sinh
2m m

0 '1T 'jj0 ala 0cos(2ms) — o sin(2ms)
m m (57)
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Q (s) = cos
1

2m

VQp
0' 'cos(2ms)+ y' — sin(2ms)

m m

i+ sin s
2m m

2 ~'~.r
y — cos(2ms)—

m

7TQI
o. sin(2ms)

2 1
Q2(s) = cos

2m

2

0 'cos(2ms)+ y'—,y sin(2ms)
m m

It is interesting to compare (54) and (56) with the corre-
sponding expressions (22) and (23) for the velocity and po-
sition of a relativistic spinless charge in the same electric
and magnetic fields: on positive-energy solutions of the
Dirac equation m"y=m and Eqs. (54) and (56) reduce to
(22) and (23). The center of mass of the electron behaves
like a relativistic spinless charge. In fact (54) is a solution
of the equation

imation to (6) in which the term explicitly containing fi
has been dropped. The initial velocity (59) corresponds,
with minimal coupling replacement p~m, to the center-
of-mass velocity of a free electron.

Let us now turn our attention to the influence of
"weak" electric and magnetic fields on the Zitter-
bewegung We recall from Ref. l that the free electron
Zitterbemegung is a harmonic oscillator which can be
represented as a

V~ ~.y=eI&„V,

with the initial condition

(58) Q"(s)
1

r)"(s)
2m

cos(2ms) sin(2ms)
—sin(2ms) cos(2ms)

Q"(0)
1 q"(0)

2fPl

( )
W(0)~ y

c.m. (59)

Equation (58) can be thought of as a semiclassical approx-
I

Motivated by the free particle case, we rewrite (55) and
(57), together in terms of a phase space rotation as fol-
lows:

Q (s)
1 g'(s)

2m

Q (s)
1

ri (s)
2m

Q'(s)
1 g'(s)

2m

Q'(s)
1

g (s)
2m

R (2ms)cosh —s

iR 2ms+ —sinh — s
2 m

R (2ms)cos s

—iR 2ms+ —sinh
2 m

7T . 6'

iR 2ms+ —sinh —s
2 m

R (2ms )cosh s
m

iR 2ms +—sinh s
2 m

R (2ms )cosh s

Q (0)
1

rj (0)2'
Q'(0)
1 ri'(0)

2m

Q '(0)
1

r) '(0)
2fVl

Q (0)

q (0)
2m

(60)

where

cosa sina
R(a)= —sina cosa

and the initial internal position and velocity operators are

Q"(0)=
2m m

T

q"(0)= y"(0)— m'

(62)

We see in the result (60) a "tensor product" structure

(with vr/2 phase shift and multiplication by i =v' —l in
the off-diagonal elements) between a circular (or hyperbol-
ic) rotation, induced by the magnetic (or electric) field, on
the one hand, and a rotation in the position-velocity phase
space, coming from Zitterbemegung, on the other hand.
An expression similar to (60) can be derived, by differen-
tiation, for motion in the velocity-acceleration phase
space.

VIII. HEISENBERG EQUATIONS FOR THE SPIN
TENSOR

For the sake of completeness we also record the Heisen-
berg equation of motion for the spin tensor
~p =(&~4)lyi y l:
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e
2

I, ~ ~ e—u +——aXB+SXE
2i 2 c 2

—Su~= —Su ~ (—S F u S—I'F ).
21 c

Using the fact that S J=(i/2)aj and SJ"=ej"S, we can
write down separately the vector and axial-vector com-
ponents of (62):

We note that when E=O, S and ia decouple and Eqs.
(63a) and (63b) are each equivalent to (6') for the velocity
operator. In this case we can repeat the procedure in Sec.
V and obtain solutions for the proper time evolution of
the operators S and ia in the constant magnetic field
B= (0,0,8). In terms of the "raising and lowering"
operators

S+=S'+iS, S =S' —iS

e—Sm= —.S+—S~8——~ && E
2i c 2

(63b) we obtain

co~ —m
S+(s)= —,cos((co~+ m )s ) S+(0) +iS+(0)

mco]
+ 2 sin((co &+m )s ) S +(0) —iS+(0)A

co
~ +m

+ —'cos((co~ —m)s } S+(0)
2

CO

A 1iS+(0) — + —,sin((co, —m)s} S+(0)
m co I CO

co)+m
+iS+(0)A

co2
—m 1

S (s) = —,
' cos((co +m )s) S (0) +iS (0) +»n((co2+m» }

CO2 m co2 CO2

co2 —m—iS (0)M
m co2

co2+ m cop+ m
+ —,cos((coq —m)s ) S (0) iS (—0) + —,

'
sin((co2 —m )s ) S (0) jiS (0)A

CO2 m co2 CO2 m co2

S (s)=S (0)——S (Q)A '+ —S (0)A 'exp( 2iA s—),
2 2

(64)

with similar expressions for i(o.+,a,a ) where again

co2 ——(m +2%)' and co2 ——(m —2A)'
For weak fields one can write Eqs. (64) in the form of

Eqs. (53), (54), and (55) for the velocities.

IX. CONCLUSION

In this work we have obtained exact solutions of the

Heisenberg equations in proper time for the motion of an

electron in constant electric and magnetic fields. Barut
and Bracken have previously solved the Heisenberg equa-

tions in ordinary time in a constant magnetic field. The
equations for an electron in a constant electric field are,
however, quite intractable in ordinary time, since the elec-

tric potential appears as an extra term in the Hamiltonian,
in contrast to the magnetic vector potential which is

minimally coupled to the momentum. In the covariant

proper time formalism used in this paper both potentials

couple minimally to the four-momentum, and the equa-

tions for both the electric and magnetic fields can be

solved in a unified manner.
Our solutions reveal that in an electric field the velocity

and position operator of the electron accelerate hyperboli-

cally, like the relativistic spinless charge, while at the

same time oscillating at two frequencies depending on the
strength of the field and the mass. In a magnetic field the
velocity and position, as well as spin, of the electron oscil-
late at four distinct frequencies. When the electric and
magnetic fields are much weaker than the critical values
(10' V/cm, 10' G), the oscillatory Zitterbeuregung and
the center-of-mass motion can be separated. The center of
mass of the electron then behaves like a relativistic spin-
less charge, while the internal motion exhibits a structure
similar to a tensor product between a hyperbolic (or circu-
lar) motion, induced by the electric (or magnetic) field, on
the one hand, and the much faster oscillation at frequency
2m characteristic of the Zitterbewegung on the other
hand.

Besides providing insight into the influence of the elec-
tromagnetic fields on the internal and center-of-mass
motions of the electron, and more generally on relativistic
extended particles, the results of this work may be used to
calculate the Green's function of the Dirac field using the
proper time method of Schwinger. ' The solutions of the
Heisenberg equations are also important in radiation prob-
lems. For example, . the form of the acceleration, x, leads
immediately to a derivation of the spontaneous emission
formula.
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